JPH1029858A - High dielectric constant dielectric porcelain composition - Google Patents
High dielectric constant dielectric porcelain compositionInfo
- Publication number
- JPH1029858A JPH1029858A JP8185762A JP18576296A JPH1029858A JP H1029858 A JPH1029858 A JP H1029858A JP 8185762 A JP8185762 A JP 8185762A JP 18576296 A JP18576296 A JP 18576296A JP H1029858 A JPH1029858 A JP H1029858A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- weight
- parts
- dielectric
- porcelain composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は例えば電子機器用固
定磁器コンデンサに使用される温度変化率が小さく、且
つ誘電損失の小さい高誘電率誘電体磁器組成物に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-permittivity dielectric ceramic composition having a small temperature change rate and a small dielectric loss used for a fixed ceramic capacitor for electronic equipment, for example.
【0002】[0002]
【従来の技術】従来より高誘電率系セラミックコンデン
サ用の誘電体材料として、チタン酸バリウム系の磁器組
成物が広く用いられている。このチタン酸バリウム系の
磁器組成物の中でも、高誘電率で温度変化率の小さい材
料には、一般に、BaTiO3−Nb2O5−MnO2系を
はじめ、数多くの磁器組成物が知られている。また、最
近のセラミック積層コンデンサに対しては、小型大容量
の上、高周波特性の優れたものが要求されることが非常
に多くなってきている。2. Description of the Related Art Conventionally, barium titanate-based porcelain compositions have been widely used as dielectric materials for high dielectric constant ceramic capacitors. Among the barium titanate-based porcelain compositions, many porcelain compositions including a BaTiO 3 —Nb 2 O 5 —MnO 2 system are generally known as materials having a high dielectric constant and a small rate of temperature change. I have. In recent years, there has been an increasing demand for a ceramic multilayer capacitor having a small size, a large capacity, and excellent high frequency characteristics.
【0003】[0003]
【発明が解決しようとする課題】BaTiO3−Nb2O
5−MnO2系の誘電体磁器組成物において、BaTiO
3におけるBaとTiのモル比即ちBa/Ti比が1以
下であり、かつ通常の製造方法では、得られる焼結体の
表面に板状あるいは、針状結晶の二次相が析出し、この
二次相がセラミック積層コンデンサを作製した時、セラ
ミック積層コンデンサの素子表面に析出し、これに電解
メッキを施した際に、メッキのびとなり、外部電極間の
ショート不良の原因となっていた。SUMMARY OF THE INVENTION BaTiOThree-NbTwoO
Five-MnOTwoBaTiO3 based dielectric porcelain composition
ThreeThe molar ratio of Ba and Ti, ie, the Ba / Ti ratio
Below, and in a normal manufacturing method,
A plate-like or needle-like crystal secondary phase precipitates on the surface,
When the secondary phase produces a ceramic multilayer capacitor,
Deposited on the element surface of the MIC multilayer capacitor,
When plating is applied, the plating becomes stretched, and between the external electrodes
This was the cause of short-circuit failure.
【0004】また、内部電極と誘電体との界面に二次相
が発生するため、この二次相が焼成中に内部電極を押上
げ、内部電極の不連続点が一部できることから、容量の
ばらつく原因となっていた。そして積層セラミックコン
デンサ素子を実装する際、素子表面の二次相の凹凸があ
るため、素子を吸着した時、位置ずれを起こし、実装率
を低下させることがあった。さらに、容量の温度変化率
の小さい組成範囲は、大変限定されたものであった。そ
こで本発明は、二次相の発生がなく、高い比誘電率と低
い誘電損失を有し、誘電率の温度変化の少ない高誘電率
誘電体磁器組成物を提供するものである。Further, since a secondary phase is generated at the interface between the internal electrode and the dielectric, the secondary phase pushes up the internal electrode during firing, and some discontinuous points of the internal electrode are formed. It was causing variation. Then, when mounting the multilayer ceramic capacitor element, there are irregularities of the secondary phase on the element surface, so that when the element is adsorbed, the element may be displaced and the mounting rate may be reduced. Further, the composition range in which the rate of temperature change of the capacitance is small was very limited. Accordingly, the present invention provides a high dielectric constant dielectric porcelain composition which has no secondary phase, has a high relative dielectric constant and a low dielectric loss, and has a small change in dielectric constant with temperature.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に本発明の高誘電率誘電体磁器組成物は、主成分をxB
aO+yTiO2+zPrO11/6(x+y+z=1)と
表わした時、この三元成分が(表2)に示すa,b,
c,d,eを結ぶ直線で囲まれるモル比の範囲にあり、
かつ上記主成分に対して酸化ニオブをNb2O5の形に換
算して0.6〜2.4重量部を含有するとともに、さら
に酸化マグネシウムをMgOの形に換算して0.05〜
0.8重量部含有したものである。In order to achieve this object, a high dielectric constant dielectric porcelain composition of the present invention comprises xB as a main component.
