JPH10298393A - Additive for stable liquid engineering method excellent in resistance to cement - Google Patents
Additive for stable liquid engineering method excellent in resistance to cementInfo
- Publication number
- JPH10298393A JPH10298393A JP10923397A JP10923397A JPH10298393A JP H10298393 A JPH10298393 A JP H10298393A JP 10923397 A JP10923397 A JP 10923397A JP 10923397 A JP10923397 A JP 10923397A JP H10298393 A JPH10298393 A JP H10298393A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- polymer
- molecular weight
- cement
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Bulkheads Adapted To Foundation Construction (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、地下連続壁、地下
杭等の土木掘削工法(以下、掘削という)に使用される
掘削安定液(以下、安定液という)として両性イオンポ
リマーを含有する安定液工法用添加剤の改良に係わる。
更に詳しくは、従来から安定液の重要な必須成分として
使用されているNa−カルボキシメチルセルロースより
も、著しく耐セメント性に優れた安定液工法用添加剤に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stable solution containing an amphoteric ionic polymer as a stable liquid for excavation (hereinafter, referred to as a stable liquid) used for a method of excavating civil works (hereinafter, referred to as excavation) for underground continuous walls, underground piles, and the like. It is concerned with the improvement of additives for liquid method.
More specifically, the present invention relates to an additive for a stabilizing solution method which is remarkably superior in cement resistance to Na-carboxymethylcellulose which has been conventionally used as an important essential component of the stabilizing solution.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】現在地
下連続壁、地下杭等の掘削に於いては、安定液として泥
水(土木方面では一般に安定液と呼ばれている。以下、
安定液という)が使用されるが、適正な比重(一般的に
は1.10以下)及び造壁形成性を有する安定液を使用する
ことによって、掘削裸坑内を安定に維持できると共に、
鉄筋コンクリートとの置換が容易にできるので、良好な
連続壁や杭が形成されている。2. Description of the Related Art At present, in excavation of underground continuous walls, underground piles, etc., muddy water is generally used as a stabilizing liquid (generally referred to as a stabilizing liquid in civil engineering.
Stabilizing solution) is used, but by using a stabilizing solution having an appropriate specific gravity (generally 1.10 or less) and wall-forming ability, it is possible to stably maintain the inside of the excavated bare pit,
Since it can be easily replaced with reinforced concrete, good continuous walls and piles are formed.
【0003】一般的に使用されている安定液の組成は清
水100mlに対してベントナイト2〜8g、Na−カルボキシ
メチルセルロース(一般的には、CMCと略記される。
以下、CMCという)0.05〜0.5gであり、CMCは安定
液に対して粘性や造壁形成性を与えるために使用される
非常に重要な安定液組成物の成分である。ここで、造壁
形成機能は一般的にはAPI規格(アメリカ石油協会規
格)による脱水試験によって加圧3kg/cm2、30分間にお
ける脱水量(単位ml)と造壁の厚さ(単位mm)によって
評価されている。尚、脱水量が少なく造壁が薄くて丈夫
なほど造壁形成機能が良好な安定液とされているが、土
木方面では、脱水量20ml以下又は泥壁の厚さが1mm以下
であれば造壁形成性が良好な安定液とされている。[0003] The composition of a commonly used stabilizing solution is 2 to 8 g of bentonite per 100 ml of fresh water and Na-carboxymethylcellulose (generally abbreviated as CMC).
(Hereinafter referred to as CMC) 0.05 to 0.5 g, and CMC is a very important component of the stabilizer composition used for imparting viscosity and wall forming property to the stabilizer. Here, the wall forming function generally has a dewatering amount (unit: ml) and a wall thickness (unit: mm) for 30 minutes under a pressure of 3 kg / cm 2 by a dehydration test according to API standards (American Petroleum Institute standards). Has been evaluated by. In addition, it is considered that a stable liquid with less dewatering amount and a thinner and more durable wall has a better wall forming function, but in the civil engineering area, if the dewatering amount is 20 ml or less or the thickness of the mud wall is 1 mm or less, it will It is a stable liquid having good wall-forming properties.
【0004】安定液組成物の成分としてCMCを使用す
る主目的は、脱水量を少なく、また泥壁を薄くするため
である。この目的を達成するために、種々のCMCが使
用されている。置換度0.6〜0.8のCMCは価格は安い
が、耐塩、耐セメント及び安定性に劣っている。これに
比べると、置換度を1.2〜1.5に上げたCMCは、置換度
の低いCMCに比べるとはるかに耐塩、耐セメント性に
優れている。最近の地中連続壁、地中杭の掘削工事に於
いては、セメントや石灰等で改良した地盤やコンクリー
ト部分を掘削する工事が多くなっている。そのために耐
セメント性の大きなCMCとして置換度を1.2〜1.5に上
げたCMC、例えばダイセル化学工業(株)製品RB-35
が主として使用され、現在は水100mlに対してベントナ
イトの添加量を2〜3gと少なくし、RB-35のような良質
CMCを0.2〜0.3g添加したいわゆるポリマー安定液が
一般的に使用されている。[0004] The main purpose of using CMC as a component of the stabilizing solution composition is to reduce the amount of dehydration and to make the mud wall thin. Various CMCs have been used to achieve this goal. CMC with a substitution degree of 0.6 to 0.8 is inexpensive but inferior in salt resistance, cement resistance and stability. In comparison, the CMC with the degree of substitution increased to 1.2 to 1.5 has much better salt resistance and cement resistance than the CMC with a lower degree of substitution. In recent excavation works of underground diaphragm walls and underground piles, there are many works of excavating ground and concrete parts improved with cement, lime and the like. Therefore, CMC having a high degree of substitution of 1.2 to 1.5 as a CMC having high cement resistance, for example, RB-35 manufactured by Daicel Chemical Industries, Ltd.
Currently, a so-called polymer stabilizer in which the amount of bentonite added to 100 ml of water is reduced to 2 to 3 g and 0.2 to 0.3 g of high quality CMC such as RB-35 is added is generally used. I have.
【0005】このような置換度の大きい良質CMCを使
用した安定液は、従来使用されていた置換度0.6〜0.8の
一般CMCを使用した安定液に比べると耐塩、耐セメン
ト性が大きく、安定性にも優れている。しかしながら、
セメント混入量が多くなり、例えばセメント固形分とし
て1.0%(重量/容量)以上混入すると、安定液自体が
ゲル化を起こして流動性を失うと共に脱水量が著しく多
く、泥壁も厚くなって使用不可能となる。この傾向は、
掘削土が混入して、安定液中の含有固形分量が多くなれ
ばなるほど著しくなる。A stabilizer using such a high-quality CMC having a high degree of substitution has higher salt resistance and cement resistance than a conventionally used stabilizer using a general CMC having a degree of substitution of 0.6 to 0.8. Is also excellent. However,
If the cement content increases, for example, if the cement solid content is 1.0% (weight / volume) or more, the stable liquid itself gels and loses fluidity, and the amount of dehydration is remarkably large. Impossible. This trend is
It becomes more remarkable as the amount of solid content in the stabilizing liquid increases due to mixing of excavated soil.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記問題を
解決すべく、鋭意研究の結果、Na−カルボキシメチルセ
ルロース又は/及び下記に示すポリマー(A)と、下記
に示す両性イオンポリマー(B)とを含有する安定液工
法用添加剤が、セメント固形分を1.0%(重量/容量)
以上混入しても、ゲル化を起こさず、脱水量が少なく、
泥壁も薄くて、良好な機能を示すことを見出した。Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies and found that Na-carboxymethylcellulose and / or the following polymer (A) and the following zwitterionic polymer (B ) And the additive for stabilizing liquid method reduces cement solid content by 1.0% (weight / volume)
Even if mixed above, it does not cause gelation, the amount of dehydration is small,
It was found that the mud wall was also thin and showed good functions.
