JP3790873B2 - Acoustic surface area meter - Google Patents

Acoustic surface area meter Download PDF

Info

Publication number
JP3790873B2
JP3790873B2 JP12623497A JP12623497A JP3790873B2 JP 3790873 B2 JP3790873 B2 JP 3790873B2 JP 12623497 A JP12623497 A JP 12623497A JP 12623497 A JP12623497 A JP 12623497A JP 3790873 B2 JP3790873 B2 JP 3790873B2
Authority
JP
Japan
Prior art keywords
container
surface area
volume
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12623497A
Other languages
Japanese (ja)
Other versions
JPH10300551A (en
Inventor
泰 石井
Original Assignee
泰 石井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰 石井 filed Critical 泰 石井
Priority to JP12623497A priority Critical patent/JP3790873B2/en
Publication of JPH10300551A publication Critical patent/JPH10300551A/en
Application granted granted Critical
Publication of JP3790873B2 publication Critical patent/JP3790873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、任意の形状の物体の表面積または任意の形状の容器の内部表面積を音響的手段によって測定する装置にかかわる。
【0002】
【従来の技術】
任意の形状の物体の表面積を測定する方法として、従来、いわゆるガス吸着法が用いられている。これは、測定容器の中に物体を入れて真空に引き、つぎに、物体を加熱してその表面に吸着されていたガスを放出させ、そのときの測定容器内の圧力上昇から放出されたガスの量を求めて表面積を知るという方法である。
【0003】
【発明が解決しようとする課題】
上記のガス吸着法は、測定に手間と時間がかかるだけでなく、測定容器の中を一度真空にしたり被測定物体を熱したりするので、たとえば人間のような生体に対して適用できないという問題点もある。
【0004】
【課題を解決するための手段】
本発明は、測定容器の中に被測定物体を入れて容器内部を音響的に駆動すると、その物体の表面に接する熱的境界層の気体が物体と熱の授受を行なうことにより音響エネルギの損失を生じ、その結果、容器の口から内部をみた音響インピーダンスの実数部が物体の表面積に比例して変化することに着目し、この実数部変化を容器内部の音圧の位相変化として検出して物体の表面積を求めるものである。
【0005】
すなわち、本発明の表面積計の一形態は、基準容器、測定容器、これら二つの容器に交番的体積変化を差動的に与えるスピーカ、これら二つの容器のそれぞれの内部の圧力変化を検出する二つのマイクロホン、これらマイクロホンの出力をとり込んで処理する信号処理装置等からなり、信号処理装置において上記二つのマイクロホンの出力の間の位相差を測定し、測定容器に物体を入れたときの位相差により物体の表面積を算出する。
【0006】
【発明の効果】
上記のような本発明の表面積計では、測定容器の中に物体を入れて数秒以内でその表面積が求められる。また、測定容器内を真空にしたり物体を加熱したりする必要がないから、生体に適用することもできる。さらに、使用する主要部品はスピーカやマイクロホン等の音響部品であるから、製造コストが安く、また装置の大きさも従来品と比べて小型になる。以下、実施例により本発明の動作原理などを説明する。
【0007】
【第1実施例】
図1において、2は空のときの内部体積がV0 で内部表面積がS0 の測定容器で、その中に体積がVで表面積がSの被測定物体3が入れられている。2と3の間の空間の体積をV2 とし、その空間の内部表面積をS2 とすると、それらはつぎのように表わされる。
【数1】

Figure 0003790873
【数2】
Figure 0003790873
【0008】
4は蓋であって、その上に内部体積V1 の基準容器1がつけられている。蓋4の上面の容器1と2の間の隔壁を成す部分には連通管5がつけられていて、容器1と2の内部を連通している。またこの隔壁の部分には音源のスピーカ6もとりつけられている。7はスピーカの振動板である。スピーカ6には端子8および9を通して導線18および19がつながっており、これらの導線を通して信号発生器16より角周波数ωの正弦波駆動信号が供給され、振動板7の表裏によって測定容器2と基準容器1に交番的体積変化を差動的に与える。その結果、測定容器2および基準容器1の内部に圧力変化、すなわち音圧、を生ずる。11は基準容器1の内部の音圧を検出するマイクロホンで、その出力は増幅器13で増幅されて音圧信号e1 となり信号処理装置15にとりこまれる。12は測定容器2内部の音圧を検出するマイクロホンで、その出力は端子10を通って増幅器14に至りここで増幅されて音圧信号e2 となり信号処理装置15にとり込まれる。
【0009】
図2は信号処理装置15の構成の一例を示すものである。音圧信号e1 とe2 はそれぞれアナログディジタル変換器151および152によってディジタル量に変換され、ディジタル計算機150にとり込まれる。155は周波数逓倍器で、信号発生器16から導線17を通して供給される同期信号を周波数逓倍してサンプリングパルスとし、このサンプリングパルスに同期してアナログディジタル変換が行なわれる。しかし、信号処理装置15の内部にクロックパルス発生器を設け、アナログディジタル変換は、信号発生器16とは独立に、この内部クロックパルスに同期して行なうようにしてもよい。この場合には、周波数逓倍器155および導線17は不要となる。なお、アナログディジタル変換の開始は、ディジタル計算機150から導線153および154によって送られるスタートパルスによって制御される。