When expressed as aO + yTiO 2 + zPrO 11/6 (x + y + z = 1), these ternary components are represented by a, b, and
in a molar ratio range surrounded by a straight line connecting c, d, and e;
And with containing 0.6 to 2.4 parts by weight in terms of niobium oxide in the form of Nb 2 O 5, further magnesium oxide in terms of the shape of the MgO 0.05 to respect the above-mentioned main components
0.8 parts by weight.
【0006】[0006]
【表2】 [Table 2]
【0007】この構成により、常温での比誘電率が約2
000〜4900という高い値を示し、誘電損失(ta
nδ)は、1.1%以下という低い値を示し、さらに誘
電率の温度変化は、20℃を基準にして、JIS−C−
5130(−25℃〜85℃の温度範囲で、誘電率の温
度変化が+20%〜−30%以内)に規定するJD特性
以下を満足することができる。With this configuration, the relative dielectric constant at room temperature is about 2
000 to 4900, and the dielectric loss (ta)
nδ) shows a low value of 1.1% or less, and the temperature change of the dielectric constant is JIS-C-
5130 (the temperature change of the dielectric constant in the temperature range of -25 ° C to 85 ° C is within + 20% to -30%) and the JD characteristic or less can be satisfied.
【0008】また、BaTiO3におけるBa/Ti比
が1より大きくなっているため、Ti過剰分による二次
相の発生が極めて少ないものを得ることができる。Further, since the Ba / Ti ratio in BaTiO 3 is larger than 1, it is possible to obtain a material in which the generation of a secondary phase due to an excessive amount of Ti is extremely small.
【0009】[0009]
【発明の実施の形態】本発明の請求項1に記載の発明
は、主成分をxBaO+yTiO2+zPrO1 1/6(但
し、x+y+z=1)と表わしたとき、この三元成分が
(表2)に示すa,b,c,d,eを結ぶ直線で囲まれ
るモル比の範囲にあり、かつ前記主成分に対して副成分
として、酸化ニオブをNb2O5の形に換算して0.6〜
2.4重量部含有すると共に、酸化マグネシウムをMg
Oの形に換算して0.05〜0.8重量部含有するもの
であり、高い比誘電率、低い誘電損失そして誘電率の変
化においてはJD特性以下を満足するものである。BEST MODE FOR CARRYING OUT THE INVENTION According to the invention described in claim 1 of the present invention, when the main component is represented by xBaO + yTiO 2 + zPrO 1 1/6 (where x + y + z = 1), the ternary component is as shown in Table 2. in the range of a, b, c, d, the molar ratio of area enclosed by the lines connecting the e shown in, and as a secondary component to the main component in terms of niobium oxide in the form of Nb 2 O 5 0. 6 ~
Containing 2.4 parts by weight of magnesium oxide and Mg
It is contained in an amount of 0.05 to 0.8 part by weight in terms of O, and satisfies the JD characteristic or less in a high relative dielectric constant, a low dielectric loss, and a change in dielectric constant.
【0010】請求項2に記載の発明は、副成分としてさ
らに酸化マンガンを含有し、かつ酸化マグネシウムとこ
の酸化マンガンを各々MgOとMnO2の形に換算して
合計で0.05〜0.8重量部(但し、このうちMnO
2の含有率は0重量部を含まない0.4重量部以下)含
有するものであり、高い比誘電率、低い誘電損失そして
誘電率の温度変化においてはJD特性以下を満足するも
のである。The invention according to claim 2 further comprises manganese oxide as a sub-component, and the magnesium oxide and the manganese oxide are converted to the form of MgO and MnO 2 , respectively, in a total of 0.05 to 0.8. Parts by weight (however, MnO
2 is 0.4 parts by weight or less excluding 0 parts by weight), and satisfies the JD characteristic or less in a high relative dielectric constant, a low dielectric loss, and a temperature change of the dielectric constant.
【0011】[0011]
【実施例】以下、本発明の一実施例を図1、図2を用い
て説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.
