JPH10300442A - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JPH10300442A
JPH10300442A JP9120096A JP12009697A JPH10300442A JP H10300442 A JPH10300442 A JP H10300442A JP 9120096 A JP9120096 A JP 9120096A JP 12009697 A JP12009697 A JP 12009697A JP H10300442 A JPH10300442 A JP H10300442A
Authority
JP
Japan
Prior art keywords
objective lens
liquid crystal
transparent electrode
detector
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9120096A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ishihara
満宏 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP9120096A priority Critical patent/JPH10300442A/en
Publication of JPH10300442A publication Critical patent/JPH10300442A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To change NA at high speed without deteriorating S/N by providing the number of an opening changing means for electrically changing the aperture size of an objective lens and a control means for controlling the aperture and the exposing time of a detector. SOLUTION: A shape of an object 7 is measured by changing the positional relation between the focal plane of a two-dimensional alignment confocal optical system and the object 7 to store images every change in a signal processing device, and signal-processing a plurality of confocal images to determine the image providing the maximum value for each picture element. An NA of the objective lens 6 is changed by the number of an opening changing means 5. The number of an opening changing means 5 is arranged in the aperture position of the objective lens 6 to change the aperture size, whereby the NA is controlled. The output signal from a CCD sensor is outputted to a signal processing device 10 by an image signal output circuit. An exposure start signal and an exposure end signal are controlled by a control means 11 to provide an image in an optional exposing time. The relation between the aperture size and the exposing time of a detector array 9 is determined to control them by the control means 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の表面形状計
測を行うために用いられる光学装置であり、特に共焦点
光学系をもちいて物体の光軸方向の位置を検出する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical apparatus used for measuring the surface shape of an object, and more particularly to an apparatus for detecting a position of an object in an optical axis direction using a confocal optical system.

【0002】[0002]

【従来の技術】共焦点光学系を用いると物体の光軸方向
(以下Z方向と呼ぶ)の位置(以下高さと呼ぶ)を精度
良く計測することが可能である。共焦点光学系の基本構
成を図6に示す。点光源601からでた光は対物レンズ
603により集光され物体に投影される。物体から反射
して再び対物レンズ603に入射した光はハーフミラー
602を介して点光源601と光学的に同じ位置にある
ピンホール604に入射し、ピンホール604を通過し
た光の量が検出器605により計測される。これが共焦
点光学系の基本的な構造である。このような光学系を用
いると物体表面上の点の高さが次のようにして計測でき
る。物体表面が点光源601に共役な位置にある場合、
反射光は同じく共役な位置であるピンホール604面に
収束し多くの反射光がピンホール604を通過する。し
かし物体表面が点光源に共役な位置から離れると反射光
はピンホール604から離れた位置に収束することにな
りピンホール604を通過する光量は急速に減少する。
この様子を図5に示す。この図は光の回折を考慮して描
かれているので山の裾野のあたりで波を打っている。
(この図を以下では縦の回折パターンと呼ぶ。)これか
ら物体と対物レンズ603との距離を変化させて検出器
605が最大出力を示す点を見つければ物体表面の高さ
がわかることになる。以上が共焦点光学系による高さ計
測の原理である。
2. Description of the Related Art When a confocal optical system is used, it is possible to accurately measure a position (hereinafter, referred to as a height) of an object in an optical axis direction (hereinafter, referred to as a Z direction). FIG. 6 shows the basic configuration of the confocal optical system. Light emitted from the point light source 601 is condensed by the objective lens 603 and projected on an object. Light reflected from the object and incident again on the objective lens 603 is incident on the pinhole 604 at the same optical position as the point light source 601 via the half mirror 602, and the amount of light passing through the pinhole 604 is detected by the detector. 605. This is the basic structure of the confocal optical system. With such an optical system, the height of a point on the surface of an object can be measured as follows. When the object surface is at a position conjugate to the point light source 601,
The reflected light converges on the pinhole 604 surface, which is also a conjugate position, and much reflected light passes through the pinhole 604. However, when the object surface moves away from the position conjugate to the point light source, the reflected light converges to a position away from the pinhole 604, and the amount of light passing through the pinhole 604 decreases rapidly.
This is shown in FIG. This figure is drawn considering the diffraction of light, so it waves around the foot of the mountain.
(This figure is hereinafter referred to as a vertical diffraction pattern.) From this, the distance between the object and the objective lens 603 is changed, and if the detector 605 finds a point showing the maximum output, the height of the object surface can be known. The above is the principle of height measurement by the confocal optical system.