【0007】アニオン性ポリマー(A):下記の式
X1、X2、X3で表わされる3種の繰り返し構造単位を
全構造単位中X1が0.5〜15重量%、X2が13〜50重量
%、X3が40〜85重量%の割合で含有するポリマー。Anionic polymer (A): Three types of repeating structural units represented by the following formulas X 1 , X 2 , and X 3 , wherein X 1 is 0.5 to 15% by weight and X 2 is 13 to 50 in all structural units. wt%, the polymer X 3 is contained in an amount of 40 to 85 wt%.
【0008】[0008]
【化3】 Embedded image
【0009】(式中、R1は−C(CH3)2CH2−又は任意の
有機官能基を表わす。(Wherein R 1 represents —C (CH 3 ) 2 CH 2 — or any organic functional group.
【0010】R2、R3は水素原子もしくは−CH2CH2−OH
を表わすか、又は両者共任意の有機官能基を表わす。R 2 and R 3 are a hydrogen atom or —CH 2 CH 2 —OH
Or both represent any organic functional group.
【0011】M1、M2は水素原子、ナトリウム又はカリ
ウムを表わす。) 両性イオンポリマー(B):下記の式Y1、Y2、Y3で
表わされる3種の繰り返し構造単位を全構造単位中Y1
が5〜40重量%、Y2が20〜65重量%、Y3が10〜50重量
%の割合で含有するポリマー。M 1 and M 2 represent a hydrogen atom, sodium or potassium. ) Zwitterionic polymer (B): Three kinds of repeating structural units represented by the following formulas Y 1 , Y 2 and Y 3 are represented by Y 1 in all structural units.
There 5 to 40 wt%, Y 2 is 20 to 65 wt%, the polymer Y 3 is contained in an amount of 10 to 50 wt%.
【0012】[0012]
【化4】 Embedded image
【0013】(式中、R4〜R6は水素原子、アルキル基
又はアルケニル基、A-はCl-又はBr- を表わす。(Wherein RFour~ R6Is a hydrogen atom, an alkyl group
Or an alkenyl group, A-Is Cl-Or Br- Represents
【0014】M3はナトリウム、カリウム、カルシウム
又はマグネシウムを表わす。)即ち、本発明は、Na−カ
ルボキシメチルセルロース又は/及び上記に示すアニオ
ン性ポリマー(A)と、上記に示す両性イオンポリマー
(B)とを必須成分として含有することを特徴とする安
定液工法用添加剤、該添加剤を使用してなる掘削安定液
及び該掘削安定液を使用する土木掘削工法に関する。M 3 represents sodium, potassium, calcium or magnesium. That is, the present invention is directed to a stable liquid construction method comprising, as essential components, Na-carboxymethylcellulose or / and the anionic polymer (A) shown above and the zwitterionic polymer (B) shown above as essential components. The present invention relates to an additive, a drilling stabilizer using the additive, and a civil engineering drilling method using the drilling stabilizer.
【0015】前にも述べたように、CMCのみを使用し
た場合には、セメントが固形分として1.0%(重量/容
量)以上混入すると、完全にゲル化を起こし、脱水量も
著しく多くなり、また泥壁も厚くなる。前記アニオン性
ポリマー(A)のみを使用した場合には、セメント混入
量が少ない場合は造壁形成性に優れ、脱水量も少なく、
泥壁も薄くて丈夫である。しかしセメント固形分として
1.5%混入すると、柔らかいゲルとなり、CMCよりは
ゲル化程度は小さい。また脱水量は多くなり造壁形成性
も失われる。また、前記両性イオンポリマー(B)のみ
を使用した場合には、ゲル化は起こさないが、脱水量が
多く泥壁も厚く、良好な造壁形成機能を示さない。しか
しながら、Na−カルボキシメチルセルロース又は/及び
上記のアニオン性ポリマー(A)と、上記の両性イオン
ポリマー(B)とを併用すると、著しく良好な特性が得
られることが判明した。As described above, when only CMC is used, if the cement is mixed in a solid content of 1.0% (weight / volume) or more, gelation occurs completely, and the amount of dehydration increases remarkably. Also, the mud wall becomes thicker. When only the anionic polymer (A) is used, when the cement mixing amount is small, the wall forming property is excellent and the dewatering amount is small,
Mud walls are thin and durable. But as cement solids
When 1.5% is mixed, a soft gel is formed, and the degree of gelation is smaller than that of CMC. In addition, the amount of dehydration increases, and the wall forming property is lost. When only the amphoteric ionic polymer (B) is used, gelation does not occur, but the amount of dehydration is large, the mud wall is thick, and no good wall forming function is exhibited. However, it has been found that when Na-carboxymethylcellulose or / and the above-mentioned anionic polymer (A) and the above-mentioned zwitterionic polymer (B) are used in combination, remarkably good properties can be obtained.
【0016】[0016]
【発明の実施の形態】本発明の安定液工法用添加剤に
は、Na−カルボキシメチルセルロース又は/及び上記の
アニオン性ポリマー(A)と、上記の両性イオンポリマ
ー(B)とが必須成分として含有される。BEST MODE FOR CARRYING OUT THE INVENTION The additive for a stable liquid method of the present invention contains Na-carboxymethylcellulose or / and the above anionic polymer (A) and the above zwitterionic polymer (B) as essential components. Is done.
