JPH10300012A - Deaeration apparatus and operation thereof - Google Patents

Deaeration apparatus and operation thereof

Info

Publication number
JPH10300012A
JPH10300012A JP12174197A JP12174197A JPH10300012A JP H10300012 A JPH10300012 A JP H10300012A JP 12174197 A JP12174197 A JP 12174197A JP 12174197 A JP12174197 A JP 12174197A JP H10300012 A JPH10300012 A JP H10300012A
Authority
JP
Japan
Prior art keywords
vacuum
pump
suction line
liquid
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12174197A
Other languages
Japanese (ja)
Other versions
JP3774989B2 (en
Inventor
Hitoshi Shiraishi
仁士 白石
Seiji Tai
誠二 田井
Masaaki Taguchi
正明 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP12174197A priority Critical patent/JP3774989B2/en
Publication of JPH10300012A publication Critical patent/JPH10300012A/en
Application granted granted Critical
Publication of JP3774989B2 publication Critical patent/JP3774989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a higher energy saving effect of a deaeration apparatus by controlling the number of revolutions of a vacuum pump based on a detection value of a pressure sensor provided in a deairing means or in a vacuum suction line and that of a pump for supplying a liquid to be deaired to the deairing means. SOLUTION: A supply line 5 provided with a pump 18 for circulating a liquid to be deaired to one side of a film deairing module 4 formed out of a gas permeable film such as hollow yarn membrain as deairing means 3 of a deaeration apparatus and the pump 18 is connected to a controller 16 through a signal line 15. The vacuum pump 7 is connected to the film deairing module 4 by a vacuum suction line 10, which 10 is provided with a pressure sensor 11 to sense the vacuum pressure in the film deairing module 4 and an air introduction valve 14 to prevent the generation of noises in a transient state. The controller 16 contains an inverter, a timer and an arithmetic means to control the number of revolutions of the vacuum pump 7 and the pump 18 for circulating the liquid to be deaired based on a detection signal of the pressure sensor 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、省エネルギー効
果を向上することができる脱気装置およびその運転方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deaeration device capable of improving the energy saving effect and a method of operating the same.

【0002】[0002]

【従来の技術】周知のように、ボイラ,冷却機等の冷熱
機器類あるいはビル等の給水配管への給水は、これら機
器類の腐食防止やビル等の給水配管系の腐食による赤水
防止対策として脱気装置を組み込んでおく必要がある。
たとえば、図6はビル給水系に脱気装置を設置したもの
で、同図におけるビル給水系は、高架水槽31,負荷3
2,給水ライン33,脱気装置34および脱気ライン3
5により構成されている。これらの構成において、脱気
装置34の作用により、高架水槽31内の水を脱気ライ
ン35を循環させながら脱気操作を行い、必要に応じ、
給水ライン33を通して負荷32へ水を供給するように
なっている。したがって、給水ライン33内は、常時、
脱気水で満たされることになり、赤水の発生を防止する
ことができる。そして、前記脱気ライン35には、循環
ポンプ36およびバルブ37が挿設されており、また前
記高架水槽31には揚水ポンプ40を挿設した原水供給
ライン39を介して受水槽38が接続されている。
2. Description of the Related Art As is well known, the supply of water to cooling and heating equipment such as boilers and coolers, or water supply pipes of buildings, etc. is a measure to prevent corrosion of these equipments and red water due to corrosion of water supply piping systems of buildings and the like. It is necessary to incorporate a deaerator.
For example, FIG. 6 shows a building water supply system provided with a deaerator, and the building water supply system shown in FIG.
2, water supply line 33, deaerator 34 and deaeration line 3
5. In these configurations, the deaeration operation is performed while circulating the water in the elevated water tank 31 through the deaeration line 35 by the operation of the deaerator 34, and if necessary,
Water is supplied to the load 32 through the water supply line 33. Therefore, the inside of the water supply line 33 is always
It will be filled with degassed water, and the generation of red water can be prevented. A circulation pump 36 and a valve 37 are inserted in the deaeration line 35, and a water receiving tank 38 is connected to the elevated water tank 31 via a raw water supply line 39 in which a pump 40 is inserted. ing.

【0003】ところで、前記高架水槽31内の水は、前
記脱気ライン35を介して循環しながら脱気しているの
で、ビル給水系への供給水量が減少した場合、前記高架
水槽31内の水は、過度の循環により脱気度が高くな
り、前記脱気装置34で脱気する溶存気体の排気量は減
少する。したがって、脱気水を過度に循環させて脱気す
ることは省エネルギー上問題である。
Since the water in the elevated water tank 31 is deaerated while circulating through the deaeration line 35, when the amount of water supplied to the building water supply system is reduced, the water in the elevated water tank 31 is reduced. The degree of deaeration of water is increased by excessive circulation, and the amount of dissolved gas exhausted by the deaerator 34 is reduced. Therefore, degassing by excessively circulating degassed water is a problem in energy saving.

【0004】[0004]

【発明が解決しようとする課題】この発明は、前記問題
点に鑑み、脱気装置の省エネルギー効果の向上を図るこ
とを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the energy saving effect of a deaerator in view of the above problems.