【0010】
ディジタル計算機150は音圧信号e1 とe2 のフーリエ変換を行ない、e2 のe1 に対する位相差θを測定し、また、物体の体積の測定も必要な場合には、信号e1 とe2 のそれぞれの振幅E1 とE2 も測定する。すなわち、ディジタル計算機150では、時間をtで表わすとして、音圧信号e1(t)とe2(t)の波形をt=t0 からt=t0 +Tまでの間とり込んで、それらのとり込んだ波形と sinωt、 cosωtとの積のtに関する積分を行なってフーリエ変換をするが、e1(t) sinωtの積分値をE1S、e1(t) cosωtの積分値をE1C、e2(t) sinωtの積分値をE2S、e2(t) cosωtの積分値をE2Cとすると、これらの値からe2(t)のe1(t)に対する位相差θ、e1(t)の振幅E1 、e2(t)の振幅E2 はそれぞれ下記の式により求められる。
【数3】
Figure 0003790873
【数4】
Figure 0003790873
【数5】
Figure 0003790873
【0011】
上記の式において、G1 、G2 はアナログディジタル変換器のゲインや積分時間T等を含む定数である。なお、位相差と振幅の測定には、上記のフーリエ変換による方法に限らず、他の既知の種々の方法が適用できる。
【0012】
連通管5は基準容器1と測定容器2の内部の静圧を平衡させるとともに、両者の中の気体の成分を均一化する働きをするが、作動気体が空気の場合には、湿度などの成分は両者の容器の間でほとんど違いがない。したがって連通管5に替えて静圧を平衡させるためだけの毛細管を用いることもできる。また、特に容器のシールを厳重に行なわないかぎり、容器1と2の内部の静圧は、組み立てられた装置の部品の間のすき間を通じて外部の大気圧と等しくなっているのが普通であるから、連通管や毛細管は必須なものではない。
【0013】
スピーカ6から測定容器2の内部空間をみたときの音響インピーダンスをZ2 とすると、測定容器の大きさが音の波長にくらべて十分小さい場合、Z2 は近似的につぎのように表わされる。
【数6】
Figure 0003790873
【数7】
Figure 0003790873
【数8】
Figure 0003790873
【0014】
これらの式において、jは単位虚数、γは気体の比熱比(空気の場合は約1.4)、P0 は容器内の気体の静圧、κは気体の熱伝導度、ρは気体の密度、cp は気体の定圧比熱である。δt は熱境界層の厚さを意味するが、標準状態の空気の場合、f=ω/2π=25Hzでδt は約0.5mmである。
【0015】
式(6)の音響インピーダンスZ2 の偏角をαradとすると、それはつぎのようになる。
【数9】
Figure 0003790873
【0016】
εは1にくらべて非常に小さいから、上式は近似的につぎのようになる。
【数10】
Figure 0003790873
【0017】
音響インピーダンスの偏角αの変化は測定容器2内部の音圧の位相変化として現われるが、式(7)に示したように、εは表面積S2 に比例して変化するから、容器2に中に被測定物体3を入れたことでS2 が変わると偏角αが変化し、それに応じて容器2内部の音圧の位相が変化する。したがって、この音圧の位相変化により被測定物体3の表面積Sを知ることができる。これが本発明の表面積計の基本原理である。
【0018】
前述したように、この実施例装置において測定されるのは、測定容器2の中に体積がVで表面積がSの物体3を入れたときの信号e2 の信号e1 に対する位相差θであるが、容器2を空にしたときのθをθ0 とすると、式(1)、(2)、(7)、(10)より次式が導き出される。
【数11】
Figure 0003790873
【数12】
Figure 0003790873
【0019】
式(11)は表面積の測定式で、図3はそのグラフであるが、測定容器2の内部寸法の測定によってその空容積V0 が求められており、また、容器2が空のときの位相差θ0 が予め測定されていれば、体積と表面積が既知の2個の標準物体を用いた較正で、式(11)の係数を定めることができる。すなわち、体積VA で表面積SA の第1の標準物体を容器2の中に入れてそのときの位相差θA を測定して図3のグラフのA点を定め、つぎに、体積VB で表面積SB の第2の標準物体を容器2の中に入れてそのときの位相差θB を測定してグラフのB点を定めれば、A、Bの2点を結ぶ直線が係数が定められた測定式を表わす。この式はディジタル計算機150の中で生成され記憶される。被測定物体3の体積Vが既知でその表面積Sが未知の場合、物体3を測定容器2の中に入れてそのときの位相差θを測定し、その値と体積Vの値を上記の記憶されている測定式に当てはめればS/Vがわかり、したがって表面積Sの値が求められる。
【0020】
以上の説明では、測定容器2の内部体積V0 や被測定物体3の体積Vは、寸法測定やアルキメデスの原理による水中重量法など、他の方法により測定され予めわかっているものとしたが、本発明の表面積計には、任意の形状の物体の体積を音響的手段により測定する体積計としての機能を併せもたせることができ、この機能を使って求められた物体の体積の値を表示するとともに、その値を物体の表面積の測定に利用することができる。以下に、この体積測定の機能を説明する。
【0021】
信号発生器16からの信号によってスピーカ6が駆動され、ある瞬間において振動板7が押し出されて測定容器2の内部空間の体積V2 がΔVS なる微小体積だけ圧縮されると、基準容器1の内部体積V1 はΔVS だけ膨張する。また連通管5を通して測定容器2の中にΔVP なる微小体積の気体が流入すると、基準容器1からはΔVP なる体積の気体が連通管5を通して流出する。このとき基準容器1および測定容器2の内部に生ずる圧力変化をそれぞれ−ΔP1 、ΔP2 とし、また
【数13】
Figure 0003790873
【0022】
とおくと、気体の断熱変化の関係式よりつぎのようになる。
【数14】
Figure 0003790873
【数15】