【0003】ここで述べた高さ計測は点計測であるが、
レーザー走査やNipkow disk走査によりXY
走査を行うか、または上記の共焦点光学系を2次元的に
配列した2次元配列型共焦点光学系を用いれば面的な高
さ計測、つまり3次元計測が可能となる。検出器605
の最大出力位置を見つけるためには物体あるいは光学系
を光軸方向に連続的に移動するのが一般的であるが、よ
り高速な3次元計測のために、光軸方向にステップ的に
移動し各ステップ位置で共焦点画像(光軸方向の移動な
しで共焦点光学系のXY走査により得られた画像)を得
て、各ステップ毎に得られた共焦点画像間の対応する画
素毎に内挿演算により最大出力位置を推定する処理を行
う装置が本発明者により特開平7−176931号明細
書に開示されている。この発明を図4を用いて詳細に説
明する。
The height measurement described here is a point measurement,
XY by laser scanning or Nippow disk scanning
If scanning is performed or a two-dimensional array type confocal optical system in which the above confocal optical systems are two-dimensionally arranged is used, planar height measurement, that is, three-dimensional measurement can be performed. Detector 605
It is common to move the object or optical system continuously in the direction of the optical axis to find the maximum output position of the optical axis. However, for faster three-dimensional measurement, move the object or the optical system stepwise in the direction of the optical axis. At each step position, a confocal image (an image obtained by XY scanning of the confocal optical system without moving in the optical axis direction) is obtained, and an image is obtained for each corresponding pixel between the confocal images obtained at each step. An apparatus for performing a process of estimating a maximum output position by an insertion operation is disclosed by the present inventor in Japanese Patent Application Laid-Open No. Hei 7-176931. The present invention will be described in detail with reference to FIG.

【0004】2次元配列型共焦点光学系401と検出器
402とよりなる共焦点撮像系403は高速に共焦点画
像を得ることができ、得られた共焦点画像は画像処理装
置405に送られる。画像処理装置405は共焦点画像
を複数枚記憶する能力を持ち、記憶した共焦点画像を用
いて後で述べる高さ演算を実行する。高速焦点移動機構
404は2次元配列型共焦点光学系401の焦点面を高
速に図中z1、z2、z3で示すようにステップ移動さ
せることができる。高速焦点移動機構404により焦点
面をステップ移動して各ステップ毎の共焦点画像を画像
処理装置405に記憶する。各共焦点画像の対応する点
(同じ座標の点)は図5点線で示すように各点における
縦の回折パターンをサンプリングしたものである。縦の
回折パターンのモデル式は強度|V(z)|2=(|s
in kz(1−cosθ)|/|kz(1−cos
θ)|)2(ここにkは波数、sinθは対物レンズの
開口数(以下NAと記す)、zはZ軸座標である)で与
えられることがわかっているから、フィッティング演算
によりサンプリングした点から最大出力位置を正確に推
定できる。画像中の全点に対してこの演算を施すことに
より画像全点の高さデータつまり3次元データが得られ
ることになる。この装置は物体あるいは光学系を光軸方
向に連続的に移動して最大出力位置を見つける方法に比
べて、遥かに少ない共焦点画像から精度を大きく落とす
ことなく3次元データを得ることができるため非常に計
測時間が短縮できる。この高速性によりこれまで不可能
であったオンライン製品外観検査などへの適用が可能と
なる。
A confocal imaging system 403 comprising a two-dimensional array type confocal optical system 401 and a detector 402 can obtain a confocal image at high speed, and the obtained confocal image is sent to an image processing device 405. . The image processing device 405 has a capability of storing a plurality of confocal images, and executes a height calculation described later using the stored confocal images. The high-speed focus moving mechanism 404 can move the focal plane of the two-dimensional array type confocal optical system 401 stepwise at high speed as indicated by z1, z2, and z3 in the figure. The focal plane is moved step by step by the high-speed focus moving mechanism 404, and the confocal image for each step is stored in the image processing device 405. Corresponding points (points having the same coordinates) of each confocal image are obtained by sampling a vertical diffraction pattern at each point as shown by a dotted line in FIG. The model formula for the vertical diffraction pattern is intensity | V (z) | 2 = (| s
in kz (1-cosθ) | / | kz (1-cosθ)
θ) |) 2 (where k is the wave number, sin θ is the numerical aperture (hereinafter abbreviated as NA) of the objective lens, and z is the Z-axis coordinate). The maximum output position can be accurately estimated from. By performing this operation on all points in the image, height data of all points in the image, that is, three-dimensional data can be obtained. Compared to the method of finding the maximum output position by moving the object or optical system continuously in the direction of the optical axis, this device can obtain three-dimensional data from far less confocal images without greatly reducing the accuracy. The measurement time can be greatly reduced. This high speed makes it possible to apply it to online product appearance inspections and the like that were not possible before.