【0005】[0005]

【課題を解決するための手段】この発明は、前記課題を
解決するためになされたものであって、請求項1に記載
の発明は、脱気手段と真空ポンプとを真空吸引ラインを
介して接続し、該真空ポンプにより前記脱気手段内の被
脱気液を真空脱気する脱気装置であって、前記脱気手段
の供給ラインに被脱気液を供給するポンプを設け、前記
脱気手段内または前記真空吸引ライン内の真空圧力を検
出する圧力センサを設けるとともに、前記真空吸引ライ
ンに空気導入手段を設け、さらに該空気導入手段,前記
圧力センサ,前記ポンプおよび前記真空ポンプを信号線
を介してそれぞれ制御器に接続したことを特徴としてお
り、そして請求項2に記載の発明は、脱気手段と真空ポ
ンプとを真空吸引ラインを介して接続し、該真空ポンプ
により前記脱気手段内の被脱気液を真空脱気する構成の
脱気装置の運転方法であって、前記脱気手段内または前
記真空吸引ライン内の真空圧力を検出し、該検出値に基
づいて前記真空ポンプの回転数を制御するとともに、前
記真空吸引ラインへ導入する空気量を制御し、前記脱気
手段内へ供給する被脱気液の供給量を制御することを特
徴としており、また請求項3に記載の発明は、前記被脱
気液の供給量の制御が、被脱気液を供給するポンプの回
転数を制御することにより行われることを特徴としてお
り、また請求項4に記載の発明は、前記検出値が予め設
定した下限圧力値に到達したとき、前記真空ポンプおよ
び前記ポンプを高速運転から低速運転に切り換えるとと
もに、前記真空吸引ラインへ所定の空気を導入し、また
前記検出値が予め設定した上限圧力値に到達したとき、
前記真空ポンプおよび前記ポンプを低速運転から高速運
転に切り換えるとともに、前記真空吸引ラインへの空気
の導入を停止することを特徴としており、また請求項5
に記載の発明は、前記真空吸引ラインへの空気の導入お
よび停止と、前記真空ポンプの高,低速運転の切り換え
時に、所定の時間差を設けることを特徴としており、さ
らに請求項6に記載の発明は、前記ポンプの低速運転時
における回転数を、前記下限圧力値と前記上限圧力値と
の間の真空圧が、単位時間当りに変化する変化速度に基
づいて制御することを特徴としている。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 has a structure in which a degassing means and a vacuum pump are connected via a vacuum suction line. A deaerator for connecting and supplying a deaerated liquid to a supply line of the deaerator, wherein the vacuum pump deaerates the deaerated liquid in the deaerator by the vacuum pump. A pressure sensor for detecting a vacuum pressure in the air means or the vacuum suction line is provided, and an air introduction means is provided in the vacuum suction line, and the air introduction means, the pressure sensor, the pump and the vacuum pump are signaled. The invention is further characterized in that the degassing means and the vacuum pump are connected via a vacuum suction line, and the degassing is performed by the vacuum pump. hand A method for operating a deaerator configured to vacuum deaerate the liquid to be degassed in the vacuum pump, wherein a vacuum pressure in the deaerator or the vacuum suction line is detected, and the vacuum pump is operated based on the detected value. Controlling the number of rotations, controlling the amount of air introduced into the vacuum suction line, and controlling the supply amount of the liquid to be degassed to be supplied into the deaeration means. The invention described in the above description is characterized in that the control of the supply amount of the liquid to be degassed is performed by controlling the number of revolutions of a pump that supplies the liquid to be degassed. When the detected value reaches a preset lower limit pressure value, the vacuum pump and the pump are switched from high-speed operation to low-speed operation, and predetermined air is introduced into the vacuum suction line. Set upper limit pressure When it reaches the,
6. The method according to claim 5, wherein the vacuum pump and the pump are switched from a low-speed operation to a high-speed operation, and the introduction of air into the vacuum suction line is stopped.
The invention described in (1) is characterized in that a predetermined time difference is provided between the introduction and stop of the air into the vacuum suction line and the switching between high and low speed operation of the vacuum pump. Is characterized in that the number of revolutions of the pump during low-speed operation is controlled based on a changing speed at which a vacuum pressure between the lower limit pressure value and the upper limit pressure value changes per unit time.

【0006】[0006]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて説明すると、この発明は、たとえばビル給水系等
の赤水防止対策として設置される脱気装置において実現
される。この脱気装置は、被脱気液を供給するポンプを
備えた給水ラインと脱気液の排出ラインとを備えた脱気
手段(たとえば、中空糸膜等の気体透過膜により形成し
た膜脱気モジュール)に真空吸引ラインを介して真空ポ
ンプ(たとえば、水封式真空ポンプ)を接続し、該真空
吸引ラインの前記脱気手段側に真空圧力を検出する圧力
センサを設け、この圧力センサの下流側に空気導入手段
としての空気導入弁を設けるとともに、前記真空ポン
プ,圧力センサ,空気導入弁および前記ポンプをそれぞ
れ信号線を介して制御器に接続した構成としている。ま
た、前記脱気手段をたとえば脱気塔方式とし、該脱気塔
に真空圧力を検出する圧力センサを設ける構成とするこ
ともできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described. The present invention is realized in, for example, a deaerator installed as a measure for preventing red water in a building water supply system or the like. This deaerator is provided with a deaerator (for example, a membrane deaerator formed by a gas permeable membrane such as a hollow fiber membrane) provided with a water supply line having a pump for supplying a deaerated liquid and a discharge line for the deaerated liquid. A vacuum pump (for example, a water-sealed vacuum pump) is connected to the module) via a vacuum suction line, and a pressure sensor for detecting a vacuum pressure is provided on the deaeration means side of the vacuum suction line. An air introduction valve as air introduction means is provided on the side, and the vacuum pump, the pressure sensor, the air introduction valve, and the pump are connected to a controller via signal lines, respectively. Further, the deaeration means may be, for example, a deaeration tower system, and a pressure sensor for detecting a vacuum pressure may be provided in the deaeration tower.