Figure 0003790873
【0023】
上記2つの式より次式の関係がえられる。
【数16】
Figure 0003790873
【0024】
式(1)と式(16)より被測定物体の体積Vはつぎのように表わされる。
【数17】
Figure 0003790873
【0025】
上式において、V0 とV1 は一定値であるから、物体の体積Vは圧力変化の大きさの比ΔP1 /ΔP2 から求められることになる。
【0026】
ディジタル計算機150においては、上式におけるΔP1 /ΔP2 に対応する量としてフーリエ変換によって測定された音圧信号の振幅比E1 /E2 を用い、つぎの体積測定式によって物体の体積Vを算出する。
【数18】
Figure 0003790873
【0027】
図4は上式のグラフであるが、この式の係数V0 とV1 は体積既知の標準物体を用いた較正により定めることができる。まず、測定容器2を空にしてV=0の状態とし、そのときの振幅比E1 /E2 の値R0 によりE1 /E2 軸上のR0 点を定め、つぎに体積VC の標準物体を容器2の中に入れてそのときの振幅比の値RC によりC点を定めれば、R0 、Cの2点を結ぶ直線が係数が定められた測定式を表わし、この直線が縦座標軸をよぎる点がV0 の値を表わす。被測定物体3の体積Vと表面積Sがともに未知の場合、被測定物体3を測定容器2の中に入れ、そのときの信号e1 、e2 の振幅の比E1 /E2 から上記の体積測定式によってまずVを求め、つぎにe1 とe2 の位相差θを測定し、その値と求められた体積Vの値を用いて式(11)の表面積測定式により表面積Sを算出し、その値を表示する。
【0028】
以上に説明した体積測定の方法は、スピーカ6から測定容器2の内部をみたときの音響インピーダンスの絶対値|Z2 |を測ることと等価である。式(6)により明らかなように、|Z2 |は表面積S2 の影響を少し受け、その結果、測定容器2の中の被測定物体3の体積Vは、その表面積Sに比例して、(γ−1)δt S/2だけ真の体積より小さく測定される。したがって、前述した方法で求められた物体表面積の値を用いてこの誤差を補正してより正確な体積測定値を得て、この補正された体積測定値を用いてもう一段正確な表面積の測定値を得るようにすることもできる。
【0029】
【第2実施例】
図5は本発明を容器の内部表面積測定に適用した例である。基準容器1とそれにつけられたスピーカ6、マイクロホン11、12、連通管5、信号発生器16および信号処理装置15は図1の場合と同じである。図5の装置では、基準容器1の下に内部体積V0 のアダプタ22が固定されてつけられている。そして、基準容器1は、内部体積Vの被測定容器23の上にアダプタ22を下にして載せることにより23と結合される。ここで、アダプタ22の内部空間と被測定容器23の内部空間は断面積SH の測定孔21によって通じ、内部体積V0 +Vの音響的に閉じた一つの空間を構成する。
【0030】
以上に説明した状況は、図1において測定容器2の中の物体3が−Vなる負の体積を有することと等価である。したがって、図5の装置の表面積測定式は、式(11)においてVの替わりに−Vを代入することにより得られる。すなわち、被測定容器23の内部表面積Sは下記の式により測定される。
【数19】
Figure 0003790873
【数20】
Figure 0003790873
【0031】
上記において、S0 は、被測定容器23をとって測定孔21を平板で閉じたときのアダプタ22の内部表面積で、θ0 はこのときの信号e2 の信号e1 に対する位相差である。SX は上記の平板をとって被測定容器23を結合したときの内部表面積の増加分で、23の内部表面積Sは、式(20)に示すように、このSX に、別途測定することにより求められた測定孔21の断面積SH を加えたものになる。また、式(11)の場合と同様に、アダプタ22の内部体積V0 が知れており、θ0 が予め測定されていれば、被測定容器23の替わりに内部体積と内部表面積が既知の2個の標準容器を順次に結合して較正を行なうことにより、式(19)が定められる。そして、内部体積Vがわかっている被測定容器23を結合してそのときの位相差θを測定し、その値とVの値を上記の定められた測定式に当てはめてSX を算出し、それから式(20)により被測定容器23の内部表面積Sを求める。
【0032】
図1の装置の場合と同様に、図5の装置によってアダプタ22の内部体積V0 や被測定容器23の内部体積Vを求めることもできる。このときの体積測定式は、式(18)においてVの替わりに−Vを代入して得られる次式である。
【数21】
Figure 0003790873
【0033】
式(18)の場合と同様に、内部体積既知の標準容器を用いた較正により上記の測定式は定められる。そして、被測定容器23を結合したときの信号e1 とe2 の振幅の比E1 /E2 をこの定められた体積測定式に当てはめることにより、23の内部体積Vが測定され表示され、また、その値は23の内部表面積Sの算出に用いられる。
【図面の簡単な説明】
【図1】本発明の一実施例の表面積計である。
【図2】図1における信号処理装置の構成の一例である。
【図3】表面積測定式のグラフである。
【図4】体積測定式のグラフである。
【図5】容器の内部表面積測定に対する本発明の適用例である。
【符号の説明】
1 内部体積V1 の基準容器
2 空のときの内部体積がV0 で内部表面積がS0 の測定容器
3 体積がVで表面積がSの被測定物体
4 蓋
5 連通管
6 スピーカ
7 スピーカの振動板
8、9、10 端子
11、12 マイクロホン
13、14 増幅器
15 信号処理装置
16 信号発生器
17、18、19 導線
21 断面積がSH の測定孔
22 内部体積がV0 で内部表面積がS0 のアダプタ
23 内部体積がVで内部表面積がSの被測定容器[0001]
[Industrial application fields]
The present invention relates to an apparatus for measuring the surface area of an arbitrarily shaped object or the internal surface area of an arbitrarily shaped container by acoustic means.