【0005】この装置では、焦点面のステップ移動の移
動ピッチ(以下ステップ距離と呼ぶ)が大きければ高速
な計測が可能であるが、ステップ距離が小さくなると効
果が薄れてくる。このためできるだけ大きいステップ距
離で計測する必要があるが、このステップ距離は自由に
決められるわけではない。図5に示す縦の回折パターン
の第一暗部の内側(中央の山の内側)で2ないし3点を
サンプリングしなければピーク位置が計算できないた
め、これがステップ距離の制限になる。ステップ距離の
上限を決める縦の回折パターンの山の幅は、上記の式か
ら明らかなように2次元配列共焦点光学系401の対物
レンズのNAで決定されるから、NAを下げて山の幅を
広げればステップ距離を大きくとることができる。しか
し、NAを下げてステップ距離を大きくとると上記ピー
ク推定演算の精度はほぼステップ距離に比例して低下す
る。つまり、計測精度と計測速度の間にはトレードオフ
の関係がある。
[0005] In this apparatus, high-speed measurement is possible if the movement pitch of the step movement of the focal plane (hereinafter, referred to as step distance) is large, but the effect is diminished as the step distance becomes small. For this reason, it is necessary to measure at a step distance as large as possible, but this step distance is not freely determined. Since the peak position cannot be calculated unless two or three points are sampled inside the first dark part (inside the central mountain) of the vertical diffraction pattern shown in FIG. 5, this limits the step distance. The peak width of the vertical diffraction pattern that determines the upper limit of the step distance is determined by the NA of the objective lens of the two-dimensional array confocal optical system 401 as is clear from the above equation. Can be increased to increase the step distance. However, if the NA is reduced and the step distance is increased, the accuracy of the peak estimation calculation decreases substantially in proportion to the step distance. That is, there is a trade-off relationship between measurement accuracy and measurement speed.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0006】このことから対物レンズのNAは物体の要
求計測精度と、要求計測速度から最適な値を決定する必
要があるが、対象物体に応じて動的にNAが変化できる
と便利である。たとえば物体の下部(光軸方向で下の
方)は低い精度で計測してもよく、上部(光軸方向で上
の方)は高精度に計測したいような場合、NAとステッ
プ距離を上部と下部では変えて計測できればより最適な
計測が可能となる。NAを変化させることは対物レンズ
の絞りの大きさを変化させることで実現可能であるが、
この場合NAの変化に伴って光量が変化することから、
小さいNAで得た画像は暗くなりS/Nが悪化するとい
う問題が発生する。
For this reason, it is necessary to determine the optimum value of the NA of the objective lens from the required measurement accuracy of the object and the required measurement speed, but it is convenient if the NA can be dynamically changed according to the target object. For example, if you want to measure the lower part of the object (lower in the optical axis direction) with low accuracy, and you want to measure the upper part (upper in the optical axis direction) with high precision, you can set the NA and step distance to the upper part. If the measurement can be changed at the lower part, more optimal measurement will be possible. Changing the NA can be realized by changing the size of the aperture of the objective lens.
In this case, since the light amount changes with the change of NA,
There is a problem that an image obtained with a small NA becomes dark and S / N deteriorates.

【0007】そこで本発明は、S/Nを悪化させること
なく高速にNAを変化させることが可能な形状計測装置
を提供することを目的とする。
Accordingly, an object of the present invention is to provide a shape measuring apparatus capable of changing NA at high speed without deteriorating S / N.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、独立し
た開口絞りを持つ対物レンズと、前記対物レンズを通し
て物体に照明光を照射する照明手段と、前記対物レンズ
により集光された物体からの反射光を光電変換する、露
光時間が電気的に制御可能な検出器と、前記検出器から
得られた電気信号を解析して物体の対物レンズ光軸方向
の位置を演算する信号処理装置と、前記対物レンズの開
口絞りの大きさを電気的に変化させる開口数変化手段
と、前記開口数変化手段と前記検出器の露光時間とを制
御する制御手段とにより装置を構成する。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an objective lens having an independent aperture stop, illumination means for irradiating an object with illumination light through the objective lens, and an object lens provided by the objective lens. The photoelectric conversion of the reflected light, a detector that can electrically control the exposure time, and a signal processing device that analyzes the electric signal obtained from the detector and calculates the position of the object in the optical axis direction of the objective lens, An apparatus is constituted by numerical aperture changing means for electrically changing the size of the aperture stop of the objective lens, and control means for controlling the numerical aperture changing means and the exposure time of the detector.