【0007】前記構成の脱気装置の運転方法によれば、
前記真空吸引ライン内の真空圧力を前記圧力センサが検
出し、該検出値が予め設定した下限圧力(たとえば、4
0torr)に到達すると、前記真空ポンプおよび前記ポン
プを高速運転から低速運転(たとえば、インバータ制御
で60Hz→20Hz)に切り換え、前記真空吸引ライ
ンへ所定の空気を導入するとともに、前記脱気手段へ供
給する被脱気液の供給量を減量する。また、前記検出値
が予め設定した上限圧力値(たとえば、80torr)に到
達したとき、前記真空ポンプおよび前記ポンプを低速運
転から高速運転(たとえば、インバータ制御で20Hz
→60Hz)に切り換え、前記真空吸引ラインへの空気
の導入を停止するとともに、前記脱気手段へ供給する被
脱気液の供給量を増量する。前記真空ポンプと前記ポン
プの回転数の制御および前記空気導入弁の開閉は、前記
圧力センサの検出信号に基づいて、前記制御器の制御信
号により行なう。なお、前記両ポンプの回転数の制御
は、前記制御器に内蔵したインバータにより行う。
[0007] According to the method of operating the deaerator having the above structure,
The pressure sensor detects a vacuum pressure in the vacuum suction line, and the detected value is a predetermined lower limit pressure (for example, 4
0 torr), the vacuum pump and the pump are switched from high-speed operation to low-speed operation (for example, 60 Hz → 20 Hz by inverter control) to introduce predetermined air into the vacuum suction line and supply the air to the deaeration means. The supply amount of the liquid to be degassed is reduced. When the detected value reaches a preset upper limit pressure value (for example, 80 torr), the vacuum pump and the pump are operated from a low speed operation to a high speed operation (for example, 20 Hz by inverter control).
(→ 60 Hz), the introduction of air into the vacuum suction line is stopped, and the supply amount of the liquid to be degassed to be supplied to the deaeration means is increased. The control of the rotation speed of the vacuum pump and the pump and the opening and closing of the air introduction valve are performed by control signals of the controller based on detection signals of the pressure sensor. The rotation speeds of the two pumps are controlled by an inverter built in the controller.

【0008】また、前記運転方法において、前記真空吸
引ラインへの空気の導入および停止と、前記真空ポンプ
の高,低速運転の切り換え時に、それぞれの動作確認時
間として所定の時間差を設けることも好適である。この
時間差の設定は、前記制御器に内蔵したタイマにより行
なう。
In the operating method, it is preferable that a predetermined time difference is provided as an operation confirmation time when introducing and stopping air into the vacuum suction line and when switching between high and low speed operation of the vacuum pump. is there. The setting of the time difference is performed by a timer built in the controller.

【0009】以上のように、この発明の運転方法によれ
ば、前記脱気手段内または前記真空吸引ライン内の真空
圧力を検出し、該検出値に基づいて前記両ポンプの回転
数を制御するようにしたので、前記両ポンプの消費電力
を大幅に低減することができる。また、前記真空ポンプ
を低速運転とした場合には、前記真空吸引ラインに適量
の空気を導入することにより、過渡状態での騒音の発生
を防止することができる。また、高速運転とした場合に
は、前記空気の導入を停止することで、前記真空ポンプ
は定格運転となり、前記脱気手段内の真空圧を下限まで
もっていくことができる。さらにまた、前記真空ポンプ
が低速運転になったときは、同時に前記脱気手段へ供給
する被脱気液の供給量も減量されているので、脱気液の
脱気度は変化しない。
As described above, according to the operating method of the present invention, the vacuum pressure in the deaeration means or the vacuum suction line is detected, and the rotational speeds of the two pumps are controlled based on the detected value. As a result, the power consumption of the two pumps can be significantly reduced. Further, when the vacuum pump is operated at a low speed, by introducing an appropriate amount of air into the vacuum suction line, it is possible to prevent generation of noise in a transient state. In the case of high-speed operation, by stopping the introduction of the air, the vacuum pump becomes a rated operation, and the vacuum pressure in the deaerator can be lowered to the lower limit. Furthermore, when the vacuum pump operates at a low speed, the supply amount of the liquid to be degassed to be supplied to the deaeration means is also reduced at the same time, so that the deaeration degree of the deaeration liquid does not change.