[0002]
[Prior art]
Conventionally, a so-called gas adsorption method has been used as a method for measuring the surface area of an object having an arbitrary shape. This is because an object is put in a measurement container and vacuumed, then the object is heated to release the gas adsorbed on its surface, and the gas released from the pressure increase in the measurement container at that time. This is a method of determining the surface area by determining the amount of the amount.
[0003]
[Problems to be solved by the invention]
The above gas adsorption method not only takes time and labor for measurement, but also evacuates the measurement container or heats the object to be measured, so it cannot be applied to a living body such as a human being. There is also.
[0004]
[Means for Solving the Problems]
According to the present invention, when an object to be measured is placed in a measurement container and the inside of the container is acoustically driven, the gas in the thermal boundary layer in contact with the surface of the object exchanges heat with the object, thereby losing acoustic energy. As a result, the real part of the acoustic impedance viewed from the mouth of the container changes in proportion to the surface area of the object, and this real part change is detected as the phase change of the sound pressure inside the container. The surface area of an object is obtained.
[0005]
That is, one form of the surface area meter of the present invention includes a reference container, a measurement container, a speaker that differentially changes an alternating volume to these two containers, and two pressure detectors that detect pressure changes inside each of these two containers. It consists of two microphones, a signal processing device that captures and processes the outputs of these microphones, the phase difference between the outputs of the two microphones measured in the signal processing device, and the phase difference when an object is put in the measurement container To calculate the surface area of the object.
[0006]
【The invention's effect】
In the surface area meter of the present invention as described above, the surface area can be obtained within a few seconds after putting an object in a measurement container. Moreover, since it is not necessary to evacuate the inside of the measurement container or to heat the object, it can be applied to a living body. Furthermore, since the main components used are acoustic components such as speakers and microphones, the manufacturing cost is low, and the size of the device is smaller than that of conventional products. The operation principle of the present invention will be described below with reference to examples.