【0009】上記の開口数変化手段は、対物レンズの開
口絞り位置に配置され、2枚の透明電極基板間に液晶分
子を挟み込んだ液晶セルと、前記透明電極基板上の透明
電極への電圧印加を制御する液晶制御装置とから構成さ
れ、前記透明電極基板上の透明電極は少なくとも1種類
の開口形状がパターニングされており、前記液晶制御装
置からの透明電極への電圧制御により前記液晶分子の電
気光学効果を利用して対物レンズの開口絞りを通過する
光を透明電極の形状に応じて遮断、透過するように構成
する。
The above-mentioned numerical aperture changing means is disposed at an aperture stop position of the objective lens and has a liquid crystal cell having liquid crystal molecules sandwiched between two transparent electrode substrates, and a voltage application to a transparent electrode on the transparent electrode substrate. A transparent electrode on the transparent electrode substrate is patterned with at least one kind of opening shape, and the voltage of the liquid crystal molecules is controlled by controlling the voltage from the liquid crystal controller to the transparent electrode. The light passing through the aperture stop of the objective lens is blocked or transmitted according to the shape of the transparent electrode by utilizing the optical effect.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1に本発明の実施の形態
を示す。 まず2次元配列型共焦点光学系の構造につい
て簡単に説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. First, the structure of the two-dimensional array confocal optical system will be briefly described.

【0011】照明手段1から出た照明光はレンズ2によ
り集光され平行光となって、ピンホールアレイ3を照射
する。ピンホールアレイ3のピンホールから射出される
それぞれの照明光は、ピンホールの回折により広がって
ハーフミラー4を通過してレンズ6aとレンズ6bとよ
りなる対物レンズ6の絞り位置に配置された開口数変化
手段5に入射し、光束径が制限される。開口数変化手段
5の部分については後に詳述する。対物レンズ6に入射
した照明光は対物レンズ6の結像作用を受けてピンホー
ルアレイ3の像(スポット)を物体7に投影することに
なる。物体7から反射した光は対物レンズ6により再び
結像作用を受けてピンホールアレイ8付近に結像する。
ピンホールアレイ8はハーフミラー4によりピンホール
アレイ3と光学的に同等な位置にあり、各ピンホールの
光軸に垂直な方向の位置関係も全く同等である。ピンホ
ールアレイ8の各ピンホールは検出器アレイ9の各検出
器と1対1の関係で配置されており、各ピンホールを通
過した反射光の強度を各検出器が検出するようになって
いる。
The illuminating light emitted from the illuminating means 1 is condensed by a lens 2 to become parallel light, and irradiates a pinhole array 3. Each illumination light emitted from the pinhole of the pinhole array 3 spreads by the diffraction of the pinhole, passes through the half mirror 4, and is provided at the aperture position of the objective lens 6 including the lens 6a and the lens 6b. The light enters the number changing means 5 and the beam diameter is restricted. The numerical aperture changing means 5 will be described later in detail. The illumination light that has entered the objective lens 6 receives the image forming action of the objective lens 6 and projects an image (spot) of the pinhole array 3 onto the object 7. The light reflected from the object 7 is again subjected to an image forming operation by the objective lens 6 to form an image near the pinhole array 8.
The pinhole array 8 is optically equivalent to the pinhole array 3 by the half mirror 4, and the positional relationship of each pinhole in the direction perpendicular to the optical axis is exactly the same. Each pinhole of the pinhole array 8 is arranged in a one-to-one relationship with each detector of the detector array 9, and each detector detects the intensity of reflected light passing through each pinhole. I have.