【0010】つぎに、この発明の他の運転方法を説明す
ると、前記ポンプの低速運転時における回転数を、前記
下限圧力値と前記上限圧力値との間の真空圧が、単位時
間当りに変化する変化速度に基づいて制御する(たとえ
ば、1分間に真空度の変化が10torr以下の場合は低速
運転とし、10torr以上のときは高速運転に切り換え
る。)方式である。この運転方法によれば、負荷側が要
求する給水量が、通常よりも多くなったとき、直ちに対
応することができる。前記運転方法における設定時間お
よび演算は、前記制御器に内蔵したタイマおよび演算手
段により行なう。
Next, another operation method of the present invention will be described. The number of revolutions of the pump during low-speed operation is changed by changing the vacuum pressure between the lower limit pressure value and the upper limit pressure value per unit time. (For example, if the change in the degree of vacuum per minute is 10 Torr or less, the operation is switched to low speed, and if it is 10 Torr or more, the operation is switched to high speed operation). According to this operation method, it is possible to immediately respond when the amount of water supply requested by the load side becomes larger than usual. The set time and the calculation in the operation method are performed by a timer and a calculation means built in the controller.

【0011】[0011]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1は、この発明における第一実
施例を概略的に示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view schematically showing a first embodiment of the present invention.

【0012】図1は、この発明に係る脱気装置の構成を
概略的に説明するもので、この第一実施例は、この発明
をたとえばビル給水系等に適用したもので、貯水タンク
1内の被脱気液を循環させて所定の脱気水とし、この脱
気水を給水ライン2を介して負荷側(図示省略)へ給水
する構成となっている。前記脱気装置の脱気手段3とし
て、中空糸膜等の気体透過膜により形成された膜脱気モ
ジュール4をもって構成した脱気装置についての実施例
である。この膜脱気モジュール4の一側には、被脱気液
を循環させるポンプ18を備えた供給ライン5が接続さ
れており、この供給ライン5の他端は、前記貯水タンク
1に接続されている。そして、ポンプ18は、信号線1
5を介して制御器16に接続されている。一方、膜脱気
モジュール4の他側には、脱気液を取り出す排出ライン
6が接続されており、この排出ライン6も前記貯水タン
ク1に接続し、循環ラインを形成している。
FIG. 1 schematically illustrates the structure of a deaerator according to the present invention. In the first embodiment, the present invention is applied to, for example, a building water supply system or the like. The deaerated liquid is circulated into predetermined deaerated water, and the deaerated water is supplied to the load side (not shown) via the water supply line 2. This is an embodiment of a deaerator configured as a deaerator 3 of the above deaerator with a membrane deaerator module 4 formed of a gas permeable membrane such as a hollow fiber membrane. A supply line 5 having a pump 18 for circulating the liquid to be deaerated is connected to one side of the membrane deaeration module 4. The other end of the supply line 5 is connected to the water storage tank 1. I have. The pump 18 is connected to the signal line 1
5 is connected to the controller 16. On the other hand, the other side of the membrane degassing module 4 is connected to a discharge line 6 for taking out degassed liquid, and this discharge line 6 is also connected to the water storage tank 1 to form a circulation line.

【0013】前記膜脱気モジュール4内を真空脱気する
手段としては、たとえば水封式の真空ポンプ7があり、
この真空ポンプ7の一般的な構成として、封水ライン8
と排気ライン9とを備えている。この真空ポンプ7と前
記膜脱気モジュール4とは、真空吸引ライン10で接続
されており、この真空吸引ライン10に前記膜脱気モジ
ュール4内の真空圧力を検出する圧力センサ11が設け
られている。この圧力センサ11としては、無段階に圧
力範囲を設定できるように構成された半導体式圧力セン
サが好適である。
As a means for vacuum degassing the inside of the membrane degassing module 4, there is, for example, a water ring type vacuum pump 7,
As a general configuration of the vacuum pump 7, a water sealing line 8
And an exhaust line 9. The vacuum pump 7 and the membrane degassing module 4 are connected by a vacuum suction line 10, and a pressure sensor 11 for detecting a vacuum pressure in the membrane degassing module 4 is provided on the vacuum suction line 10. I have. As the pressure sensor 11, a semiconductor pressure sensor configured so that the pressure range can be set in a stepless manner is suitable.

【0014】さて、前記真空吸引ライン10には、前記
膜脱気モジュール4内の真空吸引作動の開始と停止を行
う電磁弁等の自動弁12と、逆止弁13および空気導入
手段としての空気導入弁14が設けられている。そし
て、前記圧力センサ11,自動弁12,空気導入弁14
および真空ポンプ7は、それぞれ信号線15を介して制
御器16にそれぞれ接続されている。この制御器16
は、前記圧力センサ11の検出信号に基づいて前記真空
ポンプ7および前記ポンプ18の回転数を制御するイン
バータ(図示省略)とタイマ(図示省略)および演算手
段(図示省略)を内蔵している。
The vacuum suction line 10 includes an automatic valve 12 such as an electromagnetic valve for starting and stopping a vacuum suction operation in the membrane degassing module 4, a check valve 13, and air as air introduction means. An introduction valve 14 is provided. The pressure sensor 11, the automatic valve 12, the air introduction valve 14
The vacuum pump 7 is connected to a controller 16 via a signal line 15, respectively. This controller 16
Includes an inverter (not shown) for controlling the rotation speed of the vacuum pump 7 and the pump 18 based on the detection signal of the pressure sensor 11, a timer (not shown), and a calculating means (not shown).