[0007]
[First embodiment]
In FIG. 1, reference numeral 2 denotes a measurement container having an internal volume V 0 and an internal surface area S 0 when empty, and a measured object 3 having a volume V and a surface area S is placed therein. If the volume of the space between 2 and 3 is V 2 and the internal surface area of the space is S 2 , they are expressed as follows.
[Expression 1]
Figure 0003790873
[Expression 2]
Figure 0003790873
[0008]
4 is a lid, reference container 1 of the internal volume V 1 is being attached thereon. A communication pipe 5 is attached to a portion forming a partition wall between the containers 1 and 2 on the upper surface of the lid 4 so as to communicate the interiors of the containers 1 and 2. A sound source speaker 6 is also attached to the partition wall. Reference numeral 7 denotes a speaker diaphragm. Conductors 18 and 19 are connected to the speaker 6 through terminals 8 and 9, and a sinusoidal drive signal having an angular frequency ω is supplied from the signal generator 16 through these conductors. An alternating volume change is applied to the container 1 differentially. As a result, a pressure change, that is, a sound pressure is generated inside the measurement container 2 and the reference container 1. Reference numeral 11 denotes a microphone for detecting the sound pressure inside the reference container 1, and its output is amplified by an amplifier 13 to be a sound pressure signal e 1 and is taken into the signal processing device 15. Reference numeral 12 denotes a microphone for detecting the sound pressure inside the measurement container 2, and its output reaches the amplifier 14 through the terminal 10, where it is amplified and becomes a sound pressure signal e 2 , which is taken into the signal processing device 15.
[0009]
FIG. 2 shows an example of the configuration of the signal processing device 15. The sound pressure signals e 1 and e 2 are converted into digital quantities by analog-digital converters 151 and 152, respectively, and taken into the digital computer 150. A frequency multiplier 155 frequency-multiplies the synchronizing signal supplied from the signal generator 16 through the conductor 17 to obtain a sampling pulse, and performs analog-digital conversion in synchronization with the sampling pulse. However, a clock pulse generator may be provided inside the signal processing device 15, and the analog-digital conversion may be performed in synchronization with the internal clock pulse independently of the signal generator 16. In this case, the frequency multiplier 155 and the conducting wire 17 are not necessary. The start of the analog-digital conversion is controlled by a start pulse sent from the digital computer 150 through the conductors 153 and 154.
[0010]
Digital computer 150 performs a Fourier transform of the sound pressure signal e 1 and e 2, the phase difference θ as measured against e 1 of e 2, also when the measured object volume also required, the signal e 1 and e respective amplitudes E 1 2 and E 2 is also measured. That is, in the digital computer 150, the time is represented by t, and the waveforms of the sound pressure signals e 1 (t) and e 2 (t) are acquired from t = t 0 to t = t 0 + T, elaborate taken waveform and sin .omega.t, although the Fourier transform by performing integration over t of the product of the cosωt, e 1 (t) sinωt integral value E 1S, e 1 (t) the integral value of cos .omega.t E 1C, If the integral value of e 2 (t) sinωt is E 2S and the integral value of e 2 (t) cosωt is E 2C , the phase difference θ, e 1 of e 2 (t) with respect to e 1 (t) is calculated from these values. The amplitude E 1 of (t) and the amplitude E 2 of e 2 (t) are obtained by the following equations, respectively.
[Equation 3]
Figure 0003790873
[Expression 4]
Figure 0003790873
[Equation 5]
Figure 0003790873
[0011]
In the above formula, G 1 and G 2 are constants including the gain of the analog-digital converter, the integration time T, and the like. Note that the phase difference and the amplitude are not limited to the above-described Fourier transform, and various other known methods can be applied.
[0012]
The communication pipe 5 functions to balance the static pressure inside the reference container 1 and the measurement container 2 and to equalize the gas components in both, but when the working gas is air, components such as humidity are used. There is little difference between the two containers. Therefore, it is possible to use a capillary tube only for balancing the static pressure instead of the communication tube 5. Also, unless the container is tightly sealed, the static pressure inside the containers 1 and 2 is usually equal to the external atmospheric pressure through the gap between the assembled device parts. Communicating tubes and capillaries are not essential.
[0013]
Assuming that the acoustic impedance when the internal space of the measurement container 2 is viewed from the speaker 6 is Z 2 , if the size of the measurement container is sufficiently smaller than the wavelength of sound, Z 2 is approximately expressed as follows.