【0012】以上の構造は前述した共焦点光学系(図
6)を2次元に配列した構造となっており、各ピンホー
ル、各検出器の役割は前述の共焦点光学系と全く同じで
ある。検出器アレイ9からの出力は共焦点光学系の焦点
面(物体面)と物体7とがある位置関係(光軸方向)に
ある場合の各検出器の出力を集めて2次元化したものと
考えられる(このような出力信号を以下では共焦点画像
と呼ぶことにする)。2次元配列型共焦点光学系の焦点
面(物体面)と物体7との位置関係を変化させて、その
度に共焦点画像を信号処理装置10に記憶しておき、得
られた複数の共焦点画像から、信号処理装置10により
信号処理して各画素について最大値を与える画像を求め
れば、各画素(=検出器アレイ9の各検出器)毎に共焦
点光学系の焦点面(物体面)と物体7との位置関係が求
まることになり物体の形状計測が可能となる。
The above structure is a structure in which the above-described confocal optical system (FIG. 6) is two-dimensionally arranged, and the role of each pinhole and each detector is exactly the same as that of the above-described confocal optical system. . The output from the detector array 9 is obtained by collecting the outputs of the detectors when the focal plane (object plane) of the confocal optical system and the object 7 are in a certain positional relationship (in the optical axis direction) and two-dimensionally collecting the outputs. It is conceivable (such an output signal is hereinafter referred to as a confocal image). The positional relationship between the focal plane (object plane) of the two-dimensional array type confocal optical system and the object 7 is changed, and a confocal image is stored in the signal processor 10 each time, and a plurality of obtained confocal images are obtained. If an image giving the maximum value for each pixel is obtained from the focus image by performing signal processing by the signal processing device 10, the focal plane (object plane) of the confocal optical system is obtained for each pixel (= each detector of the detector array 9). ) And the object 7 are determined, and the shape of the object can be measured.

【0013】対物レンズ6のNAは開口数変化手段5に
より変化する。開口数変化手段5の詳細を図2、図3を
用いて説明する。開口数変化手段5はそれぞれ減反射コ
ーティングが施され、互いに直交ニコルの関係にある偏
光子21と検光子22の間に、透明電極基板23、24
間にねじれネマティック(以下TNとする)液晶25を
挟み込んだ液晶セル27を配置した構造となっている。
透明電極基板23、24には図3に示すような同心円状
の複数のセグメント電極が付されている。透明電極は酸
化インジウム(ITO)膜であり、光を透過しかつ導電
性を持つもので、TN液晶25のしきい値電圧を超える
電圧を各電極それぞれ個別に、液晶制御装置26により
印加できるようになっている。TN液晶25は、一方の
電極から他方の電極にかけて液晶分子が90度ねじれた
配向となっており、偏光子21の偏光方向と偏光子21
側の液晶分子の長軸方向とを一致させておけば、偏光子
21を通って直線偏光となった光は液晶内で液晶分子の
ねじれに沿って90度旋光し検光子22を透過する。液
晶制御装置26により透明電極に電圧を加えると液晶分
子のねじれは解消され偏光子21を通った光は旋光せず
にそのまま液晶内を通り抜けることになり、この場合光
は検光子22を透過できない。このような遮光作用は電
圧が印加されている透明電極パターン部でのみ起こるた
め、液晶制御装置26により開口数変化手段5の開口部
(光透過部)の大きさを電気的に変化させることができ
るようになる。開口数変化手段5は対物レンズ6の絞り
位置に配置されているため開口部の大きさが変わること
は絞りの大きさが変わることに対応し、結果として対物
レンズ6のNAが制御できることになる。
The NA of the objective lens 6 is changed by the numerical aperture changing means 5. Details of the numerical aperture changing means 5 will be described with reference to FIGS. The numerical aperture changing means 5 is provided with an anti-reflection coating, and is provided between the polarizer 21 and the analyzer 22 having a perpendicular Nicol relationship with each other.
The liquid crystal cell 27 has a structure in which a twisted nematic (TN) liquid crystal 25 is interposed therebetween.
The transparent electrode substrates 23 and 24 are provided with a plurality of concentric segment electrodes as shown in FIG. The transparent electrodes are indium oxide (ITO) films, which transmit light and have conductivity, so that a voltage exceeding the threshold voltage of the TN liquid crystal 25 can be individually applied to each electrode by the liquid crystal control device 26. It has become. The TN liquid crystal 25 has an orientation in which liquid crystal molecules are twisted by 90 degrees from one electrode to the other electrode.
If the long axis direction of the liquid crystal molecules on the side is matched, the light that has become linearly polarized light through the polarizer 21 rotates 90 degrees in the liquid crystal along the twist of the liquid crystal molecules and passes through the analyzer 22. When a voltage is applied to the transparent electrode by the liquid crystal controller 26, the twist of the liquid crystal molecules is eliminated, and the light passing through the polarizer 21 passes through the liquid crystal without rotating, and in this case, the light cannot pass through the analyzer 22. . Since such a light-shielding effect occurs only in the transparent electrode pattern portion to which a voltage is applied, the size of the opening (light transmitting portion) of the numerical aperture changing means 5 can be electrically changed by the liquid crystal control device 26. become able to. Since the numerical aperture changing means 5 is arranged at the stop position of the objective lens 6, a change in the size of the aperture corresponds to a change in the size of the stop, and as a result, the NA of the objective lens 6 can be controlled. .