【0015】ここで、前記膜脱気モジュール4内の真空
圧力と被脱気液の脱気度(溶存酸度濃度,すなわちDO
値)の関係について説明すると、たとえば被脱気液とし
て水道水を用いた場合を図2に示す。図2において、こ
の水道水の当初の溶存酸素濃度を8ppm とし、この水道
水の脱気後の所定溶存酸素濃度を0.5ppm と設定する
と、前記膜脱気モジュール4内の真空圧力を約40torr
〜80torrに設定すればよい。すなわち、前記膜脱気モ
ジュール4内の真空圧力の下限値を40torrとし、上限
値を80torrに設定する。
Here, the vacuum pressure in the membrane degassing module 4 and the degree of degassing of the liquid to be degassed (dissolved acidity concentration, ie, DO
2 is shown in FIG. 2, for example, when tap water is used as the liquid to be degassed. In FIG. 2, when the initial dissolved oxygen concentration of the tap water is set to 8 ppm and the predetermined dissolved oxygen concentration after deaeration of the tap water is set to 0.5 ppm, the vacuum pressure in the membrane degassing module 4 is set to about 40 torr.
It may be set to ~ 80 torr. That is, the lower limit of the vacuum pressure in the membrane degassing module 4 is set to 40 torr, and the upper limit is set to 80 torr.

【0016】つぎに、この発明の運転方法について説明
する。この運転方法は、前記真空吸引ライン10内の真
空圧力を前記圧力センサ11が検出し、該検出値が下限
圧力値40torrに到達すると、前記真空ポンプ7と前記
ポンプ18の回転数を高速運転から低速運転(60Hz
→20Hz)に前記制御器16を介して切り換え、前記
膜脱気モジュール4へ供給する被脱気液の供給量を減量
するとともに、前記空気導入弁14を開いて前記真空吸
引ライン10へ空気を導入する。また、前記検出値が上
限圧力値80torrに到達したとき、前記真空ポンプ7と
前記ポンプ18の回転数を低速運転から高速運転(20
Hz→60Hz)に切り換え、前記膜脱気モジュール4
へ供給する被脱気液の供給量を増量するとともに、前記
空気導入弁14を閉じ、前記真空吸引ライン10への空
気の導入を停止する。さらに、前記真空吸引ライン10
への空気の導入および停止と、前記真空ポンプ7の高,
低速運転の切り換え時に所定の時間差を設けている(図
3および図4参照)。
Next, the operation method of the present invention will be described. In this operation method, the pressure sensor 11 detects the vacuum pressure in the vacuum suction line 10, and when the detected value reaches the lower limit pressure value of 40 torr, the rotation speed of the vacuum pump 7 and the pump 18 is changed from the high-speed operation. Low speed operation (60Hz
(→ 20 Hz) through the controller 16 to reduce the supply amount of the liquid to be degassed to be supplied to the membrane deaeration module 4, open the air introduction valve 14 and supply air to the vacuum suction line 10. Introduce. When the detected value reaches the upper limit pressure value of 80 torr, the rotation speed of the vacuum pump 7 and the pump 18 is changed from the low speed operation to the high speed operation (20
Hz → 60 Hz) and the membrane degassing module 4
The supply amount of the liquid to be deaerated to be supplied to the vacuum suction line is increased, the air introduction valve 14 is closed, and the introduction of air into the vacuum suction line 10 is stopped. Further, the vacuum suction line 10
Introduction and stop of air to the vacuum pump 7
A predetermined time difference is provided when the low-speed operation is switched (see FIGS. 3 and 4).

【0017】前記運転方法によれば、前記真空吸引ライ
ン10内の真空圧力を検出し、該検出値に基づいて前記
真空ポンプ7と前記ポンプ18の回転数を制御するよう
にしたので、前記真空ポンプ7と前記ポンプ18の消費
電力を大幅に低減することができる。すなわち、前記真
空ポンプ7と前記ポンプ18の消費電力は、回転速度の
3乗に比例するので、回転数を60Hzから下限回転数
である20Hz付近まで回転数を低下させる。したがっ
て、低速運転時の消費電力は、高速運転時の約3.6%
に低下するので省エネルギー効果は大である。
According to the operating method, the vacuum pressure in the vacuum suction line 10 is detected, and the rotation speeds of the vacuum pump 7 and the pump 18 are controlled based on the detected value. The power consumption of the pump 7 and the pump 18 can be significantly reduced. That is, since the power consumption of the vacuum pump 7 and the pump 18 is proportional to the cube of the rotation speed, the rotation speed is reduced from 60 Hz to around the lower limit rotation speed of 20 Hz. Therefore, the power consumption during low-speed operation is about 3.6% of that during high-speed operation.
Therefore, the energy saving effect is great.

【0018】また、前記真空ポンプ7を低速運転とした
ときは、前記真空吸引ライン10に適量の空気を導入す
ることにより、過渡状態での騒音の発生を防止し、高速
運転としたときは、前記空気の導入を停止するので、前
記真空ポンプ7は定格運転となり、前記膜脱気モジュー
ル4内の真空圧力を下限までもっていくことができる。
そして、前記空気導入弁14の開閉動作と、前記真空ポ
ンプ7の回転数変化の開始タイミングの間に時間差を設
けたので、それぞれの動作確認時間が設定されたことに
なり、より効果的に制御することができる。さらに、前
記真空ポンプ7が低速運転になったときは、同時に前記
膜脱気モジュール4へ供給する被脱気液の供給量も減量
されるので、前記被脱気液の脱気度は変化せず、したが
って前記貯水タンク1内の脱気水の脱気度を安定させる
効果がある。
Further, when the vacuum pump 7 is operated at a low speed, an appropriate amount of air is introduced into the vacuum suction line 10 to prevent generation of noise in a transient state. Since the introduction of the air is stopped, the vacuum pump 7 is in rated operation, and the vacuum pressure in the membrane degassing module 4 can be reduced to the lower limit.
Since a time difference is provided between the opening / closing operation of the air introduction valve 14 and the start timing of the change in the number of revolutions of the vacuum pump 7, each operation check time is set, so that more effective control is performed. can do. Further, when the vacuum pump 7 is operated at a low speed, the supply amount of the deaerated liquid supplied to the membrane deaeration module 4 is simultaneously reduced, so that the deaeration degree of the deaerated liquid is changed. Therefore, there is an effect of stabilizing the degree of deaeration of the deaerated water in the water storage tank 1.