[Formula 6]
Figure 0003790873
[Expression 7]
Figure 0003790873
[Equation 8]
Figure 0003790873
[0014]
In these equations, j is the unit imaginary number, γ is the specific heat ratio of the gas (about 1.4 for air), P 0 is the static pressure of the gas in the container, κ is the thermal conductivity of the gas, and ρ is the gas The density, c p, is the constant pressure specific heat of the gas. [delta] t is mean thickness of the thermal boundary layer, the standard state of the air, f = ω / 2π = 25Hz at [delta] t is about 0.5 mm.
[0015]
Assuming that the angle of deviation of the acoustic impedance Z 2 in equation (6) is α rad, it is as follows.
[Equation 9]
Figure 0003790873
[0016]
Since ε is very small compared to 1, the above equation is approximately as follows.
[Expression 10]
Figure 0003790873
[0017]
The change in the deflection angle α of the acoustic impedance appears as a phase change of the sound pressure inside the measurement container 2, but as shown in the equation (7), ε changes in proportion to the surface area S 2. When S 2 is changed by inserting the object 3 to be measured, the declination α changes, and the phase of the sound pressure inside the container 2 changes accordingly. Therefore, the surface area S of the measured object 3 can be known from the phase change of the sound pressure. This is the basic principle of the surface area meter of the present invention.
[0018]
As described above, what is measured in the apparatus of this embodiment is the phase difference θ of the signal e 2 with respect to the signal e 1 when the object 3 having the volume V and the surface area S is placed in the measurement container 2. However, when θ when the container 2 is emptied is θ 0 , the following equation is derived from the equations (1), (2), (7), and (10).
[Expression 11]
Figure 0003790873
[Expression 12]
Figure 0003790873
[0019]
Formula (11) is a measurement formula for the surface area, and FIG. 3 is a graph thereof. The empty volume V 0 is obtained by measuring the internal dimensions of the measurement container 2, and the position when the container 2 is empty is shown. If the phase difference θ 0 has been measured in advance, the coefficient of equation (11) can be determined by calibration using two standard objects with known volumes and surface areas. That is, defining a point A in the graph of FIG. 3 by measuring the phase difference theta A at that time put first standard object surface area S A in the container 2 by volume V A, then the volume V B If the second standard object having the surface area S B is put into the container 2 and the phase difference θ B at that time is measured to determine the point B of the graph, the straight line connecting the two points A and B has a coefficient. Represents a defined measurement formula. This equation is generated and stored in the digital computer 150. When the volume V of the object 3 to be measured is known and its surface area S is unknown, the object 3 is placed in the measurement container 2 and the phase difference θ is measured at that time, and the value and the value of the volume V are stored in the above memory. S / V can be obtained by applying the measurement formula, and the value of the surface area S can be obtained.
[0020]
In the above description, the internal volume V 0 of the measurement container 2 and the volume V of the object 3 to be measured are measured and known in advance by other methods such as dimensional measurement and underwater weight method based on Archimedes' principle. The surface area meter of the present invention can be combined with a function as a volume meter for measuring the volume of an object of any shape by acoustic means, and the volume value of the object obtained using this function is displayed. In addition, the value can be used to measure the surface area of the object. The function of volume measurement will be described below.
[0021]
When the speaker 6 is driven by a signal from the signal generator 16 and the diaphragm 7 is pushed out at a certain moment and the volume V 2 of the internal space of the measurement container 2 is compressed by a minute volume of ΔV S , The internal volume V 1 expands by ΔV S. Also, if [Delta] V P becomes very small volume of gas into the measurement vessel 2 through the communicating pipe 5 flows, [Delta] V P becomes the volume of gas flowing through the communicating pipe 5 from the reference container 1. At this time, the pressure changes generated in the reference container 1 and the measuring container 2 are set to −ΔP 1 and ΔP 2 , respectively, and
Figure 0003790873
[0022]
Then, from the relational expression of the adiabatic change of gas, it becomes as follows.
[Expression 14]
Figure 0003790873
[Expression 15]
Figure 0003790873
[0023]
From the above two formulas, the following formula is obtained.
[Expression 16]
Figure 0003790873
[0024]
From the equations (1) and (16), the volume V of the object to be measured is expressed as follows.
[Expression 17]
Figure 0003790873
[0025]
In the above equation, V 0 and V 1 are constant values, so the volume V of the object is obtained from the ratio ΔP 1 / ΔP 2 of the magnitude of pressure change.
[0026]
In the digital computer 150, the amplitude ratio E 1 / E 2 of the sound pressure signal measured by Fourier transform is used as an amount corresponding to ΔP 1 / ΔP 2 in the above equation, and the volume V of the object is calculated by the following volume measurement equation. calculate.