【0014】次に検出器アレイ9について説明する。検
出器アレイ9は現在2次元検出器として最も一般的なC
CDセンサ内蔵のテレビカメラであり外部から制御可能
な電子シャッター機能を有している。この機能について
説明する。CCDセンサは一般に光電変換部と電荷転送
部から構成されている。光電変換部は受光した光を電荷
に変えて一時的に蓄積し、制御信号により蓄積した電荷
をすべて電荷転送部に掃き出しまた新たな光電荷蓄積を
開始する。電荷転送部は光電変換部から掃き出された電
荷を転送しシリアルに出力する。CCDセンサから出力
された信号はテレビカメラ内の画像信号出力回路により
テレビ信号形式に変換され信号処理装置10に出力され
る。電子シャッターは露光開始信号によりそれまで光電
変換部で蓄積した電荷を電荷転送部へ排出し、新たな光
電荷蓄積を開始し、露光終了信号により露光開始信号か
ら露光終了信号までに蓄積した電荷を再び電荷転送部へ
掃き出しその電荷を電荷転送部、電荷読み出し部を通し
てテレビ信号として出力する機能である。本発明では露
光開始信号と露光終了信号を制御手段11により制御す
ることで任意のタイミングで、かつ任意の露光時間で画
像を得ることができる。
Next, the detector array 9 will be described. The detector array 9 is currently the most common two-dimensional detector C
It is a TV camera with a built-in CD sensor and has an electronic shutter function that can be controlled from the outside. This function will be described. The CCD sensor generally includes a photoelectric conversion unit and a charge transfer unit. The photoelectric conversion unit converts the received light into electric charge and temporarily stores the light, and sweeps out all the stored electric charge to the charge transfer unit according to the control signal, and starts new photocharge storage. The charge transfer unit transfers the charge swept out of the photoelectric conversion unit and serially outputs the charge. The signal output from the CCD sensor is converted into a television signal format by an image signal output circuit in the television camera and output to the signal processing device 10. The electronic shutter discharges the charge accumulated in the photoelectric conversion unit to the charge transfer unit in response to the exposure start signal, starts new photocharge storage, and uses the exposure end signal to store the charge accumulated from the exposure start signal to the exposure end signal in response to the exposure end signal. This is a function of sweeping out to the charge transfer section again and outputting the charge as a television signal through the charge transfer section and the charge readout section. In the present invention, by controlling the exposure start signal and the exposure end signal by the control means 11, an image can be obtained at an arbitrary timing and at an arbitrary exposure time.

【0015】計算によりあるいは実験により開口数変化
手段5の液晶セル27の開口サイズと露光時間の関係を
求めておき、開口数変化手段5の液晶セル27の開口サ
イズと検出器アレイ9の露光時間を制御手段11により
制御することでNAを変化させても光量(画像の明る
さ)が変化しないようにする事が可能である。しかも、
開口数変化手段5の液晶材料として高速な応答のものを
用いればリアルタイム(1/30秒毎)に開口数を変化
させ、光量は一定とすることが可能となる。
The relationship between the aperture size of the liquid crystal cell 27 of the numerical aperture changing means 5 and the exposure time is obtained in advance by calculation or experiment, and the aperture size of the liquid crystal cell 27 of the numerical aperture changing means 5 and the exposure time of the detector array 9 are determined. Is controlled by the control unit 11 so that the light amount (brightness of the image) does not change even when the NA is changed. Moreover,
If a liquid crystal material having a high response speed is used as the liquid crystal material of the numerical aperture changing means 5, the numerical aperture can be changed in real time (every 1/30 seconds), and the light amount can be kept constant.