【0012】(実施例1)図1は、本発明の高誘電率誘
電体磁器組成物の主成分の組成範囲を示す三元図であ
り、(表2)に示すa,b,c,d,eを結ぶ直線で囲
まれた領域に含まれる三元成分が本発明の組成を示すも
のである。また図2は、本発明の高誘電率誘電体磁器組
成物の製造工程図であり、まず、出発原料としてBa/
Tiモル比が1に調整された高純度のBaTiO3粉末
とBaCO3,Pr6O11,MnO2,MgO,Nb2O5
の各粉末を準備し、焼成後の組成が、(表3)に示すよ
うになるようにそれぞれ秤量し、めのうボールを備えた
ゴム内張りのボールミルに純水とともに入れ、18時間
湿式混合後(図1の1)、脱水乾燥(図2の2)した。(Example 1) FIG. 1 is a ternary diagram showing the composition range of the main components of the high dielectric constant dielectric ceramic composition of the present invention, and shows a, b, c, d shown in (Table 2). , E indicate the composition of the present invention. FIG. 2 is a manufacturing process diagram of the high dielectric constant dielectric porcelain composition of the present invention.
High purity BaTiO 3 powder whose Ti molar ratio is adjusted to 1 and BaCO 3 , Pr 6 O 11 , MnO 2 , MgO, Nb 2 O 5
Are prepared and weighed so that the composition after sintering becomes as shown in Table 3 and put together with pure water into a rubber-lined ball mill equipped with an agate ball, and after wet mixing for 18 hours (FIG. 1) 1) and dehydration drying (2 in FIG. 2).
【0013】[0013]
【表3】 [Table 3]
【0014】この乾燥粉末に、ポリビニールアルコール
バインダー5wt%溶液を適量加え、均質とした後、3
2メッシュのふるいを通して整粒し、金型と油圧プレス
を用いて成形圧力1.5ton/cm2で直径16m
m、厚み0.6〜0.8mmの円板に成形した(図2の
3)。An appropriate amount of a 5 wt% solution of a polyvinyl alcohol binder is added to the dried powder to make it homogenous.
The particles are sieved through a 2-mesh sieve, and the diameter is 16 m using a mold and a hydraulic press at a molding pressure of 1.5 ton / cm 2.
m and a disk having a thickness of 0.6 to 0.8 mm (3 in FIG. 2).
【0015】次いで、この成形円板をジルコニア粉末を
敷いたアルミナ質のサヤに入れ、空気中にて1250〜
1350℃で2時間保持して焼成した(図2の4)。焼
結体の密度が最大となる温度を最適焼成温度とし、得ら
れた焼結体円板の両面全体に銀電極を塗布後焼き付け
(図2の5)してコンデンサとし、各電気特性を周波数
1KHz、室温20℃の条件で測定し、容量温度変化率
は、20℃での容量を基準として測定した(図2の
6)。この各測定結果を、(表4)に示す。Next, this molded disk is put into an alumina sheath covered with zirconia powder, and is placed in the air at 1250 to 1250.
It was held at 1350 ° C. for 2 hours and fired (4 in FIG. 2). The temperature at which the density of the sintered body becomes the maximum is defined as the optimum firing temperature, and silver electrodes are applied to both sides of the obtained sintered body disk and baked (5 in FIG. 2) to obtain a capacitor. The measurement was performed under the conditions of 1 KHz and room temperature of 20 ° C., and the rate of change in capacity with temperature was measured based on the capacity at 20 ° C. (6 in FIG. 2). The results of each measurement are shown in (Table 4).
【0016】[0016]
【表4】 [Table 4]
【0017】(表4)において、試料NO1,4,5,
7はJIS−C−5130規格でのJD特性を示し、キ
ュリー温度での最大容量温度変化率を(ΔC/C20)m
ax(%)として示した。また、他の試料NOのもの
は、更に容量温度変化率の小さいJIS−C−5130
規格でのDR特性を満足しており、−25℃および85
℃での容量温度変化率と、並びにその時の、測定温度範
囲が−55℃〜125℃の範囲において、最大容量温度
変化率を|ΔC/C20|max(%)として示してい
る。次に、本発明の組成範囲の限定理由を図1を参照し
て説明する。直線a−eより上部では、容量温度変化率
が大きくなりJIS−C−5130規格でのJD特性を
満足しない。直線a−b−cより左部では、焼結しにく
くなり、実用的ではない。直線c−dより下部では、P
rを入れた効果が薄く誘電率が低下し焼結性も劣る。直
線d−eより右部では、焼結体の表面に二次相の発生が
著しく、誘電率も低下方向にあるので実用的ではない。In Table 4, samples NO1, 4, 5,
7 shows the JD characteristic in the JIS-C-5130 standard, and shows the maximum capacity temperature change rate at the Curie temperature by (ΔC / C 20 ) m.
ax (%). In the case of the other sample NO, JIS-C-5130 having a smaller capacity temperature change rate was used.