【0017】本発明のアニオン性ポリマー(A)は、次
に示す範囲の特性値を満たすものを好ましいポリマーと
して使用することができる。 1重量%水溶液粘度:50〜550cps(B型粘度計、25℃) 重量平均分子量:1×106〜3×106(ポリエチレンオキ
シド換算分子量) 数平均分子量:2×105〜6×105(ポリエチレンオキシ
ド換算分子量) また本発明の両性イオンポリマー(B)は、次に示す範
囲の特性値を満たすものを好ましいポリマーとして使用
することができる。 1重量%水溶液粘度:2〜20cps(B型粘度計、25℃) 重量平均分子量:1×104〜5×104(ポリエチレンオキ
シド換算分子量) 数平均分子量:0.5×104〜3×104(ポリエチレンオキ
シド換算分子量) 本発明に於いて、使用するCMCの置換度は0.6以上あ
ればいずれの場合も耐セメント性は改善されるが、置換
度1.0以上のCMCはより耐セメント性が改善されるた
めに好ましい。置換度が1.5 以上のCMCは泥壁が丈夫
で良好であり、更に好ましい。また使用するCMCの粘
度は希望する安定液の粘度にもよるが、一般的には1%
水溶液粘度が10〜1000cps(B型粘度、60rpm、25℃)で
あることが好ましい。As the anionic polymer (A) of the present invention, those satisfying the following characteristic values can be used as preferred polymers. 1% by weight aqueous solution viscosity: 50 to 550 cps (B-type viscometer, 25 ° C.) Weight average molecular weight: 1 × 10 6 to 3 × 10 6 (polyethylene oxide equivalent molecular weight) Number average molecular weight: 2 × 10 5 to 6 × 10 5 (Molecular weight in terms of polyethylene oxide) As the zwitterionic polymer (B) of the present invention, those satisfying the following characteristic values can be used as preferable polymers. 1% by weight aqueous solution viscosity: 2 to 20 cps (B-type viscometer, 25 ° C.) Weight average molecular weight: 1 × 10 4 to 5 × 10 4 (polyethylene oxide reduced molecular weight) Number average molecular weight: 0.5 × 10 4 to 3 × 10 4 (Molecular weight in terms of polyethylene oxide) In the present invention, the cement resistance is improved in any case if the degree of substitution of the CMC used is 0.6 or more, but the CMC with the degree of substitution of 1.0 or more has improved cement resistance. Preferred for CMC having a degree of substitution of 1.5 or more is preferable because the mud wall is strong and good. The viscosity of the CMC used depends on the desired viscosity of the stabilizer, but is generally 1%.
The aqueous solution viscosity is preferably 10 to 1000 cps (B-type viscosity, 60 rpm, 25 ° C.).
【0018】本発明に於いては、CMC又は/及びアニ
オン性ポリマー(A)と両性イオンポリマー(B)との
併用割合は、30/70〜70/30の割合(重量基準)がゲル
化を起こさず、耐セメント性に優れた機能を示すので好
ましい。更に好ましくは40/60〜60/40である。In the present invention, the combination ratio of CMC and / or anionic polymer (A) and amphoteric ionic polymer (B) is 30/70 to 70/30 (weight basis) for gelling. It is preferable because it does not occur and shows a function excellent in cement resistance. More preferably, it is 40/60 to 60/40.
【0019】本発明の安定液工法用添加剤は、土木方面
のみならず、温泉井戸、水井戸、地熱坑井、石油天然ガ
ス坑井等の掘削にも使用することができる。The additive for a stable liquid method according to the present invention can be used not only for civil engineering but also for excavating hot spring wells, water wells, geothermal wells, oil and natural gas wells, and the like.
【0020】[0020]
【実施例】次に本発明を以下の実施例によって詳しく説
明するが、本発明はこれらの実施例に限定されるもので
はない。Next, the present invention will be described in detail with reference to the following examples, but the present invention is not limited to these examples.
【0021】例1 清水3000mlに対して(株)立花マテリアルのベントナイ
トTB300を90g(3%(重量/容量))添加して5000rpm
で20分間撹拌後、24時間静置して充分に水和したベント
ナイト懸濁液を作液した。このベントナイト懸濁液3000
mlに対してダイセル化学工業(株)製セルベースマッド
RB-35(Na−CMCの商品名、置換度;1.52、粘度;249
cps(1重量%水溶液、B型粘度計、60rpm、25℃)、水
分;4.8%)を9g(0.3%(重量/容量))添加して500
0rpmで20分間撹拌してポリマー安定液600mlずつ5個の
容器に採取した。また、清水100mlに対してポルトラン
ドセメント50gを加えてマグネチックスターラーで4〜
5時間撹拌してセメントスラリーを作成した。このセメ
ントスラリー1gには約0.333gのセメント固形分が含ま
れている。次に4個のポリマー安定液600mlに対して上
記セメントスラリーをそれぞれ9g、14.4g、18g、27.3g
添加して、10分間5000rpmで撹拌後、24時間静置した。2
4時間静置後の安定液の状態を肉眼観察すると共に再び
5分間5000rpmで撹拌してファンネル粘度(FV,秒、5
00ml/500ml)、見かけ粘度(AV,cps)、塑性粘度
(PV,cps)、降伏値(YV,lb/100ft2)、ゲルスト
レングス(Gel,lb/100ft2)、脱水量(FL,m
l)、泥壁(MC,mm)をそれぞれ測定した。同時にセ
メントスラリーを添加しないベースのポリマー安定液の
諸性質も測定した。その結果を表1に示す。Example 1 To 3000 ml of fresh water, 90 g (3% (weight / volume)) of bentonite TB300 of Tachibana Material Co., Ltd. was added and 5000 rpm.
After stirring for 20 minutes at room temperature, the mixture was allowed to stand for 24 hours to prepare a fully hydrated bentonite suspension. This bentonite suspension 3000
Cell base mud manufactured by Daicel Chemical Industries, Ltd. for ml
RB-35 (trade name of Na-CMC, degree of substitution: 1.52, viscosity: 249
Add 9 g (0.3% (weight / volume)) of cps (1% by weight aqueous solution, B-type viscometer, 60 rpm, 25 ° C.), water: 4.8%) and add 500 g
The mixture was stirred at 0 rpm for 20 minutes, and 600 ml of the polymer stable liquid was collected in five containers. Add 50g of Portland cement to 100ml of Shimizu and use a magnetic stirrer to
The mixture was stirred for 5 hours to prepare a cement slurry. 1 g of this cement slurry contains about 0.333 g of cement solids. Next, 9 g, 14.4 g, 18 g, and 27.3 g of the cement slurry were added to 600 ml of the four polymer stabilizing solutions, respectively.
The mixture was added, stirred at 5,000 rpm for 10 minutes, and allowed to stand for 24 hours. Two
After standing for 4 hours, the state of the stable solution was visually observed and again stirred for 5 minutes at 5000 rpm to obtain a funnel viscosity (FV, sec.
00 ml / 500 ml), apparent viscosity (AV, cps), plastic viscosity (PV, cps), yield value (YV, lb / 100 ft 2 ), gel strength (Gel, lb / 100 ft 2 ), dehydration amount (FL, m
l) and mud wall (MC, mm) were measured respectively. At the same time, the properties of the base polymer stabilizer without added cement slurry were also measured. Table 1 shows the results.
【0022】尚、諸性質の測定方法を以下に示す。 1.ファンネル粘度(FV,秒、500ml/500ml) ファンネル粘度計に、500mlの安定液を入れて、500ml流
出する時間(秒)をファンネル粘度という。The methods for measuring various properties are described below. 1. Funnel Viscosity (FV, sec, 500 ml / 500 ml) The time (sec) of putting 500 ml of a stabilizing solution into a funnel viscometer and flowing out 500 ml is called funnel viscosity.