[Formula 18]
Figure 0003790873
[0027]
FIG. 4 is a graph of the above equation, and the coefficients V 0 and V 1 of this equation can be determined by calibration using a standard object with a known volume. First, the measuring container 2 is emptied and V = 0 is set, the R 0 point on the E 1 / E 2 axis is determined by the value R 0 of the amplitude ratio E 1 / E 2 at that time, and then the volume V C is set. Is placed in the container 2 and the point C is determined by the value R C of the amplitude ratio at that time, a straight line connecting the two points R 0 and C represents the measurement formula in which the coefficient is determined. The point where the straight line crosses the ordinate axis represents the value of V 0 . When both the volume V and the surface area S of the object to be measured 3 are unknown, the object to be measured 3 is put into the measurement container 2 and the above-described amplitude ratio E 1 / E 2 of the signals e 1 and e 2 is used as described above. First, V is obtained by the volume measurement formula, then the phase difference θ between e 1 and e 2 is measured, and the surface area S is calculated by the surface area measurement formula of Formula (11) using the value and the value of the obtained volume V. And display the value.
[0028]
The volume measurement method described above is equivalent to measuring the absolute value | Z 2 | of the acoustic impedance when the inside of the measurement container 2 is viewed from the speaker 6. As apparent from the equation (6), | Z 2 | is slightly affected by the surface area S 2 , and as a result, the volume V of the measured object 3 in the measurement container 2 is proportional to the surface area S, It is measured smaller than the true volume by (γ−1) δ t S / 2. Therefore, this error is corrected by using the object surface area value obtained by the above-described method to obtain a more accurate volume measurement value, and this corrected volume measurement value is used to obtain another more accurate surface area measurement value. Can also be obtained.
[0029]
[Second embodiment]
FIG. 5 shows an example in which the present invention is applied to the measurement of the internal surface area of a container. The reference container 1, the speaker 6, the microphones 11 and 12, the communication pipe 5, the signal generator 16, and the signal processing device 15 attached thereto are the same as those in FIG. In the apparatus of FIG. 5, an adapter 22 having an internal volume V 0 is fixed and attached under the reference container 1. The reference container 1 is coupled to the reference container 1 by placing the adapter 22 on the container to be measured 23 having the internal volume V. Here, the internal space and the internal space of the container to be measured 23 of the adapter 22 through the measurement hole 21 of the cross-sectional area S H, constituting the acoustically closed one space inside the volume V 0 + V.
[0030]
The situation described above is equivalent to the fact that the object 3 in the measurement container 2 in FIG. 1 has a negative volume of −V. Therefore, the surface area measurement formula of the apparatus of FIG. 5 is obtained by substituting -V for V instead of V in formula (11). That is, the internal surface area S of the container 23 to be measured is measured by the following formula.
[Equation 19]
Figure 0003790873
[Expression 20]
Figure 0003790873
[0031]
In the above, S 0 is the internal surface area of the adapter 22 when the container to be measured 23 is taken and the measurement hole 21 is closed with a flat plate, and θ 0 is the phase difference of the signal e 2 from the signal e 1 at this time. S X is an increase in the internal surface area when the measurement container 23 is bonded by taking the flat plate, and the internal surface area S of 23 should be separately measured as S X as shown in the equation (20). It becomes plus the cross-sectional area S H of the measurement hole 21 obtained by. Similarly to the case of the expression (11), if the internal volume V 0 of the adapter 22 is known and θ 0 is measured in advance, the internal volume and the internal surface area are known 2 instead of the container 23 to be measured. Equation (19) is determined by combining the standard containers in sequence and performing calibration. Then, the container 23 to be measured whose internal volume V is known is combined, the phase difference θ at that time is measured, and the value and the value of V are applied to the above defined measurement formula to calculate S X. Then, the internal surface area S of the container 23 to be measured is obtained by the equation (20).
[0032]
As in the case of the apparatus of FIG. 1, the internal volume V 0 of the adapter 22 and the internal volume V of the measured container 23 can be obtained by the apparatus of FIG. The volume measurement formula at this time is the following formula obtained by substituting -V for V instead of V in formula (18).
[Expression 21]
Figure 0003790873
[0033]
As in the case of equation (18), the above measurement equation is determined by calibration using a standard container with a known internal volume. Then, the internal volume V of 23 is measured and displayed by applying the ratio E 1 / E 2 of the amplitudes of the signals e 1 and e 2 when the container to be measured 23 is coupled to the determined volume measurement equation, The value is used to calculate the internal surface area S of 23.
[Brief description of the drawings]
FIG. 1 is a surface area meter according to an embodiment of the present invention.