Satisfies the DR characteristics in the standard, -25 ° C and 85
The maximum capacity temperature change rate is shown as | ΔC / C 20 | max (%) in the case of the temperature change rate of the capacity in ° C. and the measured temperature range in the range of −55 ° C. to 125 ° C. at that time. Next, the reasons for limiting the composition range of the present invention will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance with temperature is large, and the JD characteristics in JIS-C-5130 are not satisfied. On the left side of the straight line abc, sintering becomes difficult, which is not practical. Below the line cd, P
The effect of adding r is thin, the dielectric constant is lowered, and the sinterability is poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant is decreasing, so that it is not practical.
【0018】また、副成分としてのNb−Mg、あるい
はNb−Mg−Mnの組合わせにおいて、Nb2O5が
0.6重量部未満では、焼結性が悪化し、誘電体損失が
大きくなり、2.4重量部を越えると誘電率が低下し、
実用的ではなくなる。また、Co2O3は、0.05重量
部未満ではその添加効果がなく、0.80重量部を越え
ると、誘電率が低下し、容量温度変化率が大きくなるた
め、実用的ではない。さらに、MgOとMnO2の両者
を添加する場合、その合計の添加量が0.05重量部以
上であれば添加効果が得られるが、その合計の添加量が
0.8重量部を越えると、誘電率が低下し、容量温度変
化率が大きくなり、実用的ではなくなる。また、MnO
2の添加量が0.40重量部を越えると同様に誘電率が
低下し、容量温度変化率が大きくなり、実用的ではな
い。When Nb 2 Mg or Nb—Mg—Mn is used as a sub-component and Nb 2 O 5 is less than 0.6 parts by weight, sinterability deteriorates and dielectric loss increases. If it exceeds 2.4 parts by weight, the dielectric constant decreases,
It becomes impractical. If the content of Co 2 O 3 is less than 0.05 part by weight, there is no effect of addition, and if it exceeds 0.80 part by weight, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical. Further, when both MgO and MnO 2 are added, the addition effect can be obtained if the total addition amount is 0.05 parts by weight or more, but if the total addition amount exceeds 0.8 parts by weight, The dielectric constant decreases, the rate of change in capacitance with temperature increases, and is not practical. Also, MnO
If the addition amount of ( 2 ) exceeds 0.40 parts by weight, the dielectric constant similarly decreases, and the rate of change in capacitance with temperature increases, which is not practical.
【0019】尚、本実施例における高誘電率誘電体磁器
組成物の製造方法では、BaCO3,Nb2O5,Mn
O2,Pr6O11等の酸化物を用いたが、これらの方法に
限定されるものではなく、焼成した後所望の組成となる
ように、炭酸塩、水酸化物等を用いても同様な特性を得
ることができる。また、主成分をあらかじめ仮焼してか
ら、副成分を添加しても本実施例と同等な特性を得るこ
とができる。In the method of manufacturing a dielectric ceramic composition having a high dielectric constant according to the present embodiment, BaCO 3 , Nb 2 O 5 , and Mn are used.
Oxides such as O 2 and Pr 6 O 11 were used. However, the present invention is not limited to these methods, and the same applies to the use of carbonates, hydroxides, and the like so that a desired composition is obtained after firing. Characteristics can be obtained. Further, even if the main component is calcined in advance and then the sub-component is added, the same characteristics as in this embodiment can be obtained.
【0020】[0020]
【発明の効果】本発明の高誘電率誘電体磁器組成物は、
比誘電率が約2000〜4900と高い値を示し、誘電
体損失(tanδ)は1.1%以下という小さい値を示
すばかりでなく、誘電体の温度変化率は、JIS−C−
5130に規定するJD特性以下を満足することができ
る。The high dielectric constant dielectric porcelain composition of the present invention is
The relative dielectric constant shows a high value of about 2000 to 4900, the dielectric loss (tan δ) shows not only a small value of 1.1% or less, but also the temperature change rate of the dielectric according to JIS-C-
5130 or less can be satisfied.
【0021】また、組成中にパラジウムと反応しやすい
ビスマスを含有しないため、内部電極として高価なPt
を用いる必要がなくPd単体の使用が可能である。更
に、焼結体表面の二次相発生が極めて少ないため、積層
セラミックコンデンサに使用する際、メッキのび、容量
ばらつきの少ない安定した積層セラミックコンデンサ素
子を製造することが可能となる。また、基板上に実装す
る際に同素子を安定して装着が可能となり、工業上利用
価値の非常に高いものである。Since the composition does not contain bismuth which easily reacts with palladium, expensive Pt is used as an internal electrode.