【0019】つぎに、この発明の第二実施例を図5に基
づいて説明する。この第二実施例は、前記第一実施例で
説明した脱気装置の脱気手段3を膜脱気モジュール4か
ら機械式の脱気塔17に変更したものであるから、前記
脱気手段3以外の部材には第一実施例と同様の符号を付
し、重複する説明は省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the deaerator 3 of the deaerator described in the first embodiment is changed from a membrane deaerator module 4 to a mechanical deaerator 17. Members other than those described above are denoted by the same reference numerals as in the first embodiment, and redundant description will be omitted.

【0020】図5は、第二実施例の脱気装置の構成を概
略的に示す説明図である。図5において、脱気手段3と
して適用した脱気塔17を設け、この脱気塔17の上部
に被脱気液を循環させるポンプ18を備えた供給ライン
5を接続し、先端部にスプレーノズル5aを設け、他端
は貯水タンク1に接続している。また、前記脱気塔17
の下部に脱気液を取り出す排出ライン6が接続されてお
り、この排出ライン6も前記貯水タンク1に接続し、循
環ラインを形成している。そして、前記ポンプ18は、
信号線15を介して制御器16に接続されている。
FIG. 5 is an explanatory view schematically showing the structure of the deaerator of the second embodiment. In FIG. 5, a degassing tower 17 applied as a degassing means 3 is provided, a supply line 5 having a pump 18 for circulating a liquid to be degassed is connected to the upper part of the degassing tower 17, and a spray nozzle is provided at the tip. 5a is provided, and the other end is connected to the water storage tank 1. In addition, the degassing tower 17
A discharge line 6 for taking out the degassed liquid is connected to a lower part of the tank, and this discharge line 6 is also connected to the water storage tank 1 to form a circulation line. And the pump 18
It is connected to a controller 16 via a signal line 15.

【0021】前記脱気塔17内を真空脱気する手段とし
て、たとえば水封式の真空ポンプ7を設け、この真空ポ
ンプ7と前記脱気塔17の上部との間を真空吸引ライン
10で接続している。また、前記脱気塔17において、
前記真空吸引ライン10を接続した部位よりも下方の位
置には、前記脱気塔17内の真空圧力を検出する圧力セ
ンサ11を設けている。前記真空吸引ライン10には、
電磁弁等の自動弁12と逆止弁13および空気導入手段
としての空気導入弁14が設けられている。そして、前
記圧力センサ11,自動弁12,空気導入弁14および
真空ポンプ7は、それぞれ信号線15を介して前記制御
器16にそれぞれ接続されている。前記制御器16は、
前記第一実施例と同様に、前記圧力センサ11の検出信
号に基づいて前記真空ポンプ7および前記ポンプ18の
回転数制御等の制御を行なう。
As means for vacuum degassing the inside of the degassing tower 17, for example, a water ring type vacuum pump 7 is provided, and the vacuum pump 7 and the upper part of the degassing tower 17 are connected by a vacuum suction line 10. doing. In the degassing tower 17,
A pressure sensor 11 for detecting a vacuum pressure in the degassing tower 17 is provided below the portion to which the vacuum suction line 10 is connected. The vacuum suction line 10 includes:
An automatic valve 12 such as a solenoid valve, a check valve 13, and an air introduction valve 14 as air introduction means are provided. The pressure sensor 11, the automatic valve 12, the air introduction valve 14, and the vacuum pump 7 are connected to the controller 16 via signal lines 15, respectively. The controller 16 includes:
As in the first embodiment, control such as rotation speed control of the vacuum pump 7 and the pump 18 is performed based on the detection signal of the pressure sensor 11.

【0022】この発明の運転方法について、さらに他の
実施例について説明する。すなわち、前記被脱気液を供
給するポンプ18の低速運転時における回転数を、前記
脱気手段3または前記真空吸引ライン10内の真空圧力
が、前記下限圧力値40torrと前記上限圧力値80torr
との間にあって、その真空圧力が単位時間当りに変化す
る変化速度に基づいて制御する(たとえば、1分間に真
空度の変化が10torr以下の場合は低速運転とし、10
torr以上のときは高速運転に切り換える。)ようにした
ものである。この運転方法によれば、負荷側が要求する
給水量が通常よりも多くなったとき、直ちに対応するこ
とができる。この運転方法における設定時間および演算
は、前記制御器16に内蔵したタイマおよび演算手段に
より行なう。
Another embodiment of the operating method of the present invention will be described. That is, the rotation speed of the pump 18 for supplying the liquid to be degassed at the time of low speed operation, the vacuum pressure in the deaeration means 3 or the vacuum suction line 10 depends on the lower pressure value 40 torr and the upper pressure value 80 torr.
(For example, if the change in the degree of vacuum is 10 torr or less per minute, the operation is set to low speed, and the control is performed based on the rate of change of the vacuum pressure per unit time).
If it exceeds torr, switch to high-speed operation. ). According to this operation method, it is possible to immediately respond when the amount of water supplied by the load side becomes larger than usual. The set time and calculation in this operation method are performed by a timer and a calculation means built in the controller 16.

【0023】[0023]

【発明の効果】以上説明したように、この発明によれ
ば、脱気手段内または真空吸引ライン内の真空圧力を検
出する圧力センサを設け、この圧力センサの検出値に基
づいて真空ポンプと、前記脱気手段へ被脱気液を供給す
るポンプの回転数を制御する構成としたので、前記両ポ
ンプの消費電力を大幅に低減することができる。また、
真空吸引ラインに空気導入手段を設けたので、過渡状態
での騒音の発生を防止することができる。
As described above, according to the present invention, a pressure sensor for detecting a vacuum pressure in a degassing means or a vacuum suction line is provided, and a vacuum pump is provided based on the detected value of the pressure sensor. Since the number of rotations of the pump for supplying the liquid to be degassed to the degassing means is controlled, the power consumption of both pumps can be significantly reduced. Also,
Since the air introduction means is provided in the vacuum suction line, generation of noise in a transient state can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る脱気装置の第一実施例の構成を
概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing a configuration of a first embodiment of a deaerator according to the present invention.

【図2】図1の膜脱気モジュール内の真空圧力とDO値
の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a vacuum pressure and a DO value in the membrane degassing module of FIG.

【図3】図1の圧力センサの検出信号により、真空ポン
プの回転数を制御する作動域を示す説明図である。
FIG. 3 is an explanatory diagram showing an operation range in which the number of rotations of a vacuum pump is controlled by a detection signal of a pressure sensor of FIG. 1;

【図4】図3の作動域に時間差を設けて空気導入弁を開
閉する状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state in which a time difference is provided in the operation region of FIG. 3 to open and close the air introduction valve.

【図5】この発明に係る脱気装置の第二実施例の構成を
概略的に示す説明図である。
FIG. 5 is an explanatory view schematically showing a configuration of a second embodiment of the deaerator according to the present invention.

【図6】従来の脱気装置をビル給水系に設置した状態を
示す概略説明図である。
FIG. 6 is a schematic explanatory view showing a state in which a conventional deaerator is installed in a building water supply system.

【符号の説明】[Explanation of symbols]

3 脱気手段 4 膜脱気モジュール 5 供給ライン 6 排出ライン 7 真空ポンプ 10 真空吸引ライン 11 圧力センサ 14 空気導入弁(空気導入手段) 15 信号線 16 制御器 17 脱気塔 18 ポンプ Reference Signs List 3 Deaeration means 4 Membrane deaeration module 5 Supply line 6 Discharge line 7 Vacuum pump 10 Vacuum suction line 11 Pressure sensor 14 Air introduction valve (air introduction means) 15 Signal line 16 Controller 17 Deaeration tower 18 Pump

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 脱気手段3と真空ポンプ7とを真空吸引
ライン10を介して接続し、該真空ポンプ7により前記
脱気手段3内の被脱気液を真空脱気する脱気装置であっ
て、前記脱気手段3の供給ライン5に被脱気液を供給す
るポンプ18を設け、前記脱気手段3内または前記真空
吸引ライン10内の真空圧力を検出する圧力センサ11
を設けるとともに、前記真空吸引ライン10に空気導入
手段14を設け、さらに該空気導入手段14,前記圧力
センサ11,前記ポンプ18および前記真空ポンプ7を
信号線15を介してそれぞれ制御器16に接続したこと
を特徴とする脱気装置。
1. A deaerator for connecting the deaeration means 3 and a vacuum pump 7 via a vacuum suction line 10 to vacuum deaerate the liquid to be deaerated in the deaeration means 3 by the vacuum pump 7. A pump 18 for supplying a liquid to be degassed to the supply line 5 of the degassing means 3 is provided, and a pressure sensor 11 for detecting a vacuum pressure in the degassing means 3 or the vacuum suction line 10 is provided.
And an air introducing means 14 is provided in the vacuum suction line 10, and the air introducing means 14, the pressure sensor 11, the pump 18 and the vacuum pump 7 are connected to a controller 16 via a signal line 15. A degassing device characterized by the following.
【請求項2】 脱気手段3と真空ポンプ7とを真空吸引
ライン10を介して接続し、該真空ポンプ7により前記
脱気手段3内の被脱気液を真空脱気する構成の脱気装置
の運転方法であって、前記脱気手段3内または前記真空
吸引ライン10内の真空圧力を検出し、該検出値に基づ
いて前記真空ポンプ7の回転数を制御するとともに、前
記真空吸引ライン10へ導入する空気量を制御し、前記
脱気手段3内へ供給する被脱気液の供給量を制御するこ
とを特徴とする脱気装置の運転方法。
2. A deaeration device in which the deaeration means 3 and the vacuum pump 7 are connected via a vacuum suction line 10, and the deaerated liquid in the deaeration means 3 is vacuum deaerated by the vacuum pump 7. An operation method of the apparatus, wherein a vacuum pressure in the deaeration means 3 or the vacuum suction line 10 is detected, and a rotation speed of the vacuum pump 7 is controlled based on the detected value. A method for operating a degassing apparatus, characterized in that the amount of air introduced into the degassing means (10) is controlled and the amount of degassed liquid supplied to the degassing means (3) is controlled.
【請求項3】 前記被脱気液の供給量の制御が、被脱気
液を供給するポンプ18の回転数を制御することにより
行われることを特徴とする請求項2に記載の脱気装置の
運転方法。
3. The degassing apparatus according to claim 2, wherein the control of the supply amount of the liquid to be degassed is performed by controlling the rotation speed of a pump 18 that supplies the liquid to be degassed. Driving method.
【請求項4】 前記検出値が予め設定した下限圧力値に
到達したとき、前記真空ポンプ7および前記ポンプ18
を高速運転から低速運転に切り換えるとともに、前記真
空吸引ライン10へ所定の空気を導入し、また前記検出
値が予め設定した上限圧力値に到達したとき、前記真空
ポンプ7および前記ポンプ18を低速運転から高速運転
に切り換えるとともに、前記真空吸引ライン10への空
気の導入を停止することを特徴とする請求項3に記載の
脱気装置の運転方法。
4. The vacuum pump 7 and the pump 18 when the detected value reaches a preset lower limit pressure value.
Is switched from high-speed operation to low-speed operation, predetermined air is introduced into the vacuum suction line 10, and when the detected value reaches a preset upper limit pressure value, the vacuum pump 7 and the pump 18 are operated at low speed. The method for operating the deaerator according to claim 3, wherein the operation is switched from a high-speed operation to a high-speed operation, and the introduction of air into the vacuum suction line 10 is stopped.
【請求項5】 前記真空吸引ライン10への空気の導入
および停止と、前記真空ポンプ7の高,低速運転の切り
換え時に、所定の時間差を設けることを特徴とする請求
項4に記載の脱気装置の運転方法。
5. The deaeration according to claim 4, wherein a predetermined time difference is provided between the introduction and stop of the air to the vacuum suction line and the switching between the high and low speed operation of the vacuum pump. How to operate the device.
【請求項6】 前記ポンプ18の低速運転時における回
転数を、前記下限圧力値と前記上限圧力値との間の真空
圧が、単位時間当りに変化する変化速度に基づいて制御
することを特徴とする請求項4に記載の脱気装置の運転
方法。
6. The system according to claim 1, wherein the number of revolutions of the pump during low-speed operation is controlled based on a change speed at which a vacuum pressure between the lower limit pressure value and the upper limit pressure value changes per unit time. The operation method of the deaerator according to claim 4, wherein
JP12174197A 1997-04-23 1997-04-23 Operation method of deaerator Expired - Lifetime JP3774989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12174197A JP3774989B2 (en) 1997-04-23 1997-04-23 Operation method of deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12174197A JP3774989B2 (en) 1997-04-23 1997-04-23 Operation method of deaerator

Publications (2)

Publication Number Publication Date
JPH10300012A true JPH10300012A (en) 1998-11-13
JP3774989B2 JP3774989B2 (en) 2006-05-17

Family

ID=14818740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12174197A Expired - Lifetime JP3774989B2 (en) 1997-04-23 1997-04-23 Operation method of deaerator

Country Status (1)

Country Link
JP (1) JP3774989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010015978U1 (en) * 2010-11-29 2012-03-01 Speck Pumpen Walter Speck Gmbh & Co. Kg Pump unit for a calibration tool of an extrusion line

Also Published As

Publication number Publication date
JP3774989B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP3219017B2 (en) Operating method of deaerator
JP3774989B2 (en) Operation method of deaerator
JP2000350902A (en) Deaeration method
JPH10174803A (en) Removing method of gas in oil
JPH10253005A (en) Deaerator system and operating method therefor
JPH1122911A (en) Deaerator and its operation
JP2556404Y2 (en) Automatic number control device for deaerator
JPH0332792A (en) Method for controlling vacuum pump of deoxidation system
JPH0671108A (en) Controlling apparatus for operation of degasing apparatus in water supplying system of building
JP3707145B2 (en) Control method of deaerator
CN221171826U (en) Self-adaptive voltage stabilizing system suitable for closed water cooling device
JP2553852Y2 (en) Water-sealing mechanism of water-sealed vacuum pump for deaerator
JP2543910Y2 (en) Dissolved oxygen stabilization system for deoxygenation equipment
JP3237532B2 (en) Control method of deaerator
JPH06147409A (en) Controlling device for recirculation valve for feed water pump
JP2503839B2 (en) Water distribution system in building water supply system
JP5102602B2 (en) Pump equipment
JP3615831B2 (en) Condensate deaerator
JPS61241496A (en) Falling water prevention device for variable speed pump
JP2000230751A (en) Automatic bath device
JP2556399Y2 (en) Corrosion prevention device for hot water supply piping
JPH0975609A (en) Deaerate degree adjusting method in vacuum deaeration
JPH1183344A (en) Automatic vacuum controller for condenser
JPS59153436A (en) Water cooler of winding for rotary electric machine
JPS59131784A (en) Control of operating number of pumps

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term