【0023】2.見かけ粘度(AV,cps) 周期モーターによって回転する6段変速のファンVGメ
ーター Model 35で測定する。600rpmの読みの1/2の値に
相当する。2. Apparent viscosity (AV, cps) Measured with a 6-speed fan VG meter Model 35 rotated by a periodic motor. This corresponds to half the value of 600 rpm reading.
【0024】3.塑性粘度(PV,cps) 測定器は見かけ粘度の測定で使用したものと同じで、60
0rpmの読みから300rpmの読みを引いた値に相当する。安
定液中に含まれる固形分が機械的摩擦によって生じる流
動抵抗を示す。3. The plastic viscosity (PV, cps) measurement device is the same as the one used for the measurement of apparent viscosity.
It corresponds to the value obtained by subtracting the 300 rpm reading from the 0 rpm reading. The solids contained in the stabilizing solution exhibit flow resistance caused by mechanical friction.
【0025】4.降伏値(YV,lb/100ft2) 測定器は見かけ粘度の測定で使用したものと同じで、30
0rpmの読みから塑性粘度を引いた値に相当する。流体が
流動状態にあるとき、流動を続けるのに必要なせん断力
を意味する。4. Yield value (YV, lb / 100ft 2 ) The measuring instrument is the same as that used in the measurement of apparent viscosity, and is 30
It corresponds to the value obtained by subtracting the plastic viscosity from the reading at 0 rpm. When the fluid is in a flowing state, it means the shear force required to continue the flow.
【0026】5.ゲルストレングス(Gel,lb/100ft
2) 測定器は見かけ粘度の測定で使用したものと同じで、3
rpmの読値に相当する。流体の静止状態から流動を始め
るために必要なせん断力を意味する。[5] Gel strength (Gel, lb / 100ft)
2 ) The measuring device is the same as that used for the measurement of apparent viscosity.
Equivalent to rpm reading. It means the shear force required to start the flow of the fluid from rest.
【0027】6.脱水量(FL,ml) API規格による濾過試験器を使用して、室温下30分
間、3kg/cm2G、の加圧を行ったときの濾水量をいう。
泥壁形成性の指標とされる。6. Dehydration amount (FL, ml) The amount of water drained when a pressure of 3 kg / cm 2 G is applied at room temperature for 30 minutes using a filtration tester according to API standards.
It is an indicator of mud wall formation.
【0028】7.泥壁(MC,mm) 測定器は脱水量の測定で使用したものと同じで、脱水量
測定終了後、濾紙上に付着している泥壁の厚さを測定す
る。7. Mud wall (MC, mm) The measuring device is the same as that used in the measurement of the amount of dehydration. After the measurement of the amount of dehydration, the thickness of the mud wall adhering to the filter paper is measured.
【0029】[0029]
【表1】 [Table 1]
【0030】表1はポリマー安定液に対するセメント汚
染の影響を示したものであるが、表1で明らかなよう
に、セメント固形分の混入量が0.5%の場合にはセメン
トが混入してもほとんど汚染を受けないが、セメント混
入量が0.8%になると降伏値が上昇してゲル化を起こす
と共に脱水量も3倍以上となり、泥壁も厚くなる。更に
セメント混入量が1.0%以上になるとゲル化が大きくな
ると共に脱水量が著しく増加し、使用不可能になる。Table 1 shows the effect of cement contamination on the polymer stabilizing solution. As is clear from Table 1, when the cement solid content is 0.5%, even if cement is mixed, almost no cement is mixed. Although it is not contaminated, when the cement content is 0.8%, the yield value increases, gelation occurs, the amount of dehydration becomes three times or more, and the mud wall becomes thick. Further, when the cement content is 1.0% or more, gelation increases and the amount of dehydration increases remarkably, making it unusable.
【0031】セメント固形分が1.0%以上混入するとC
MCによる保護コロイド機能が破壊されてポリマー安定
液はゲル化を起こし脱水量が著しく増加する現象は土木
方面で使用されている他のCMCでも同様である。表2
は他のCMCについてテストした結果を示す。尚、測定
条件は例1のセメントスラリー添加量が27.3g/600mlの
ものと同様である。When the cement solid content is 1.0% or more, C
The phenomenon that the protective colloid function by the MC is destroyed and the polymer stabilizer causes gelation and the amount of dehydration increases remarkably also in other CMCs used in civil engineering. Table 2
Indicates the results of testing on other CMCs. The measurement conditions were the same as those in Example 1 in which the amount of cement slurry added was 27.3 g / 600 ml.
【0032】[0032]
【表2】 [Table 2]
【0033】表2で明らかなように、現在良好なCMC
として一般的に使用されているCMCもセメント固形分
が1.5%混入するといずれも保護コロイド機能を完全に
失う。As is clear from Table 2, the current good CMC
CMC, which is generally used as the above, loses the protective colloid function completely when 1.5% of cement solids are mixed.
【0034】例2 例1と同様な方法で、ベントナイト懸濁液(3%(重量
/容量))を作液した。このベントナイト懸濁液600ml
を容器に入れ、重量平均分子量が2×106(ポリエチレ
ンオキシド換算分子量)、数平均分子量が4.1×105(ポ
リエチレンオキシド換算分子量)、pHが10.5(1重量
%水溶液)、粘度が150cps(1重量%水溶液、B型粘度
計、60rpm、25℃)であり、全構造単位中下記式で表わ
される X1が5重量%、X2が32重量%、X3が63重量%
の割合で含有するアニオン性ポリマー(A)を1.8g(0.
3%(重量/容量))添加して、5000rpmで10分間撹拌し
て、安定液を作液した。この安定液に対して、例1と同
様な方法で作成したセメントスラリー27.3g/600ml(セ
メント固形分1.5%)を添加して、10分間5000rpmで撹拌
後、24時間静置した。24時間静置後、安定液の状態を肉
眼観察後再び5分間5000rpmで撹拌し、FV、AV、P
V、YV、Gel、FL、MCを測定した。その結果は
表3に示す。Example 2 In the same manner as in Example 1, a bentonite suspension (3% (weight / volume)) was prepared. 600ml of this bentonite suspension
In a container, the weight average molecular weight is 2 × 10 6 (molecular weight in terms of polyethylene oxide), the number average molecular weight is 4.1 × 10 5 (molecular weight in terms of polyethylene oxide), the pH is 10.5 (1% by weight aqueous solution), and the viscosity is 150 cps (1 Weight% aqueous solution, B-type viscometer, 60 rpm, 25 ° C.), represented by the following formula in all structural units: X 1 is 5% by weight, X 2 is 32% by weight, X 3 is 63% by weight
1.8 g (0.