Need not be used, and Pd alone can be used. Further, since the generation of the secondary phase on the surface of the sintered body is extremely small, it is possible to manufacture a stable multilayer ceramic capacitor element having a small plating spread and a small capacity variation when used in a multilayer ceramic capacitor. In addition, when the device is mounted on a substrate, the device can be stably mounted, which is extremely valuable in industrial use.
【図1】本発明にかかる高誘電率誘電体磁器組成物の主
成分の組成範囲を説明する三元組成図FIG. 1 is a ternary composition diagram illustrating a composition range of a main component of a high dielectric constant dielectric porcelain composition according to the present invention.
【図2】本発明の一実施例による高誘電率誘電体磁器組
成物の製造工程図FIG. 2 is a manufacturing process diagram of a high dielectric constant dielectric porcelain composition according to an embodiment of the present invention.
Claims (2)
rO11/6(但し、x+y+z=1)と表わしたとき、こ
の三元成分が(表1)に示すa,b,c,d,eを結ぶ
直線で囲まれるモル比の範囲にあり、かつ前記主成分1
00に対して、副成分として酸化ニオブをNb2O5の形
に換算して0.6〜2.4重量部を含有するとともに、
酸化マグネシウムをMgOの形に換算して0.05〜
0.8重量部含有してなる高誘電率誘電体磁器組成物。 【表1】 The main component is xBaO + yTiO 2 + zP
When expressed as rO 11/6 (where x + y + z = 1), this ternary component is in a molar ratio range surrounded by a straight line connecting a, b, c, d, and e shown in (Table 1), and The main component 1
In addition to niobium oxide, niobium oxide contains 0.6 to 2.4 parts by weight in terms of Nb 2 O 5 as a secondary component,
Convert magnesium oxide to MgO form 0.05 ~
A high dielectric constant dielectric porcelain composition containing 0.8 parts by weight. [Table 1]
有し、かつ酸化マグネシウムと酸化マンガンとをそれぞ
れMgO,MnO2の形に換算して合計で0.05〜
0.8重量部(但し、このうちMnO2の加えられる許
容範囲は、0重量部を含まない0.4重量部以下)含有
してなる請求項1に記載の高誘電率誘電体磁器組成物。2. The composition further contains manganese oxide as a sub-component, and the magnesium oxide and the manganese oxide are converted to the form of MgO and MnO 2 , respectively, in a total amount of 0.05 to 0.05.
2. The high dielectric constant dielectric porcelain composition according to claim 1, comprising 0.8 parts by weight (provided that MnO 2 is added in an allowable range of 0.4 part by weight or less excluding 0 part by weight). .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8185762A JPH1029858A (en) | 1996-07-16 | 1996-07-16 | High dielectric constant dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8185762A JPH1029858A (en) | 1996-07-16 | 1996-07-16 | High dielectric constant dielectric porcelain composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1029858A true JPH1029858A (en) | 1998-02-03 |
Family
ID=16176436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8185762A Pending JPH1029858A (en) | 1996-07-16 | 1996-07-16 | High dielectric constant dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1029858A (en) |
-
1996
- 1996-07-16 JP JP8185762A patent/JPH1029858A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3634930B2 (en) | Dielectric porcelain composition | |
JP2654113B2 (en) | High dielectric constant porcelain composition | |
JP3289379B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3321929B2 (en) | Electronic components | |
JPH1029858A (en) | High dielectric constant dielectric porcelain composition | |
JP3289377B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3064518B2 (en) | Dielectric porcelain composition | |
JPH1029862A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029861A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029857A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029856A (en) | High dielectric constant dielectric porcelain composition | |
JP3289378B2 (en) | High dielectric constant dielectric porcelain composition | |
JPH1029853A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029854A (en) | High dielectric constant dielectric porcelain composition | |
JP3309477B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3319024B2 (en) | High dielectric constant dielectric porcelain composition | |
JPH1029859A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029855A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029860A (en) | High dielectric constant dielectric porcelain composition | |
JP3321826B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3289387B2 (en) | High dielectric constant dielectric porcelain composition | |
JP2958826B2 (en) | Dielectric porcelain composition | |
JPH0817057B2 (en) | Dielectric porcelain composition | |
JPH09157013A (en) | High dielectric constant dielectric porcelain composition | |
JPH09157012A (en) | High dielectric constant dielectric porcelain composition |