JPH10297919A - Production of high purity ammonia water - Google Patents

Production of high purity ammonia water

Info

Publication number
JPH10297919A
JPH10297919A JP10588297A JP10588297A JPH10297919A JP H10297919 A JPH10297919 A JP H10297919A JP 10588297 A JP10588297 A JP 10588297A JP 10588297 A JP10588297 A JP 10588297A JP H10297919 A JPH10297919 A JP H10297919A
Authority
JP
Japan
Prior art keywords
ammonia
water
liquid ammonia
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10588297A
Other languages
Japanese (ja)
Other versions
JP3887874B2 (en
Inventor
Hisato Yokoma
久人 横間
Fumihiro Morikawa
文博 森川
Makoto Tsunoda
誠 角田
Eiichi Hirai
栄一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP10588297A priority Critical patent/JP3887874B2/en
Publication of JPH10297919A publication Critical patent/JPH10297919A/en
Application granted granted Critical
Publication of JP3887874B2 publication Critical patent/JP3887874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable wet washing of semiconductor device, etc., by changing ammonia obtained by evaporating liquid ammonia or ammonia water to liquid ammonia, subjecting the liquid ammonia to absorption treatment with active carbon and purifying the ammonia by distillation under pressure and mixing water with the ammonia in a line mixer in a state of liquid ammonia. SOLUTION: Liquid ammonia obtained by evaporating industrial liquid ammonia or ammonia water and cooling the evaporated ammonia under pressure is used as ammonia of the raw material. A water having >=18 Mohm.cm specific resistance and called as ultrapure water is used as water mixed with the ammonia. The liquid ammonia 1 is previously subjected to absorptive treatment in an active carbon tower 2 under 10 kg/cm<2> to 15 kg/cm<2> pressure and purified in a distillation tower 3 in pressurized state. In the case of continuous operation, purified ammonia gas which flows out is liquefied in a condenser 4 under pressure distillation conditions comprising 35-45 deg.C bottom temperature, 35-45 deg.C top temperature, 13-15 kg/cm<2> pressure in the tower and 0.1-1 reflux ratio and stored in a receiver 5 and the resultant ultrapure water is introduced into the purified liquid ammonia 8 in a definite ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高純度アンモニア水
の製造方法に関する。更に詳しくは、該アンモニア水を
大量にしかも効率よく、コンパクトな装置を用いて製造
する方法に関するものである。
The present invention relates to a method for producing high-purity aqueous ammonia. More specifically, the present invention relates to a method for producing the ammonia water in a large amount and efficiently using a compact apparatus.

【0002】[0002]

【従来の技術】高純度アンモニア水は、半導体用のシリ
コンウエーハ及び半導体デバイスのウエット洗浄用途に
使用されている。また、使用量の増大につれ、オンサイ
ト製造なども検討され始めている。これらの用途に使用
される半導体用薬品は、近年益々高純度のものが要求さ
れる状況にある。特にメタル不純物では10ppt以下
のレベルが要求され始めている。
2. Description of the Related Art High-purity aqueous ammonia is used for wet cleaning of silicon wafers for semiconductors and semiconductor devices. Also, as the usage increases, on-site manufacturing and the like have begun to be considered. In recent years, semiconductor chemicals used in these applications have been required to have increasingly higher purity. In particular, a level of 10 ppt or less has been demanded for metal impurities.

【0003】高純度アンモニア水は、例えば活性炭吸着
や蒸留により精製したアンモニアガスを超純水に吸収さ
せる方法など種々の方法で製造されるが、何れの方法も
アンモニアガスを超純水に吸収させる方法である為、目
的とするアンモニア濃度を得るには混合(または攪拌)
操作が必要である。その場合、アンモニアガスを吸収さ
せながら目的となる濃度になるまで、ポンプ等で循環混
合する事になり時間がかかる問題がある。時間短縮を図
る為には大型の装置が必要となるため経済的ではない。
[0003] High-purity ammonia water is produced by various methods such as a method of absorbing ammonia gas purified by activated carbon adsorption or distillation into ultrapure water. In any case, the ammonia gas is absorbed by ultrapure water. Mixing (or stirring) to obtain the desired ammonia concentration
Operation is required. In this case, there is a problem that it takes time to perform circulation mixing with a pump or the like until a target concentration is obtained while absorbing the ammonia gas. In order to shorten the time, a large-sized device is required, so that it is not economical.

【0004】この吸収方式として例えば、特開平8−1
19626号公報のアンモニア水の製造装置の項に記載
されているように超純水またはアンモニア水中に、アン
モニア飽和水により洗浄されたアンモニアガスを噴出さ
せて吸収させる方法などがある。
[0004] For example, Japanese Patent Application Laid-Open No.
As described in the section of the apparatus for producing ammonia water in Japanese Patent No. 19626, there is a method of ejecting and absorbing ammonia gas washed with ammonia-saturated water into ultrapure water or aqueous ammonia.

【0005】[0005]

【発明が解決しようとする課題】半導体用高純度アンモ
ニア水の品質に関してはメタル不純物と微粒子の低減が
重要であり、最近は、特にメタルは10ppt以下が要
求され始めている。本発明の目的は、半導体用のシリコ
ンウエーハ及び半導体デバイスのウエット洗浄用に要求
される上記の条件を満足する高純度アンモニア水の効率
的な製造方法を提供する事にある。
With respect to the quality of high-purity ammonia water for semiconductors, it is important to reduce metal impurities and fine particles, and recently, in particular, a metal of 10 ppt or less has begun to be required. An object of the present invention is to provide an efficient method for producing high-purity ammonia water that satisfies the above-mentioned conditions required for wet cleaning of semiconductor silicon wafers and semiconductor devices.