【0016】この例では開口数変化手段5として液晶の
旋光性を利用したもの(TN液晶)を用いたが、各セグ
メント透明電極ごとに遮光、透過が切り替えることがで
きれば他の液晶であってもよい。例えば、液晶の複屈折
性(電界制御複屈折効果)を用いても全く同様のことが
実現できるし、また偏光子21、検光子22による光量
低下が問題となるような場合は、液晶の動的散乱効果を
用いて液晶だけで遮光、透過を行うこともでき、この場
合偏光素子を用いる必要はない。
In this example, the liquid crystal rotation (TN liquid crystal) utilizing the optical rotation of the liquid crystal is used as the numerical aperture changing means 5. However, other liquid crystal may be used as long as the light shielding and transmission can be switched for each segment transparent electrode. Good. For example, exactly the same can be achieved by using the birefringence (electric field control birefringence effect) of the liquid crystal. In the case where a decrease in the amount of light by the polarizer 21 and the analyzer 22 becomes a problem, It is also possible to perform light blocking and transmission only with liquid crystal by using the optical scattering effect, and in this case, it is not necessary to use a polarizing element.

【発明の効果】本発明によれば、たとえば物体の下部
(光軸方向で下の方)は低い精度で計測してもよく、上
部(光軸方向で上の方)は高精度に計測したいような場
合、NAとステップ距離を上部と下部でリアルタイムに
変えて、かつ光量が変化しないように(つまりS/Nを
悪化させることなく)計測することが可能となる。
According to the present invention, for example, the lower part of the object (the lower part in the optical axis direction) may be measured with low accuracy, and the upper part (the upper part in the optical axis direction) may be measured with high accuracy. In such a case, it is possible to change the NA and the step distance in real time between the upper part and the lower part, and to measure without changing the light amount (that is, without deteriorating the S / N).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示した図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の実施の形態の開口数変化手段を説明す
るための図である。
FIG. 2 is a diagram for explaining a numerical aperture changing unit according to the embodiment of the present invention.

【図3】本発明の実施の形態の液晶の透明電極パターン
を説明するための図である。
FIG. 3 is a diagram illustrating a transparent electrode pattern of a liquid crystal according to the embodiment of the present invention.

【図4】本発明の従来技術を説明するための図である。FIG. 4 is a diagram for explaining a conventional technique of the present invention.

【図5】共焦点光学系における物体のZ座標位置変化に
対する特性を示す図である。
FIG. 5 is a diagram illustrating characteristics of the confocal optical system with respect to a change in the Z coordinate position of an object.

【図6】共焦点光学系を説明するための図である。FIG. 6 is a diagram for explaining a confocal optical system.

【符号の説明】[Explanation of symbols]

1 照明手段 2 レンズ 3 ピンホールアレイ 4 ハーフミラー 5 開口数変化手段 6 対物レンズ 7 物体 8 ピンホールアレイ 9 検出器アレイ 10 信号処理装置 11 制御手段 21 偏光子 22 検光子 23 透明電極基板 24 透明電極基板 25 TN液晶 26 液晶制御装置 27 液晶セル DESCRIPTION OF SYMBOLS 1 Illumination means 2 Lens 3 Pinhole array 4 Half mirror 5 Numerical aperture changing means 6 Objective lens 7 Object 8 Pinhole array 9 Detector array 10 Signal processing device 11 Control means 21 Polarizer 22 Analyzer 23 Transparent electrode substrate 24 Transparent electrode Substrate 25 TN liquid crystal 26 Liquid crystal controller 27 Liquid crystal cell

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合焦情報を利用して光軸方向の物体位置
を検出する装置において、独立した開口絞りを持つ対物
レンズと、前記対物レンズを通して物体に照明光を照射
する照明手段と、前記対物レンズにより集光された物体
からの反射光を光電変換する、露光時間が電気的に制御
可能な検出器と、前記検出器から得られた電気信号を解
析して物体の対物レンズ光軸方向の位置を演算する信号
処理装置と、前記対物レンズの開口絞りの大きさを電気
的に変化させる開口数変化手段と、前記開口数変化手段
と前記検出器の露光時間とを制御する制御手段とを有す
ることを特徴とする形状計測装置。
1. An apparatus for detecting an object position in an optical axis direction using focusing information, comprising: an objective lens having an independent aperture stop; illuminating means for irradiating an object with illumination light through the objective lens; A detector that photoelectrically converts reflected light from the object condensed by the objective lens, and that can electrically control the exposure time; and analyzes an electric signal obtained from the detector to analyze an object in an optical axis direction of the object lens. A signal processing device for calculating the position of the objective lens, a numerical aperture changing means for electrically changing the size of the aperture stop of the objective lens, and a control means for controlling the exposure time of the numerical aperture changing means and the detector. A shape measuring device comprising:
【請求項2】 開口数変化手段は、対物レンズの開口絞
り位置に配置され、2枚の透明電極基板間に液晶分子を
挟み込んだ液晶セルと、前記透明電極基板上の透明電極
への電圧印加を制御する液晶制御装置とから構成され、
前記透明電極基板上の透明電極は少なくとも1種類の開
口形状がパターニングされており、前記液晶制御装置か
らの透明電極への電圧制御により前記液晶分子の電気光
学効果を利用して対物レンズの開口絞りを通過する光を
透明電極の形状に応じて遮断、透過することを特徴とす
る請求項1記載の形状計測装置。
2. A liquid crystal cell having a numerical aperture changing means disposed at an aperture stop position of an objective lens and interposing liquid crystal molecules between two transparent electrode substrates, and applying a voltage to a transparent electrode on the transparent electrode substrate. And a liquid crystal control device for controlling the
The transparent electrode on the transparent electrode substrate is patterned with at least one kind of opening shape, and an aperture stop of an objective lens using an electro-optical effect of the liquid crystal molecules by controlling a voltage to the transparent electrode from the liquid crystal control device. 2. The shape measuring device according to claim 1, wherein the light passing through is blocked or transmitted according to the shape of the transparent electrode.
JP9120096A 1997-04-24 1997-04-24 Shape measuring device Pending JPH10300442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120096A JPH10300442A (en) 1997-04-24 1997-04-24 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120096A JPH10300442A (en) 1997-04-24 1997-04-24 Shape measuring device

Publications (1)

Publication Number Publication Date
JPH10300442A true JPH10300442A (en) 1998-11-13

Family

ID=14777822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120096A Pending JPH10300442A (en) 1997-04-24 1997-04-24 Shape measuring device

Country Status (1)

Country Link
JP (1) JPH10300442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068903A1 (en) * 2001-02-28 2002-09-06 Olympus Optical Co., Ltd. Confocal microscope, optical height measuring method, and automatic focusing method
WO2004029691A1 (en) * 2002-09-26 2004-04-08 Europäisches Laboratorium für Molekularbiologie Method and device for determining a distance, an autofocus module, microscope and method for auto-focussing a microscope
JP2007212305A (en) * 2006-02-09 2007-08-23 V Technology Co Ltd Minute height measuring instrument and displacement meter unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068903A1 (en) * 2001-02-28 2002-09-06 Olympus Optical Co., Ltd. Confocal microscope, optical height measuring method, and automatic focusing method
JPWO2002068903A1 (en) * 2001-02-28 2004-06-24 オリンパス株式会社 Confocal microscope, optical height measuring method and automatic focusing method
WO2004029691A1 (en) * 2002-09-26 2004-04-08 Europäisches Laboratorium für Molekularbiologie Method and device for determining a distance, an autofocus module, microscope and method for auto-focussing a microscope
JP2007212305A (en) * 2006-02-09 2007-08-23 V Technology Co Ltd Minute height measuring instrument and displacement meter unit

Similar Documents

Publication Publication Date Title
US6977631B2 (en) Optical scanning system with variable focus lens
JP3610569B2 (en) Active confocal imaging device and three-dimensional measurement method using the same
CN112113977A (en) Wafer inspection
US6388754B1 (en) Shape measuring system and method
US5166742A (en) Optical deformation measuring apparatus by double-writing speckle images into a spatial light modulator
JPWO2003074967A1 (en) Polarization direction detection type two-dimensional light reception timing detection device and surface shape measurement device using the same
JP3353365B2 (en) Displacement and displacement velocity measuring device
EP1020719B1 (en) Apparatus and method for determining the optical distortion of a transparent substrate
JPS6249562B2 (en)
JPH09126739A (en) Solid form measuring unit
JPH10300442A (en) Shape measuring device
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JPH0996512A (en) Three-dimensional-shape measuring apparatus
KR20180121586A (en) Electromagnetic field imaging device
CN100365455C (en) New optical fiber collimator packaging process
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
JP2770521B2 (en) Focus position detection method
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
KR100332071B1 (en) Three axis stellar sensor using electric optical shutter
CN109470145A (en) Polarization Modulation high resolution Stereo Vision Measurement System and method
JPH0661115A (en) Gap detection and setting device
JP3971023B2 (en) M2 measuring device
JP3437479B2 (en) Birefringence measurement device
JPH0914914A (en) Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040319

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121210

LAPS Cancellation because of no payment of annual fees