FIG. 2 is an example of a configuration of a signal processing device in FIG. 1;
FIG. 3 is a graph of a surface area measurement formula.
FIG. 4 is a volume measurement type graph.
FIG. 5 is an application example of the present invention for measuring the internal surface area of a container.
[Explanation of symbols]
Vibration measurement vessel 3 surface area volume in V internal volume internal surface area V 0 S 0 is the measured object 4 lid 5 communicating tube 6 speaker 7 speaker S when the first internal volume V 1 of the reference vessel 2 empty plate 8,9,10 terminals 11 and 12 microphones 13, 14 amplifier 15 signals measurement hole 22 inside the volume of the processing unit 16 the signal generator 17, 18, 19 lead 21 sectional area S H is the internal surface area V 0 S 0 Adapter 23 The container to be measured whose internal volume is V and whose internal surface area is S

Claims (2)

基準容器と、測定容器と、上記二つの容器に交番的体積変化を差動的に与える手段と、上記二つの容器のそれぞれの内部の圧力変化を検出する手段と、上記検出された二つの圧力変化の信号の間の位相差を測定する手段を有し、上記測定容器に被測定物体を入れたときの上記位相差によって上記被測定物体の表面積を求めることを特徴とする表面積計。A reference container, a measurement container, a means for differentially applying an alternating volume change to the two containers, a means for detecting a pressure change inside each of the two containers, and the two detected pressures A surface area meter comprising means for measuring a phase difference between change signals, and determining a surface area of the object to be measured based on the phase difference when the object to be measured is placed in the measurement container. 被測定容器に結合される基準容器と、上記二つの容器に交番的体積変化を差動的に与える手段と、上記二つの容器のそれぞれの内部の圧力変化を検出する手段と、上記検出された二つの圧力変化の信号の間の位相差を測定する手段を有し、上記基準容器を上記被測定容器に結合したときの上記位相差によって上記被測定容器の内部表面積を求めることを特徴とする表面積計。A reference container coupled to the container to be measured, a means for differentially applying an alternating volume change to the two containers, a means for detecting a pressure change inside each of the two containers, and the detected Means for measuring a phase difference between two pressure change signals, and determining an internal surface area of the measured container by the phase difference when the reference container is coupled to the measured container. Surface area meter.
JP12623497A 1997-05-01 1997-05-01 Acoustic surface area meter Expired - Fee Related JP3790873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12623497A JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12623497A JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Publications (2)

Publication Number Publication Date
JPH10300551A JPH10300551A (en) 1998-11-13
JP3790873B2 true JP3790873B2 (en) 2006-06-28

Family

ID=14930116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12623497A Expired - Fee Related JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Country Status (1)

Country Link
JP (1) JP3790873B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116095B2 (en) 2008-02-29 2013-01-09 国立大学法人 熊本大学 Acoustic volume, volume, and surface area measurement method
CN110231006B (en) * 2019-06-10 2020-07-17 苏州博昇科技有限公司 Air coupling ultrasonic interference method

Also Published As

Publication number Publication date
JPH10300551A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US5824892A (en) Acoustic device for measuring volume difference
De Bree et al. Three-dimensional sound intensity measurements using microflown particle velocity sensors
JPH11509695A (en) Sound intensity calibration device
JP3790873B2 (en) Acoustic surface area meter
KR20050076616A (en) Measuring device for volume of engine combustion chamber
JP4379759B2 (en) Acoustic volume meter
Lagler et al. A single ultrasonic transducer fast and robust short-range distance measurement method
JP5116095B2 (en) Acoustic volume, volume, and surface area measurement method
JPS6273125A (en) Sound calibrating apparatus
JP3877591B2 (en) Packing detection method and apparatus
JP3338941B2 (en) Acoustic leak tester
US20050257598A1 (en) Device for calibrating a pressure sensor, in particular an infrasound pressure sensor
Hurst et al. Miniature low-pass mechanical filter for improved frequency response with MEMS microphones & low-pressure transducers
JP2000171282A (en) Acoustic volume meter for measuring volume difference
JPH07311071A (en) Gas type volumeter
JPH05223616A (en) Gas type volumeter
JP4210708B1 (en) Measuring method using acoustic volume meter or acoustic volume meter
JPH07294307A (en) Volumenometer
JP2820448B2 (en) Volume measurement method and device
JP2006064682A (en) Sound apparatus for measuring volume of engine combustion chamber
JP2000171281A (en) Acoustic volumeter
JPH0875528A (en) Gas type volume meter
JPH08226809A (en) Acoustic displacement gauge
CN103234493A (en) Nonlinear-coefficient self-correlation acoustic volume measuring method and system
JPH11211606A (en) Acoustic leak measuring unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150414

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees