JPH10174803A - Removing method of gas in oil - Google Patents

Removing method of gas in oil

Info

Publication number
JPH10174803A
JPH10174803A JP8337112A JP33711296A JPH10174803A JP H10174803 A JPH10174803 A JP H10174803A JP 8337112 A JP8337112 A JP 8337112A JP 33711296 A JP33711296 A JP 33711296A JP H10174803 A JPH10174803 A JP H10174803A
Authority
JP
Japan
Prior art keywords
oil
gas
storage tank
separation membrane
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8337112A
Other languages
Japanese (ja)
Inventor
Kiyoshi Naganuma
清 長沼
Noriyuki Sahoda
典之 佐保田
Koji Yamashita
浩二 山下
Satoshi Tanakadate
聡 田中舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP8337112A priority Critical patent/JPH10174803A/en
Publication of JPH10174803A publication Critical patent/JPH10174803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove dissolved air in an oil at a high eliminating ratio. SOLUTION: This device is constituted so that the oil 18 in the return side 17A of a storage tank 17 is delivered to a filter 13 side through a suction pump 10 with the suction pump 10 operated by the instruction of a driving controller 16 and after fed with a prescribed pressure and flow rate by a flow control valve 12 into a vapor-liquid separation membrane device 9. One or plural deaerating modules each provided with a box unit 2 of the vapor-liquid separation device 9, a separation membrane 3 and a shield 4 are provided and the oil is made to flow out a fixed quantity by increasing or decreasing the flow rate while keeping the discharge pressure applied to the deaerating module constant. The pressure of the space 5 in the box unit 2 is reduced to negative by evacuating from a discharge port 8 with a vacuum pump 15 operated by being synchronized with the operation of the suction pump 10 to remove the gas dissolved in the oil 18 and after that, the oil is returned to the discharge side 17B of the pump in the storage tank 17 from a flow-out port 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油中に溶存する気
体を除去する油中の気体除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing gas dissolved in oil.

【0002】[0002]

【従来の技術】液体は常温及び大気圧下で、体積比率で
5〜10%の空気を溶存しており、大気開放されている
液体中に溶存している空気は、その圧力条件下において
液体中に飽和量分溶存している。溶存空気を含んだ流体
が流動する時に初期の大気環境より低い圧力環境となる
と飽和溶存空気量が減少し、溶存しきれない空気は液中
に気泡として析出する。
2. Description of the Related Art At room temperature and atmospheric pressure, 5 to 10% by volume of air is dissolved in a liquid. Air dissolved in a liquid that is open to the atmosphere is a liquid under the pressure condition. Saturated amount is dissolved in it. When a fluid containing dissolved air flows and the pressure environment becomes lower than the initial atmospheric environment, the amount of saturated dissolved air decreases, and air that cannot be completely dissolved precipitates as bubbles in the liquid.

【0003】この溶存空気の酸素は酸化劣化反応の連鎖
反応を促進させ液体の寿命を短命にする。また、気泡化
した空気の圧縮率は液体の圧縮率に比較して約104
であるため、負荷変化により気泡体積を圧縮または膨張
させるので、油圧システムに対して、駆動の遅れ、フワ
フワ現象、浮き沈みを顕著に生じさせ、駆動制御に支障
を生じさせている。
[0003] The oxygen in the dissolved air promotes the chain reaction of the oxidative deterioration reaction and shortens the life of the liquid. Also, since the compression rate of the bubbled air is about 10 4 times the compression rate of the liquid, the bubble volume is compressed or expanded by a change in load, so that the hydraulic system has a delay in driving and a fluffy phenomenon. As a result, ups and downs are significantly generated, which hinders drive control.

【0004】従来の油圧装置では、この析出した空気の
塊である気泡を除去するため、タンク内にタンクへの戻
り側とポンプへの吐出側とを隔離する隔壁等を設け、気
体自身の浮力を利用して液体からの気泡分離を図ってい
る。
In a conventional hydraulic device, in order to remove air bubbles, which are the lump of air that has precipitated, a partition wall or the like is provided in the tank to isolate the return side to the tank and the discharge side to the pump, and the buoyancy of the gas itself is provided. Is used to separate bubbles from liquid.

【0005】しかし、自然放置した気泡分離では、流体
との分離に時間が掛かるため、タンク容量を大きくして
分離時間を得るようにしなければならないが、これは省
スペース化に逆行してしまう。そこで、近年、この気泡
を除去するため、液体と気泡との質量差に着目し、気泡
を含んだ液体を液体配管内で旋回流動させて、質量の重
い液体と極めて軽い気泡に旋回速度を加え、速度と質量
により管壁に沿って遠心力差を生じさせ、これによって
液体と気泡を分離する旋回流脱気方法が提案され、例え
ば、特開平1−104315号、特開平2−52013
号、特開平3−123605号にその発明が開示されて
いる。
[0005] However, in the case of air-bubble separation which has been left unattended, it takes time to separate from the fluid. Therefore, it is necessary to increase the tank capacity so as to obtain the separation time, but this goes against space saving. Therefore, in recent years, in order to remove these bubbles, attention has been paid to the difference in mass between the liquid and the bubbles, and the liquid containing the bubbles is swirled and flowed in the liquid piping, and the swirling speed is added to the heavy liquid and the extremely light bubbles. A centrifugal force difference is generated along the tube wall depending on the speed and the mass, and thereby a swirling flow deaeration method for separating liquid and air bubbles is proposed, for example, Japanese Patent Application Laid-Open Nos. 1-104315 and 2-5-22013.
The invention is disclosed in JP-A-3-123605.

【0006】また、ポンプの必要吸い込み圧力または吸
い込み流量を下げて、ポンプが駆動して負圧となり液体
を吸い込む時に液体中から溶存空気を気泡として析出さ
せ、分離した気泡を除去するキャビテーション脱気方法
が提案されている。
A cavitation deaeration method in which the required suction pressure or suction flow rate of the pump is reduced, and the pump is driven to a negative pressure to cause dissolved air to precipitate out of the liquid as bubbles when the liquid is sucked, thereby removing separated bubbles. Has been proposed.

【0007】更に、給水配管内の水道水の赤水防止方法
として多孔質の気液分離膜を中空糸状にして筐体で覆
い、筐体内を真空として中空糸内に水道水を通す方法ま
たは中空糸側を真空にして筐体内に水道水を通して液中
の溶存ガスを分離する方法が提案され、例えば、特開平
3−30889号にその発明が開示されている。
Further, as a method for preventing tap water from flowing into a water supply pipe, the porous gas-liquid separation membrane is covered with a housing in the form of a hollow fiber, and the housing is evacuated to supply tap water through the hollow fiber. A method has been proposed in which the side is evacuated to separate dissolved gas in the liquid by passing tap water into the housing, and the invention is disclosed in, for example, JP-A-3-30889.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
旋回流脱気装置による気体除去装置は、流入した液体が
目視可能な微小気体を一様に含んでおり、この液体を旋
回流の外側に液体、また内側に気泡がそれぞれ流れるよ
うにして分離させているが、旋回流脱気による気泡除去
の溶存空気削減率は、20%未満であり、酸化劣化の防
止及び負荷変動に対する圧縮や膨張の抑制として、最低
90%の削減率を必要とする油圧エレベータなどでは満
足できなかった。
However, in the conventional gas removing device using a swirling flow deaerator, the inflowing liquid uniformly contains minute gas that can be visually observed, and this liquid is placed outside the swirling flow. In addition, the bubbles are separated by flowing inside, but the reduction rate of dissolved air in removing bubbles by swirling degassing is less than 20%, preventing oxidation deterioration and suppressing compression and expansion against load fluctuation. However, it was not satisfactory with a hydraulic elevator or the like that requires a reduction rate of at least 90%.

【0009】また、キャビテーション脱気方法における
ポンプの吸い込み圧力を下げるには、大気圧力より50
mmHg以上下げることが望ましく、この負圧値を達成
することにより約50%の溶存空気削減率を得ることが
できる。これはタンクを密閉化して内部を負圧としてポ
ンプを駆動することで容易にできるものの、タンク内を
負圧とした場合、常々、作動油中より気体分離するエア
レーションを発生させてしまうので、油圧システム中に
設けることはできず、サブシステムを設けなければなら
ない。
Further, in order to lower the suction pressure of the pump in the cavitation degassing method, it is necessary to reduce the pressure by 50% from the atmospheric pressure.
It is desirable to reduce the pressure by mmHg or more, and by achieving this negative pressure value, a dissolved air reduction rate of about 50% can be obtained. This can be easily done by closing the tank and driving the pump with a negative pressure inside.However, if the inside of the tank is negative pressure, aeration that constantly separates gas from the working oil is generated, It cannot be provided in the system; a subsystem must be provided.

【0010】更に、水道水用多孔質の中空糸では親和性
のある作動油では分離膜の孔より作動油自身も流出して
しまう不具合があり汎用品では気液分離膜を用いた作動
油の脱気装置は提供されていない。
Further, in the case of a porous hollow fiber for tap water, there is a problem that the working oil having affinity has a problem that the working oil itself flows out from the pores of the separation membrane. No degasser is provided.

【0011】作動油の漏れが少ない極めて分子間結合の
細かい非多孔質膜が気体分離用膜として提供されてい
る。この非多孔質膜及び多孔質膜の中空糸は耐圧が0.
5MPa程度であり、中空糸内への流入流量を増加させ
るために流入圧力を増加させると膜の破損が生じる。
[0011] Non-porous membranes with very small intermolecular bonds with little leakage of hydraulic oil have been provided as gas separation membranes. The non-porous membrane and the hollow fiber of the porous membrane have a pressure resistance of 0.
When the inflow pressure is increased to increase the inflow rate into the hollow fiber, the membrane is damaged.

【0012】また、束にした中空糸と筐体との密閉を得
るためのシールド部の樹脂類においても、中空糸自身の
強度不足より圧力の増加により密閉性が疎外される。
[0012] Also, in the resin of the shield part for obtaining the tightness between the bundled hollow fibers and the housing, the sealing property is alienated due to an increase in pressure due to insufficient strength of the hollow fibers themselves.

【0013】そのため、長期間の使用に耐えるために
は、筐体及び中空糸への流入圧力を低く抑えざるをえ
ず、脱気処理に当たって、脱気稼動初期の大量処理に流
量の増加による対応が難しく、所定の油中溶存気体の削
減率を得るには、長時間必要であった。
Therefore, in order to withstand long-term use, the inflow pressure into the housing and the hollow fiber must be kept low. Therefore, it took a long time to obtain a predetermined reduction rate of dissolved gas in oil.

【0014】本発明の目的とするところは、油中の溶存
空気を効果的に高削減率で除去できる油中の気体除去装
置を提供するにある。
It is an object of the present invention to provide a device for removing gas from oil, which can effectively remove dissolved air from oil at a high reduction rate.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を解決
するために、貯蔵タンク内の油をポンプによって油圧主
回路へ送り出し、戻し配管から上記貯蔵タンク内に戻す
ように構成した油圧装置の上記油中に溶存する気体を除
去するため、上記貯蔵タンク内の上記油を気液分離膜装
置を介して循環させる循環回路を構成した気体除去装置
において、上記気液分離膜装置の分離膜を非多孔質膜の
中空糸形状とし、その中空糸を束として、前記中空糸束
の両端を筐体で覆い真空空間が得られる気液分離膜モジ
ュールとし、このモジュールを複数個使用するとき、気
液分離膜モジュールに脱気する作動油を送油する送油ポ
ンプに対して並列にならべたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a hydraulic device configured to pump oil in a storage tank to a hydraulic main circuit by a pump and return the oil from a return pipe into the storage tank. In order to remove the gas dissolved in the oil, in a gas removing device having a circulation circuit for circulating the oil in the storage tank through a gas-liquid separation membrane device, the separation membrane of the gas-liquid separation membrane device A hollow fiber shape of a non-porous membrane, the hollow fibers are bundled, and the both ends of the hollow fiber bundle are covered with a housing to form a gas-liquid separation membrane module in which a vacuum space can be obtained. It is characterized in that it is arranged in parallel with an oil feed pump that sends hydraulic oil to be degassed to the liquid separation membrane module.

【0016】上述したように本発明の油中の気体除去装
置は、油圧装置の油量の増減に対して分離膜モジュール
数の増減により適正な処理流量を確保でき、油中の溶存
空気を効果的に高削減率で除去できる。
As described above, the apparatus for removing gas in oil according to the present invention can secure an appropriate processing flow rate by increasing or decreasing the number of separation membrane modules in response to an increase or decrease in the amount of oil in the hydraulic device, and can effectively dissolve dissolved air in the oil. It can be efficiently removed at a high reduction rate.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
によって説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の一実施形態による油中の
気体除去装置のブロック図であり、油圧装置としては油
圧エレベータのジャッキ装置25を例示している。
FIG. 1 is a block diagram of a device for removing gas in oil according to an embodiment of the present invention, and illustrates a jack device 25 of a hydraulic elevator as a hydraulic device.

【0019】このジャッキ装置25のシリンダ26には
配管27及び制御バルブ21を介してモータ19を有す
るポンプ20が接続されて油圧主回路が形成されてい
る。
A pump 20 having a motor 19 is connected to a cylinder 26 of the jack device 25 via a pipe 27 and a control valve 21 to form a hydraulic main circuit.

【0020】貯蔵タンク17内は間仕切り板23によっ
て戻り側17Aとポンプへの吐出側17Bとに区分さ
れ、貯蔵タンク17内の油18は間仕切り板23の下部
連通部を介してのみ移動できるようになっている。
The inside of the storage tank 17 is divided into a return side 17A and a discharge side 17B to the pump by a partition plate 23, and the oil 18 in the storage tank 17 can be moved only through a lower communication portion of the partition plate 23. Has become.

【0021】ポンプ20への吐出側17Bにはサクショ
ンフィルタ22を介してポンプ20が接続され、戻り側
17Aには戻り配管24を介して制御バルブ21が接続
されており、制御バルブ21の切り替え操作によってポ
ンプ20とジャッキ装置25間を連通させて油圧エレベ
ータの上昇運転を行い、一方、制御バルブ21の切り替
え操作によって戻り配管24とジャッキ装置25間を連
通させて油圧エレベータの下降運転を行うようにしてい
る。
The pump 20 is connected to the discharge side 17B of the pump 20 via a suction filter 22, and the control valve 21 is connected to the return side 17A via a return pipe 24. The pump 20 and the jack device 25 communicate with each other to perform the ascent operation of the hydraulic elevator, while the switching operation of the control valve 21 allows the return pipe 24 to communicate with the jack device 25 to perform the descending operation of the hydraulic elevator. ing.

【0022】貯蔵タンク17のポンプへの吐出側17B
は、上述した油圧装置の油圧主回路とは別に気体除去装
置1の循環路が構成されている。この気体除去装置1の
吸い込みポンプ10の配管28は、逆止弁11を介して
吸い上げポンプ10に接続し、気体分離膜装置9より貯
蔵タンク17Bへは配管29を備えている。吸い上げポ
ンプ10と気液分離膜装置9間には、リリーフ弁11、
流量制御弁12、フィルター13、圧力計14が接続さ
れており、また、気液分離膜装置9には真空ポンプ15
が配管8で接続し、真空ポンプ15と吸い上げポンプ1
0とを駆動制御装置16によって制御するように構成し
ている。
The discharge side 17B of the storage tank 17 to the pump
The circulating path of the gas removing device 1 is configured separately from the hydraulic main circuit of the hydraulic device described above. The pipe 28 of the suction pump 10 of the gas removing device 1 is connected to the suction pump 10 via the check valve 11, and a pipe 29 is provided from the gas separation membrane device 9 to the storage tank 17B. A relief valve 11, between the suction pump 10 and the gas-liquid separation membrane device 9,
A flow control valve 12, a filter 13, and a pressure gauge 14 are connected.
Are connected by a pipe 8, and a vacuum pump 15 and a suction pump 1
0 is controlled by the drive control device 16.

【0023】ここで、圧力計14は気液分離膜装置9と
流量制御弁12との間に設ける。
The pressure gauge 14 is provided between the gas-liquid separation membrane device 9 and the flow control valve 12.

【0024】リリーフ弁11と流量制御弁12の貯蔵タ
ンク17への戻り配管は、いずれも貯蔵タンク17の戻
り側17Aに戻るようにしてある。
The return pipes of the relief valve 11 and the flow control valve 12 to the storage tank 17 both return to the return side 17A of the storage tank 17.

【0025】気液分離膜装置9は、筐体2のフィルター
13側流入口6を有し、ポンプへの吐出側17Bに流出
口7を有しており、その中間に非多孔質の中空糸による
気液分離膜3を設けている。気液分離膜3と筐体2はシ
ールド部4が設けられており、その空間5は密閉化可能
である。この筐体2で覆われた中空糸の気液分離膜3を
脱気モジュールと呼ばれる。
The gas-liquid separation membrane device 9 has an inlet 6 on the filter 13 side of the housing 2 and an outlet 7 on the discharge side 17B to the pump, and a non-porous hollow fiber in the middle. Gas-liquid separation membrane 3 is provided. The gas-liquid separation membrane 3 and the housing 2 are provided with a shield part 4, and the space 5 can be sealed. The hollow fiber gas-liquid separation membrane 3 covered with the housing 2 is called a degassing module.

【0026】この脱気モジュールの筐体2には空間5を
真空とするための排出口8が設けられており、真空ポン
プ17と筐体2は排出配管8Aで接続されている。
The casing 2 of the degassing module is provided with a discharge port 8 for evacuating the space 5 and a vacuum pump 17 and the casing 2 are connected by a discharge pipe 8A.

【0027】次に、上述した油中の気体除去装置1の動
作を説明する。
Next, the operation of the apparatus 1 for removing gas in oil will be described.

【0028】駆動制御装置25の指令により吸い上げポ
ンプ10が動作すると、貯蔵タンク17の戻り側17A
内の油18は配管29と逆止弁30及び吸い上げポンプ
10を介してフィルター13側に送り出される。吸い上
げポンプ10の吐出圧力は、気液分離膜3及びシールド
部4の耐圧力が0.5MPa以内のため、それ以下に制
御し、且つ、所定の流量を確保するため、流量制御弁1
2及び圧力計14にて調整するが、低吐出圧力で所定流
量を得るには、気液分離膜装置9内の脱気モジュール数
を1個かまたは2個以上の複数個に並列にならべて、1
モジュールに掛かる圧力を一定として、分離膜3とシー
ルド部4に負担を掛けることなく総流出量の可変を可能
とする。
When the suction pump 10 operates according to a command from the drive control device 25, the return side 17A of the storage tank 17
The oil 18 inside is sent to the filter 13 side via the pipe 29, the check valve 30 and the suction pump 10. The discharge pressure of the suction pump 10 is controlled to less than 0.5 MPa because the withstand pressure of the gas-liquid separation membrane 3 and the shield part 4 is within 0.5 MPa, and in order to secure a predetermined flow rate, the flow control valve 1
2 and the pressure gauge 14, but in order to obtain a predetermined flow rate at a low discharge pressure, the number of degassing modules in the gas-liquid separation membrane device 9 is arranged in parallel with one or two or more. , 1
By making the pressure applied to the module constant, it is possible to vary the total outflow amount without imposing a load on the separation membrane 3 and the shield portion 4.

【0029】尚、脱気モジュールを直列に複数個ならべ
た場合の通過流量を増加させるには、単体に流す以上の
圧力が脱気モジュールに掛かるため、直列にならべるこ
とは不適である。
Incidentally, in order to increase the flow rate when a plurality of deaeration modules are arranged in series, it is not suitable to arrange them in series because a pressure higher than that flowing into a single unit is applied to the deaeration modules.

【0030】フィルター13は、気液分離膜3の液体通
過径より小さい目のものを用い、送油された油18内の
汚染物をこのフィルター13で除去した後、気液分離膜
装置9に流入するようにして気液分離膜3の油18の汚
染物による処理流量の低下を防いでいる。
As the filter 13, a filter having a diameter smaller than the liquid passage diameter of the gas-liquid separation membrane 3 is used. After removing contaminants in the oil 18 fed by the filter 13, the filter 13 is applied to the gas-liquid separation membrane device 9. The flow of the gas 18 prevents the oil 18 in the gas-liquid separation membrane 3 from being reduced by the contaminants.

【0031】駆動制御装置16の指令により吸い上げポ
ンプ10の動作と同期させて稼動させた真空ポンプ15
により脱気モジュールの筐体2内の空間5の圧力をおお
よそ数torrとすると、流入口6より気液分離膜装置
9に流入した油18は、気液分離膜3内を通過して分離
膜より油中に溶存している気体を真空側の膜外に放出さ
せ、空間5に放出された気体は排出口8Aより真空引き
されて除去される。
A vacuum pump 15 operated in synchronization with the operation of the suction pump 10 according to a command from the drive control device 16
When the pressure of the space 5 in the housing 2 of the degassing module is set to approximately several torr, the oil 18 flowing into the gas-liquid separation membrane device 9 from the inlet 6 passes through the gas-liquid separation membrane 3 and is separated from the separation membrane. The gas dissolved in the oil is released to the outside of the film on the vacuum side, and the gas released to the space 5 is evacuated and removed from the outlet 8A.

【0032】その後、気体を除去した油18は流出口7
から貯蔵タンク17のポンプへの吐出側17Bに戻る。
このような構成の油中の気体除去装置1によれば、適正
流量及び筐体2内の真空度により気体除去率は90%以
上が得られ、短時間で貯蔵タンク17内作動油18の溶
存空気を削減することができる。
Thereafter, the oil 18 from which the gas has been removed is supplied to the outlet 7.
From the storage tank 17 to the pump discharge side 17B.
According to the apparatus 1 for removing gas from oil in such a configuration, a gas removal rate of 90% or more can be obtained by an appropriate flow rate and the degree of vacuum in the housing 2, and the working oil 18 in the storage tank 17 can be dissolved in a short time. Air can be reduced.

【0033】また、単体の真空ポンプ15で直列になら
べた複数の脱気モジュールを真空引きした場合、まず、
最初に油18が流入する脱気モジュールの分離膜3で、
真空ポンプ15の真空能力に合致した気体が除去され
る。油18内に大量に空気が溶存している場合は、油1
8より除去された気体が空間5に抽出されるため、真空
度は低下する。そのため、最初に油18が流入する脱気
モジュールの真空度が、複数直列にならんだ脱気モジュ
ールを設けた図示しない気液分離膜装置9の真空度とな
り、単体の真空ポンプを用いて、複数個ならべた脱気モ
ジュールの脱気能力の向上を図ることは望めない。
When a plurality of degassing modules arranged in series are evacuated by a single vacuum pump 15, first,
First, the separation membrane 3 of the degassing module into which the oil 18 flows,
Gases matching the vacuum capacity of the vacuum pump 15 are removed. If a large amount of air is dissolved in oil 18, oil 1
Since the gas removed from 8 is extracted into the space 5, the degree of vacuum is reduced. Therefore, the degree of vacuum of the degassing module into which the oil 18 first flows in becomes the degree of vacuum of the gas-liquid separation membrane device 9 (not shown) provided with a plurality of degassing modules arranged in series. It is not possible to improve the degassing capacity of the individual degassing modules.

【0034】気液分離膜3は油18に溶存している気体
の除去は可能であるが、混入している気泡の除去はでき
ないため、粒子径の大きい浮力のある目視可能な気泡は
自然放気により油18から離別させ、気体除去装置1に
は溶存した気体を含んでいる油18を流入させることが
好ましく、そのため、油圧循環路の吸い込み側となる配
管28は、貯蔵タンク17内の間仕切り板23によって
区分したポンプ吐出側17B側に設けることが好まし
い。
The gas-liquid separation membrane 3 can remove gas dissolved in the oil 18, but cannot remove mixed air bubbles, so that buoyant visible bubbles having a large particle diameter are naturally discharged. It is preferable that the oil 18 be separated from the oil 18 by air and the oil 18 containing dissolved gas be flown into the gas removing device 1. Therefore, the pipe 28 on the suction side of the hydraulic circuit is partitioned into the storage tank 17. It is preferable to provide it on the pump discharge side 17B side divided by the plate 23.

【0035】この配置により、戻り配管24から吐出さ
れるときに発生する気泡を含む油18を気液分離膜装置
9に送り込まずにすむ。また、配管28の油面深さは油
面に近い位置として、再溶解気体を多く含む油18を処
理できるようにすることが好ましい。
With this arrangement, the oil 18 containing bubbles generated when discharged from the return pipe 24 does not need to be sent to the gas-liquid separation membrane device 9. Further, it is preferable that the oil surface depth of the pipe 28 is set to a position close to the oil surface so that the oil 18 containing a large amount of re-dissolved gas can be treated.

【0036】また、油圧主回路へ送油するポンプ20に
は溶存空気の少ない脱気直後の油18を供給すること
で、油18がポンプ20吸い込み時の負圧環境で気泡を
発生する量を抑えることができる。そのため、気液分離
膜装置9で脱気された溶存空気の削減された油18を貯
蔵タンク17に戻す配管29は、油圧主回路へ送油する
ポンプ20側のサクションフィルタ22近傍または、送
油ポンプ20側のタンク底に近くて、且つ、戻り配管2
4より離れている位置が好ましい。
Further, by supplying the oil 18 immediately after deaeration with a small amount of dissolved air to the pump 20 which feeds the oil to the hydraulic main circuit, the amount of the oil 18 which generates bubbles in the negative pressure environment when the pump 20 is sucked is reduced. Can be suppressed. Therefore, the pipe 29 for returning the oil 18, which has been reduced in the dissolved air deaerated by the gas-liquid separation membrane device 9, to the storage tank 17 is provided near the suction filter 22 on the pump 20 side for feeding the oil to the hydraulic main circuit, or Close to the tank bottom on the pump 20 side and return pipe 2
Positions further than 4 are preferred.

【0037】気体除去装置1は、油圧エレベータの油圧
装置の油圧主回路とは別の循環回路として構成してい
る。このため、油圧エレベータの油圧装置の油圧主回路
における運転、油の移動時期、油の移動容量とは無関係
に油18中の溶存気体の除去を行うことができる。
The gas removing device 1 is configured as a circulation circuit different from the hydraulic main circuit of the hydraulic device of the hydraulic elevator. Therefore, the dissolved gas in the oil 18 can be removed irrespective of the operation in the hydraulic main circuit of the hydraulic device of the hydraulic elevator, the timing of moving the oil, and the moving capacity of the oil.

【0038】このように気体除去装置1は、油圧エレベ
ータの油圧装置の油圧主回路の運転とは無関係に運転を
制御できるので、その能力、要求する気体除去率あるい
は油圧エレベータの油圧装置の運転頻度等によっても異
なるが、貯蔵タンク17内の油18へ気体が溶解する溶
解速度が気体除去速度に比較して緩慢となるように、気
体溶解量が所定の値以上にならないように気液分離装置
1を運転する。
As described above, since the operation of the gas removing device 1 can be controlled independently of the operation of the hydraulic main circuit of the hydraulic device of the hydraulic elevator, its performance, required gas removal rate or operating frequency of the hydraulic device of the hydraulic elevator can be controlled. The gas-liquid separation device is controlled so that the gas dissolution rate does not exceed a predetermined value so that the dissolution rate at which the gas dissolves in the oil 18 in the storage tank 17 is slower than the gas removal rate. Drive 1

【0039】例えば、油圧エレベータが運転して貯蔵タ
ンク17内の油18面が上下して、気体溶解量が多いと
きは、気体除去装置1を運転し、夜間、油圧エレベータ
が運転を停止して、極めて溶解速度が緩慢な時は、気体
除去装置1も止めることもできる。また、所定の時間間
隔で間欠運転して所定の値に気体溶解量を保つことがで
きる。
For example, when the hydraulic elevator is operated and the oil 18 in the storage tank 17 moves up and down and the amount of dissolved gas is large, the gas removing device 1 is operated, and the hydraulic elevator stops operating at night. When the dissolution rate is extremely slow, the gas removing device 1 can be stopped. Further, the gas dissolving amount can be maintained at a predetermined value by performing an intermittent operation at a predetermined time interval.

【0040】更に、気体の溶解を抑えるために貯蔵タン
ク17の送油ポンプ20側のタンク17Bの液面に図示
しない気体不通過膜を浮かせると良い。
Further, in order to suppress the dissolution of the gas, it is preferable to float a gas impervious film (not shown) on the liquid surface of the tank 17B on the oil feed pump 20 side of the storage tank 17.

【0041】戻り配管24側の17Aでは、戻り配管2
4から気泡を含んだ油18が貯蔵タンク17に戻される
ため、その気泡の放気を行わなくてはならず、気体不通
過膜の貯蔵タンク17A側の使用は好ましくない。
At 17A on the return pipe 24 side, return pipe 2
Since the oil 18 containing air bubbles is returned to the storage tank 17 from 4, the air bubbles must be released, and the use of the gas impermeable membrane on the storage tank 17A side is not preferable.

【0042】[0042]

【発明の効果】以上説明したように本発明の油中の気体
除去装置は、油圧装置の油圧主回路とは別に気液分離膜
装置を有する循環回路として形成したため、油圧装置の
油圧主回路の運転や油移動量に関係せず運転でき、分離
膜及びシールド部を傷めることなく所定の処理流量を確
保でき、油圧装置の油圧主回路の油中に溶存する気体を
効果的に高削減率で除去することができる。
As described above, the apparatus for removing gas in oil according to the present invention is formed as a circulation circuit having a gas-liquid separation membrane device separately from the hydraulic main circuit of the hydraulic device. Operation can be performed regardless of the operation or oil transfer amount, and a predetermined processing flow rate can be secured without damaging the separation membrane and shield part, and gas dissolved in oil in the hydraulic main circuit of the hydraulic system can be effectively reduced at a high reduction rate. Can be removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態で油中の気体除去装置の構
成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a device for removing gas from oil in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 気体除去装置 2 筐体 3 気液分離膜 4 シールド部 5 空間 6 流入口 7 流出口 8 排出口 8A 排出配管 9 気液分離膜装置 10 吸い上げポンプ 11 リリーフ弁 12 流量制御弁 13 フィルター 14 圧力計 15 真空ポンプ 16 駆動制御装置 17 貯蔵タンク 17A 貯蔵タンクの戻り側 17B 貯蔵タンクのポンプ吐出側 18 油 19 モーター 20 ポンプ 21 制御バルブ 22 サクションフィルター 23 間仕切り板 24 戻り配管 25 ジャッキ装置 26 シリンダ 27 配管 28 配管 29 配管 30 逆止弁 DESCRIPTION OF SYMBOLS 1 Gas removal apparatus 2 Housing 3 Gas-liquid separation membrane 4 Shield part 5 Space 6 Inflow port 7 Outflow port 8 Outlet port 8A Discharge pipe 9 Gas-liquid separation membrane apparatus 10 Suction pump 11 Relief valve 12 Flow control valve 13 Filter 14 Pressure gauge 15 Vacuum pump 16 Drive control device 17 Storage tank 17A Return side of storage tank 17B Pump discharge side of storage tank 18 Oil 19 Motor 20 Pump 21 Control valve 22 Suction filter 23 Partition plate 24 Return pipe 25 Jack device 26 Cylinder 27 Pipe 28 Pipe 29 Piping 30 Check valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中舘 聡 東京都千代田区神田錦町1丁目6番地 株 式会社日立ビルシステム内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoshi Tanakadate 1-6-6 Kandanishikicho, Chiyoda-ku, Tokyo Inside Hitachi Building System Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 貯蔵タンク内の油をポンプによって油圧
主回路へ送り出し、戻し配管から上記貯蔵タンク内に戻
すように構成した油圧装置の上記油中に溶存する気体を
除去するため、上記貯蔵タンク内の上記油を気液分離膜
装置を介して循環させる循環回路を構成した油中の気体
除去装置において、上記気液分離膜装置の分離膜を非多
孔質膜の中空糸形状とし、その中空糸を束として、前記
中空糸束の両端を筐体で覆い真空空間が得られる気液分
離膜モジュールとし、このモジュールを複数個使用する
とき、気液分離膜モジュールに脱気する作動油を送油す
る送油ポンプに対して並列にならべたことを特徴とする
油中の気体除去装置。
1. The storage tank for removing gas dissolved in the oil in a hydraulic device configured to pump oil in the storage tank to a hydraulic main circuit by a pump and return the oil from the return pipe into the storage tank. A gas-in-oil removing device comprising a circulation circuit for circulating the oil in the gas through a gas-liquid separation membrane device, wherein the separation membrane of the gas-liquid separation membrane device has a non-porous membrane hollow fiber shape, A bundle of fibers is used as a gas-liquid separation membrane module in which both ends of the hollow fiber bundle are covered with a housing to provide a vacuum space. When a plurality of modules are used, hydraulic oil to be degassed is sent to the gas-liquid separation membrane module. A device for removing gas from oil, which is arranged in parallel with an oil feed pump for oiling.
【請求項2】 気液分離膜モジュールに流入させる油の
貯蔵タンクからの吸い上げ配管の位置は、油圧主回路の
貯蔵タンク内のポンプ吸い込み側で、油面近傍に近い位
置としたことを特徴とする請求項1記載の油中の気体除
去装置。
2. The hydraulic pump according to claim 1, wherein a position of a pipe for sucking oil to flow into the gas-liquid separation membrane module from the storage tank is a position close to an oil level near a pump suction side in the storage tank of the hydraulic main circuit. The apparatus for removing gas from oil according to claim 1.
【請求項3】 気液分離膜モジュールより流出する油の
貯蔵タンクへの戻り配管の位置は、油圧主回路の貯蔵タ
ンク内のポンプ吸い込み側近傍またはタンク底に近い位
置としたことを特徴とする請求項1記載の油中の気体除
去装置。
3. The position of the return pipe for returning the oil flowing out of the gas-liquid separation membrane module to the storage tank is near the pump suction side in the storage tank of the hydraulic main circuit or near the tank bottom. The apparatus for removing gas from oil according to claim 1.
【請求項4】 送油ポンプより吐出された油の流量を調
整した余剰油の貯蔵タンクへの戻りは、油圧主回路の貯
蔵タンク内への戻り配管側としたことを特徴とする油中
の気体除去装置。
4. The method according to claim 1, wherein the return of the surplus oil to the storage tank after adjusting the flow rate of the oil discharged from the oil feed pump is performed on a return pipe side of the hydraulic main circuit into the storage tank. Gas removal device.
JP8337112A 1996-12-17 1996-12-17 Removing method of gas in oil Pending JPH10174803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8337112A JPH10174803A (en) 1996-12-17 1996-12-17 Removing method of gas in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8337112A JPH10174803A (en) 1996-12-17 1996-12-17 Removing method of gas in oil

Publications (1)

Publication Number Publication Date
JPH10174803A true JPH10174803A (en) 1998-06-30

Family

ID=18305558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8337112A Pending JPH10174803A (en) 1996-12-17 1996-12-17 Removing method of gas in oil

Country Status (1)

Country Link
JP (1) JPH10174803A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313412A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxygenation system
JP2007313413A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxidation apparatus
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
JP2007313412A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxygenation system
JP2007313413A (en) * 2006-05-25 2007-12-06 Miura Co Ltd Deoxidation apparatus

Similar Documents

Publication Publication Date Title
US3794169A (en) Apparatus for dissociating collected solids from a filtration membrane
JP2740458B2 (en) Degassing method and apparatus in closed liquid circulation system
WO2002026363A3 (en) Membrane filter unit and method for filtration
EP0775264B1 (en) Purifying apparatus in a fluid-operating system
JPH10174803A (en) Removing method of gas in oil
US5317872A (en) Device for improvement of running condition in hydraulic system
US20070210001A1 (en) Method for membrane backwashing and backwashing apparatus
EP1887196B1 (en) Method for the degassing of fluid in heating and cooling systems, and an arrangement
CN107879517A (en) A kind of ultrapure flotation unit for liquid immersion lithography
JPH09239205A (en) Apparatus for removing air in oil
JPS5932990A (en) Apparatus for removal of dissolved oxygen in reverse- osmotic desalinator
JPH0239533Y2 (en)
JP6791819B2 (en) Energy recovery device
CN112937816A (en) Hydraulic control system of buoyancy adjusting device of underwater vehicle
JPH0942179A (en) Cooler for vacuum pump and film deaeration type piping corrosion preventing device using vacuum pump with cooler
JP3219017B2 (en) Operating method of deaerator
KR200290102Y1 (en) apparatus for processing sewage by a dipping type membrane module
JP2020091020A (en) Life extension system of oil for hydraulic circuit
JPH04344147A (en) Sealing oil supply device for rotating electric machine
JP6970781B2 (en) Energy recovery device
JPS601768Y2 (en) Multi-stage vacuum degassing equipment
JP2757936B2 (en) Sealing oil supply device for rotating electric machines
JP3452078B2 (en) Degassing apparatus and method for lubricating oil device
JP3774989B2 (en) Operation method of deaerator
JPH0671108A (en) Controlling apparatus for operation of degasing apparatus in water supplying system of building