3% (weight / volume)) and stirred at 5000 rpm for 10 minutes to prepare a stable liquid. To this stable solution, 27.3 g / 600 ml of cement slurry (1.5% cement solid content) prepared in the same manner as in Example 1 was added, stirred at 5,000 rpm for 10 minutes, and allowed to stand for 24 hours. After standing for 24 hours, the state of the stable solution was visually observed, and the mixture was again stirred at 5,000 rpm for 5 minutes, and FV, AV, P
V, YV, Gel, FL, and MC were measured. Table 3 shows the results.
【0035】[0035]
【化5】 Embedded image
【0036】(式中、R1は-C(CH3)2-CH2- R2、R3はH M1、M2はNaをそれぞれ表わす。)(Wherein, R 1 represents —C (CH 3 ) 2 —CH 2 —R 2 , R 3 represents HM 1 , and M 2 represents Na).
【0037】[0037]
【表3】 [Table 3]
【0038】表3で明らかなように、アニオン性ポリマ
ーのみを添加した安定液は、セメント固形分が1.5%混
入すると、著しい汚染を受けて、豆腐状のゲルとなると
ともに造壁形成性は失われ、脱水量は著しく多くなる。
ゲル化の程度はCMCよりもかなり小さい。As is clear from Table 3, when 1.5% of the cement solid content is added, the stabilizer to which only the anionic polymer is added is significantly contaminated, becoming a tofu-like gel and losing wall forming ability. The amount of dehydration is significantly increased.
The extent of gelation is much smaller than CMC.
【0039】例3 例1と同様な方法で、ベントナイト懸濁液(3%(重量
/容量))を作液した。このベントナイト懸濁液600ml
を容器に入れ、重量平均分子量が1.7×104(ポリエチレ
ンオキシド換算分子量)、数平均分子量が1.2×104(ポ
リエチレンオキシド換算分子量)、pHが4.9(1重量
%水溶液)、粘度が3.4cps(1重量%水溶液、B型粘度
計、60rpm、25℃)であり、全構造単位中下記式で表わ
されるY1が21重量%、Y2が46重量%、Y3が33重量%
の割合で含有する両性イオンポリマー(B)を1.8g(0.
3%(重量/容量))添加して、5000rpmで10分間撹拌し
て、安定液を作液した。この安定液に対して、例1と同
様な方法で作成したセメントスラリー27.3g/600ml(セ
メント固形分1.5%)を添加して、10分間5000rpmで撹拌
後、24時間静置した。24時間静置後、安定液の状態を肉
眼観察後再び5分間5000rpmで撹拌し、FV、AV、P
V、YV、Gel、FL、MCを測定した。その結果は
表4に示す。Example 3 In the same manner as in Example 1, a bentonite suspension (3% (weight / volume)) was prepared. 600ml of this bentonite suspension
Into a container, the weight average molecular weight is 1.7 × 10 4 (molecular weight in terms of polyethylene oxide), the number average molecular weight is 1.2 × 10 4 (molecular weight in terms of polyethylene oxide), the pH is 4.9 (1% by weight aqueous solution), and the viscosity is 3.4 cps ( 1% by weight aqueous solution, B-type viscometer, 60 rpm, 25 ° C.). In all structural units, Y 1 represented by the following formula is 21% by weight, Y 2 is 46% by weight, and Y 3 is 33% by weight.
1.8 g of zwitterionic polymer (B) contained in
3% (weight / volume)) and stirred at 5000 rpm for 10 minutes to prepare a stable liquid. To this stable solution, 27.3 g / 600 ml of cement slurry (1.5% cement solid content) prepared in the same manner as in Example 1 was added, stirred at 5,000 rpm for 10 minutes, and allowed to stand for 24 hours. After standing for 24 hours, the state of the stable solution was visually observed, and the mixture was again stirred at 5,000 rpm for 5 minutes, and FV, AV, P
V, YV, Gel, FL, and MC were measured. Table 4 shows the results.
【0040】[0040]
【化6】 Embedded image
【0041】(式中、R4、R5はCH3 R6は−CH2CH=CH2 A-はCl- M3はNaをそれぞれ表わす。)[0041] (wherein, R 4, R 5 is CH 3 R 6 is -CH 2 CH = CH 2 A - is Cl - M 3 represents respectively Na.)
【0042】[0042]
【表4】 [Table 4]
【0043】表4で明らかなように、両性イオンポリマ
ーのみを添加した安定液は、セメトト固形分が1.5%混
入してもゲル化は起こさない。しかし造壁形成性はかな
り小さいので実用には適さない。As is evident from Table 4, the stable solution to which only the zwitterionic polymer was added did not gel even if the cemet solid content was 1.5%. However, the wall-forming properties are rather small, and are not suitable for practical use.
【0044】例4 ダイセル化学工業(株)製セルベースマッドRB-35、RB-
35と同程度の置換度を有する前述のCMC(記号A)及
び置換度2.02の前述のCMC(記号D)、更に置換度0.
99のCMC(記号E)の4種類のCMCそれぞれと、例
3で使用したものと同じ両性イオンポリマーとを重量比
60/40であらかじめ混合したものを例1と同様な方法で
作液したベントナイト3%懸濁液600mlに対してそれぞ
れ1.8g(0.3%(重量/容量))添加して、10分間5000r
pmで撹拌してポリマー安定液を作液した。このポリマー
安定液600mlそれぞれに対して例1と同様な方法で作成
したセメントスラリーを27.3g/600ml(セメント固形分
1.5%)添加し、5分間5000rpmで撹拌後、24時間静置し
た。24時間静置後、例1と同様な方法で状態を肉眼観察
後撹拌して、FV、AV、PV、YV、Gel、FL、
MCを測定した。その結果を表5に示す。Example 4 Cell Base Mud RB-35, RB- manufactured by Daicel Chemical Industries, Ltd.
The above-mentioned CMC (symbol A) having the same degree of substitution as 35 and the above-mentioned CMC (symbol D) with a degree of substitution of 2.02, and a degree of substitution of 0.
The weight ratio of each of the four CMCs of 99 CMCs (symbol E) and the same zwitterionic polymer used in Example 3
1.8 g (0.3% (weight / volume)) was added to 600 ml of a 3% suspension of bentonite prepared in the same manner as in Example 1 and mixed at 60/40 in advance.
By stirring at pm, a polymer stable liquid was prepared. 27.3 g / 600 ml of cement slurry prepared in the same manner as in Example 1 for each 600 ml of the polymer stabilizing solution (cement solid content)
1.5%), stirred at 5,000 rpm for 5 minutes, and allowed to stand for 24 hours. After standing for 24 hours, the state was visually observed and stirred in the same manner as in Example 1 to obtain FV, AV, PV, YV, Gel, FL,
The MC was measured. Table 5 shows the results.
【0045】[0045]
【表5】 [Table 5]
【0046】表5で明らかなように、両性イオンポリマ
ーとCMCを併用することによって、いずれのCMCを
使用したポリマー安定液もセメント固形分が1.5%混入
してもゲル化を起こすことなく、脱水量は少なく泥壁も
薄くなる。この中で置換度0.99のCMC(記号E)を使
用した安定液は、他の置換度1.2〜1.5のCMCを使用し
た安定液に比べると24時間静置後の状態、脱水量、泥壁
とも劣るが、ゲル化を起こすこともなく耐セメント性は
著しく改善されている。また置換度2.02のCMC(記号
D)は両性イオンポリマーと併用することによって特に
薄くて丈夫な泥壁を与える特長がある。As is clear from Table 5, by using the zwitterionic polymer and CMC together, the polymer stabilizing solution using any of the CMCs did not gelate even if the cement solid content was 1.5%, and did not cause dehydration. The amount is small and the mud wall becomes thin. Among them, the stabilizer using the CMC having a substitution degree of 0.99 (symbol E) has a lower state after 24 hours of standing, the amount of dehydration, and the mud wall compared to the stabilizer using the CMC having a substitution degree of 1.2 to 1.5. Although inferior, cement resistance is remarkably improved without causing gelation. CMC having a degree of substitution of 2.02 (symbol D) has a feature of providing a particularly thin and strong mud wall when used in combination with a zwitterionic polymer.
【0047】例5 例2で使用したものと同じアニオン性ポリマーと例3で
使用したのと同じ両性イオンポリマーとを重量比50/50
であらかじめ混合したものを例1と同様な方法で作液し
たベントナイト3%懸濁液600mlに対して1.8g(0.3%
(重量/容量))添加して、10分間5000rpmで撹拌して
ポリマー安定液を作液した。このポリマー安定液600ml
に対して例1と同様な方法で作成したセメントスラリー
を27.3g/600ml(セメント固形分1.5%)添加し、5分
間5000rpmで撹拌後、24時間静置した。24時間静置後、
例1と同様な方法で状態を肉眼観察後撹拌して、FV、
AV、PV、YV、Gel、FL、MCを測定した。そ
の結果を表6に示す。Example 5 The same anionic polymer used in Example 2 and the same zwitterionic polymer used in Example 3 were mixed at a weight ratio of 50/50.
1.8 g (0.3%) per 600 ml of 3% bentonite suspension prepared in the same manner as in Example 1
(Weight / volume)), and stirred at 5000 rpm for 10 minutes to prepare a polymer stable liquid. 600 ml of this polymer stabilizer
Then, 27.3 g / 600 ml (cement solid content: 1.5%) of a cement slurry prepared in the same manner as in Example 1 was added, and the mixture was stirred at 5,000 rpm for 5 minutes, and then allowed to stand for 24 hours. After standing for 24 hours,
The state was visually observed and stirred in the same manner as in Example 1 to obtain FV,
AV, PV, YV, Gel, FL, and MC were measured. Table 6 shows the results.
【0048】[0048]
【表6】 [Table 6]
【0049】表6で明らかなように、両性イオンポリマ
ー(B)とアニオン性ポリマー(A)を併用すると、セ
メント固形分が1.5%混入してもゲル化を起こすことな
く、造壁形成性も良好となり、脱水量は少なくなり、泥
壁も薄くなる。As is apparent from Table 6, when the amphoteric ionic polymer (B) and the anionic polymer (A) were used in combination, even if the cement solid content was 1.5%, gelling did not occur and the wall-forming property was also improved. It becomes better, the amount of dewatering becomes smaller, and the mud wall becomes thinner.
【0050】例6 次にダイセル化学工業(株)製セルベースマッドRB-35
と重量平均分子量が3.9×104(ポリエチレンオキシド換
算分子量)、数平均分子量が1.9×104(ポリエチレンオ
キシド換算分子量)、pHが7.0(1重量%水溶液)、
粘度が5.3cps(1重量%水溶液、B型粘度計、60rpm、2
5℃)である以外は例3で使用したものと同じ両性イオ
ンポリマーとの併用割合の差異による耐セメント性の相
違を示す。すなわち、例1と同様な方法で作液したベン
トナイト懸濁液(3%(重量/容量))に対しRB-35と
両性イオンポリマーをそれぞれ重量比で70/30、60/4
0、50/50、40/60、30/70の割合で混合した併用物を
それぞれ0.3%及び0.2%添加してポリマー安定液を作液
した。このポリマー安定液に対して例1と同様な方法で
作成したセメントスラリーをそれぞれ27.3g/600ml(セ
メント固形分 1.5%)添加して、例1と同様な方法で耐
セメント性を評価した。その結果を表7に示す。Example 6 Next, Cell Base Mud RB-35 manufactured by Daicel Chemical Industries, Ltd.
And a weight average molecular weight of 3.9 × 10 4 (molecular weight in terms of polyethylene oxide), a number average molecular weight of 1.9 × 10 4 (molecular weight in terms of polyethylene oxide), a pH of 7.0 (1% by weight aqueous solution),
Viscosity of 5.3 cps (1% by weight aqueous solution, B-type viscometer, 60 rpm, 2
The difference in cement resistance due to the difference in the proportion of the zwitterionic polymer used in Example 3 except that the temperature was 5 ° C is shown. That is, RB-35 and a zwitterionic polymer were used in a weight ratio of 70/30 and 60/4, respectively, to a bentonite suspension (3% (weight / volume)) prepared in the same manner as in Example 1.
0.3% and 0.2% of the concomitant materials mixed at the ratios of 0, 50/50, 40/60 and 30/70 were added to prepare a polymer stabilizing solution. Cement slurries prepared in the same manner as in Example 1 were added to the polymer stabilizing solution at 27.3 g / 600 ml (solid content: 1.5%), and the cement resistance was evaluated in the same manner as in Example 1. Table 7 shows the results.
【0051】[0051]
【表7】 [Table 7]
【0052】表7で明らかなように、併用物の添加量が
0.3%のポリマー安定液は表7に示すいずれの併用割合
の場合でも造壁形成性が優れており、セメント固形分が
1.5%混入しても脱水量が少なく泥壁は薄くて丈夫であ
る。また、24時間静置後もゲル化等を起こさず非常に安
定している。また、併用割合が60/40〜40/60の併用物
は添加量が0.2%の場合でも造壁形成性が良好で脱水量
も少なく泥壁も薄くて良好であるとともに24時間静置後
も非常に安定している。しかし、これらの併用割合に比
べて併用割合が70/30及び30/70の併用物は添加量が0.
2%の場合にはセメント固形分が1.5%混入すると24時間
静置後の状態がやや不安定となり、脱水量・泥壁ともに
悪くなる。従って、CMCと両性イオンポリマーとの併
用割合は60/40〜40/60が好ましい。As is clear from Table 7, the amount of the concomitant substance was
The 0.3% polymer stabilizer has excellent wall-forming properties at any combination ratio shown in Table 7, and the cement solid content is
Even when 1.5% is mixed, the amount of dehydration is small and the mud wall is thin and durable. In addition, it is very stable without gelling even after standing for 24 hours. Further, the combined use of the combined use ratio of 60/40 to 40/60 has a good wall-forming property, a small amount of dehydration, a thin mud wall, and good even when the addition amount is 0.2%, and also after standing for 24 hours. Very stable. However, compared to these combined ratios, the combined amounts of the combined ratios of 70/30 and 30/70 have an addition amount of 0.
In the case of 2%, if the cement solid content is 1.5%, the state after standing for 24 hours becomes slightly unstable, and both the dewatering amount and the mud wall deteriorate. Therefore, the combined ratio of CMC and zwitterionic polymer is preferably 60/40 to 40/60.
【0053】例7 例2で使用したのと同じアニオン性ポリマーと重量平均
分子量が3.9×104(ポリエチレンオキシド換算分子
量)、数平均分子量が1.9×104(ポリエチレンオキシド
換算分子量)、pHが7.0(1重量%水溶液)、粘度が
5.3cps(1重量%水溶液、B型粘度計、60rpm、25℃)
である以外は例3で使用したものと同じ両性イオンポリ
マーとの併用割合の差異による耐セメント性の相違を示
す。すなわち、例1と同様な方法で作液したベントナイ
ト懸濁液(3%(重量/容量))に対しポリマーと両性
イオンポリマーをそれぞれ重量比で70/30、60/40、50
/50、40/60、30/70の割合で混合した併用物をそれぞ
れ0.3%及び0.2%添加してポリマー安定液を作液した。
このポリマー安定液に対して例1と同様な方法で作成し
たセメントスラリーをそれぞれ27.3g/600ml(セメント
固形分1.5%)添加して、例1と同様な方法で耐セメン
ト性を評価した。その結果を表8に示す。Example 7 The same anionic polymer used in Example 2, having a weight average molecular weight of 3.9 × 10 4 (molecular weight in terms of polyethylene oxide), a number average molecular weight of 1.9 × 10 4 (molecular weight in terms of polyethylene oxide) and a pH of 7.0 (1% by weight aqueous solution), viscosity
5.3 cps (1% by weight aqueous solution, B-type viscometer, 60 rpm, 25 ° C)
The difference in cement resistance due to the difference in the combination ratio with the same zwitterionic polymer used in Example 3 except that That is, a polymer and a zwitterionic polymer were added to a bentonite suspension (3% (weight / volume)) prepared in the same manner as in Example 1 by weight ratio of 70/30, 60/40, 50, respectively.
0.3% and 0.2% of the combined materials mixed at the ratios of / 50, 40/60 and 30/70, respectively, were added to prepare a polymer stabilizer.
Cement slurries prepared in the same manner as in Example 1 were added to the polymer stable solution at 27.3 g / 600 ml (cement solid content: 1.5%), respectively, and the cement resistance was evaluated in the same manner as in Example 1. Table 8 shows the results.
【0054】[0054]
【表8】 [Table 8]
【0055】表8で明らかなように、併用物の添加量が
0.3%の場合、アニオン性ポリマー(A)と両性ポリマ
ー(B)との併用割合が70/30〜30/70において、セメ
ント固形分が1.5%混入してもゲル化を起こすことなく
造壁形成性に優れ、脱水量も少なく、泥壁は薄くて丈夫
である。併用物添加量が0.2%では、併用割合60/40〜4
0/60の場合、造壁形成性が良好で、脱水量も少なく、
泥壁も薄く丈夫である。As is clear from Table 8, the amount of the concomitant substance was
In the case of 0.3%, when the combined ratio of the anionic polymer (A) and the amphoteric polymer (B) is 70/30 to 30/70, even if the cement solid content is 1.5%, the wall formation does not occur even if the cement content is 1.5%. It has excellent properties, low dewatering amount, and the mud wall is thin and durable. When the combined amount of additive is 0.2%, the combined ratio is 60/40 to 4
In the case of 0/60, the wall formation property is good, the amount of dehydration is small,
Mud walls are thin and durable.
【0056】例8 ダイセル化学工業(株)製セルベースマッドRB-35と例
2で使用したものと同じアニオン性ポリマーと例3で使
用したものと同じ両性イオンポリマーとによる耐セメン
ト性の差異を示す。すなわち、例1と同様な方法で作液
したベントナイト懸濁液(3%(重量/容量))に対し
RB-35とアニオン性ポリマーと両性イオンポリマーを重
量比で50/10/40の割合で混合した併用物を0.3%添加
してポリマー安定液を作液した。このポリマー安定液に
対して例1と同様な方法で作成したセメントスラリーを
27.3g/600ml(セメント固形分1.5%)添加して、例1
と同様な方法で耐セメント性を評価した。その結果を表
9に示す。Example 8 The difference in cement resistance between the cell base mud RB-35 manufactured by Daicel Chemical Industries, Ltd., the same anionic polymer used in Example 2 and the same zwitterionic polymer used in Example 3 was measured. Show. That is, for a bentonite suspension (3% (weight / volume)) prepared in the same manner as in Example 1,
0.3% of a combined use of RB-35, anionic polymer and amphoteric polymer mixed at a weight ratio of 50/10/40 was added to prepare a polymer stabilizer. A cement slurry prepared in the same manner as in Example 1 was used for the polymer stabilizing solution.
Example 1 with addition of 27.3g / 600ml (cement solid content 1.5%)
Cement resistance was evaluated in the same manner as described above. Table 9 shows the results.
【0057】[0057]
【表9】 [Table 9]
Claims (6)
及び下記に示すアニオン性ポリマー(A)と、下記に示
す両性イオンポリマー(B)とを必須成分として含有す
ることを特徴とする安定液工法用添加剤。 アニオン性ポリマー(A):下記の式X1、X2、X3で
表わされる3種の繰り返し構造単位を全構造単位中X1
が0.5〜15重量%、X2が13〜50重量%、X3が40〜85重
量%の割合で含有するポリマー。 【化1】 (式中、R1は−C(CH3)2CH2−又は任意の有機官能基を
表わす。R2、R3は水素原子もしくは−CH2CH2−OHを表
わすか、又は両者共任意の有機官能基を表わす。M1、
M2は水素原子、ナトリウム又はカリウムを表わす。) 両性イオンポリマー(B):下記の式Y1、Y2、Y3で
表わされる3種の繰り返し構造単位を全構造単位中Y1
が5〜40重量%、Y2が20〜65重量%、Y3が10〜50重量
%の割合で含有するポリマー。 【化2】 (式中、R4〜R6は水素原子、アルキル基又はアルケニ
ル基、A-はCl-又はBr- を表わす。M3はナトリウム、カ
リウム、カルシウム又はマグネシウムを表わす。)(1) Na-carboxymethylcellulose or /
And an anionic polymer (A) shown below, and
Contains a zwitterionic polymer (B) as an essential component
An additive for a stable liquid method. Anionic polymer (A): Formula X below1, XTwo, XThreeso
The three types of repeating structural units represented by X in all structural units1
Is 0.5 to 15% by weight, XTwoIs 13 to 50% by weight, XThreeIs 40-85
A polymer contained in the proportion of% by mass. Embedded image(Where R1Is -C (CHThree)TwoCHTwo-Or any organic functional group
Express. RTwo, RThreeIs a hydrogen atom or -CHTwoCHTwo-OH
A few, or both, represent any organic functional groups. M1,
MTwoRepresents a hydrogen atom, sodium or potassium. ) Zwitterionic polymer (B): Formula Y below1, YTwo, YThreeso
The three types of repeating structural units represented by1
Is 5 to 40% by weight, YTwoIs 20-65% by weight, YThreeBut 10-50 weight
% Polymer. Embedded image(Where RFour~ R6Is a hydrogen atom, an alkyl group or an alkenyl
Group, A-Is Cl-Or Br- Represents MThreeIs sodium, mosquito
Represents lium, calcium or magnesium. )
囲の特性値を同時に満たす物質であることを特徴とする
請求項1記載の安定液工法用添加剤。 1重量%水溶液粘度:50〜550cps(B型粘度計、25℃) 重量平均分子量:1×106〜3×106(ポリエチレンオキ
シド換算分子量) 数平均分子量:2×105〜6×105(ポリエチレンオキシ
ド換算分子量)2. The additive for a stable liquid method according to claim 1, wherein the anionic polymer (A) is a substance that simultaneously satisfies the following characteristic values. 1% by weight aqueous solution viscosity: 50 to 550 cps (B-type viscometer, 25 ° C.) Weight average molecular weight: 1 × 10 6 to 3 × 10 6 (polyethylene oxide equivalent molecular weight) Number average molecular weight: 2 × 10 5 to 6 × 10 5 (Molecular weight in terms of polyethylene oxide)
囲の特性値を同時に満たす物質であることを特徴とする
請求項1又は2記載の安定液工法用添加剤。 1重量%水溶液粘度:2〜20cps(B型粘度計、25℃) 重量平均分子量:1×104〜5×104(ポリエチレンオキ
シド換算分子量) 数平均分子量:0.5×104〜3×104(ポリエチレンオキ
シド換算分子量)3. The additive for a stable liquid method according to claim 1, wherein the zwitterionic polymer (B) is a substance that simultaneously satisfies the following characteristic values. 1% by weight aqueous solution viscosity: 2 to 20 cps (B-type viscometer, 25 ° C.) Weight average molecular weight: 1 × 10 4 to 5 × 10 4 (polyethylene oxide reduced molecular weight) Number average molecular weight: 0.5 × 10 4 to 3 × 10 4 (Molecular weight in terms of polyethylene oxide)
及びアニオン性ポリマー(A)と両性イオンポリマー
(B)との重量比率が30/70〜70/30であることを特徴
とする請求項1〜3の何れか1項に記載の安定液工法用
添加剤。4. Na-carboxymethylcellulose or /
The weight ratio between the anionic polymer (A) and the amphoteric ionic polymer (B) is 30/70 to 70/30, for the stable liquid method according to any one of claims 1 to 3. Additive.
安定液工法用添加剤を使用することを特徴とする掘削安
定液。5. An excavating stabilizing liquid, comprising using the additive for stabilizing liquid method according to claim 1. Description:
とを特徴とする土木掘削工法。6. A civil engineering excavation method using the excavation stabilizing liquid according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10923397A JPH10298393A (en) | 1997-04-25 | 1997-04-25 | Additive for stable liquid engineering method excellent in resistance to cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10923397A JPH10298393A (en) | 1997-04-25 | 1997-04-25 | Additive for stable liquid engineering method excellent in resistance to cement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10298393A true JPH10298393A (en) | 1998-11-10 |
Family
ID=14504998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10923397A Pending JPH10298393A (en) | 1997-04-25 | 1997-04-25 | Additive for stable liquid engineering method excellent in resistance to cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10298393A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018150689A (en) * | 2017-03-10 | 2018-09-27 | 株式会社大林組 | Quality control method for stabilizing liquid |
KR20180124117A (en) * | 2016-04-01 | 2018-11-20 | 사우디 아라비안 오일 컴퍼니 | Modification of bentonite properties for drilling fluids |
-
1997
- 1997-04-25 JP JP10923397A patent/JPH10298393A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180124117A (en) * | 2016-04-01 | 2018-11-20 | 사우디 아라비안 오일 컴퍼니 | Modification of bentonite properties for drilling fluids |
JP2019518152A (en) * | 2016-04-01 | 2019-06-27 | サウジ アラビアン オイル カンパニー | Modification of bentonite properties for drilling fluids |
US10793760B2 (en) | 2016-04-01 | 2020-10-06 | Saudi Arabian Oil Company | Modification of bentonite properties for drilling fluids |
JP2018150689A (en) * | 2017-03-10 | 2018-09-27 | 株式会社大林組 | Quality control method for stabilizing liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113292973B (en) | High-temperature-resistant silica-grafted tertiary amine nano plugging agent and water-based drilling fluid | |
US2961044A (en) | Cement compositions and process of cementing wells | |
US6907928B2 (en) | Storable cementitious slurries containing boric acid and method of using the same | |
CA1082438A (en) | Spacer composition and method of use | |
KR101635233B1 (en) | Lightweight wall repair compounds | |
AU2011365998B2 (en) | Oil well drilling fluids, oil well cement composition, and slurry of weighting material comprising ilmenite | |
CN104854056B (en) | Binding composition comprising non-ionic hydrophobic modified cellulose ethers and its purposes | |
SA520412240B1 (en) | Drill-in Fluid Compositions and Methods | |
EP3374326A1 (en) | Self-pressurizing soluble alkali silicate for use in sealing subterranean spaces | |
CN104610935B (en) | A kind of oil base drilling fluid is with brill sealing agent and preparation method thereof | |
CN113583650B (en) | Viscosity-reducing oil displacement agent for viscosity-reducing composite flooding of common heavy oil reservoir and preparation method and application thereof | |
JPH04505026A (en) | Water-wettable drilling slurry additive containing einterite | |
Belayneh et al. | Effect of nano-silicon dioxide (SiO2) on polymer/salt treated bentonite drilling fluid systems | |
US5975220A (en) | Mud suspension control system | |
US6180572B1 (en) | Aqueous swellable compositions of guar gum and guar gum derivatives in oleophilic liquids and their use | |
CN102190457A (en) | Rheology modifier for cement slurries | |
CN109837075A (en) | High temperature thermal response bentonite and high temperature thermal response bentonite drilling fluid | |
JPH10298393A (en) | Additive for stable liquid engineering method excellent in resistance to cement | |
JPH073254A (en) | Composition for drilling fluid | |
JP2006206711A (en) | Additive for drilling mud and drilling mud | |
CN109233765B (en) | Calcium carbonate spacer fluid for large-porosity easy-oil-leakage gas layer well cementation | |
JPH09176428A (en) | Conditioner for liquid excavation stabilizer | |
JP3706673B2 (en) | Drilling mud conditioner | |
JP2812823B2 (en) | Mud conditioner | |
AU2013280260B2 (en) | Foamed spacer fluids containing cement kiln dust and methods of use |