【0006】[0006]

【課題を解決する為の手段】即ち、本発明は液体アンモ
ニアまたはアンモニア水を蒸発させて得られるアンモニ
アを液体アンモニアとし、該液体アンモニアを活性炭で
吸着処理した後、加圧蒸留精製して得た液体アンモニア
を液体の状態で水とラインミキサーで、混合して、高純
度なアンモニア水を得る事を特徴とする高純度アンモニ
ア水の製造方法に関する。
That is, according to the present invention, liquid ammonia or ammonia obtained by evaporating aqueous ammonia is used as liquid ammonia, the liquid ammonia is subjected to adsorption treatment with activated carbon, and then purified by pressure distillation and purification. The present invention relates to a method for producing high-purity ammonia water, wherein liquid ammonia is mixed with water in a liquid state by a line mixer to obtain high-purity ammonia water.

【0007】[0007]

【発明の実施形態】以下本発明を詳細に説明する。本発
明で用いる原料のアンモニアは、工業用の液体アンモニ
ア或いはアンモニア水を蒸発させ、冷却、加圧下で得た
液体アンモニアが用いられる。また、精製した液体アン
モニアと混合する水は、超純水と呼ばれる比抵抗値18
Mohm・cm以上の水を使用することが好ましい。こ
の超純水は、市販されている超純水製造装置で容易に製
造が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. As the raw material ammonia used in the present invention, industrial liquid ammonia or liquid ammonia obtained by evaporating aqueous ammonia and cooling and applying pressure is used. Water mixed with the purified liquid ammonia has a specific resistance value of 18 which is called ultrapure water.
It is preferable to use water of Mohm · cm or more. This ultrapure water can be easily produced by a commercially available ultrapure water production apparatus.

【0008】本発明方法の好ましい方法を図1及び図2
記載の製造フロー図に基づいて説明する。工業用などの
アンモニアを蒸発させて得た液体アンモニア(1)を1
0kg/cm2 〜15kg/cm2 の範囲の圧力下で、
予め活性炭の吸着塔(2)で吸着処理した後、加圧状態
で蒸留精製(3)する。加圧蒸留は連続操作でも回分操
作でもよい。
The preferred method of the present invention is shown in FIGS.
A description will be given based on the described manufacturing flowchart. Liquid ammonia (1) obtained by evaporating ammonia for industrial use
Under a pressure in the range of 0kg / cm 2 ~15kg / cm 2 ,
After previously performing an adsorption treatment in an activated carbon adsorption tower (2), distillation and purification (3) are performed under pressure. Pressure distillation may be a continuous operation or a batch operation.

【0009】連続操作の場合、加圧蒸留の条件は、液体
アンモニアを連続的に仕込みながら、ボトム温度35〜
45℃、トップ温度35〜45℃、塔内圧力を13〜1
5kg/cm2、還流比 0.1〜1で行うことが好ま
しい。トップより流出する精製されたアンモニアガスを
コンデンサー(4)により冷却液化した後、液体状態で
受け器(5)に貯める。
In the case of continuous operation, the conditions of the pressure distillation are as follows: while continuously charging liquid ammonia, a bottom temperature of 35-35.
45 ° C, top temperature 35-45 ° C, pressure in the tower 13-1
It is preferable to carry out the reaction at 5 kg / cm 2 and a reflux ratio of 0.1 to 1. After the purified ammonia gas flowing out from the top is cooled and liquefied by the condenser (4), it is stored in a liquid state in the receiver (5).

【0010】このようにして得られた加圧蒸留で得られ
た精製された液体アンモニア(8)に、超純水(9)を
一定の混合比率(例えばアンモニア濃度28.5%にな
るように制御される。)になる様に、比例制御されたそ
れぞれの流量調節弁(10、11)よりラインミキサー
(ディスパージョンミキサー)(12)に導入し、次い
でプレート式熱交換器(13)により混合の際に発生す
る熱量を除去する。
[0010] Ultrapure water (9) is mixed with the purified liquid ammonia (8) obtained by the pressure distillation obtained in this manner at a constant mixing ratio (for example, so that the ammonia concentration becomes 28.5%). So that they are controlled by the flow control valves (10, 11), which are proportionally controlled, and introduced into a line mixer (dispersion mixer) (12), and then mixed by a plate heat exchanger (13). The amount of heat generated at the time of is removed.

【0011】この時、圧力はアンモニアがガス化しない
様に圧力調節弁(15)により一定に保持される。この
際の圧力は、通常7kg/cm2である。濃度の調整
は、濃度計(または密度計)(16)と上述の流量調節
弁(10、11)との信号のやりとりで行うような制御
方式により実施される。プレート式熱交換器(13)か
らフィルター(14)、次いで圧力調節弁(15)を出
た高純度アンモニア水(17)は製品貯槽に充填され
る。製品貯槽に代えて運搬用の専用のコンテナー、タン
クローリーでも良い。
At this time, the pressure is kept constant by the pressure regulating valve (15) so that ammonia does not gasify. The pressure at this time is usually 7 kg / cm 2 . Adjustment of the concentration is performed by a control method such as that performed by exchanging signals between the concentration meter (or density meter) (16) and the above-described flow control valves (10, 11). The high-purity ammonia water (17) that has exited the filter (14) and then the pressure regulating valve (15) from the plate heat exchanger (13) is filled in the product storage tank. Instead of a product storage tank, a dedicated container for transportation or a tank lorry may be used.

【0012】一般的には、製品貯槽に一旦貯め、必要に
応じて運搬用のコンテナーやローリー等に、更にフィル
ターを通して充填される。本発明方法は、精製した液体
アンモニアを超純水とラインミキサー(ディスパージョ
ンミキサー)を通して、それぞれのラインに設置した流
量調節弁により所定の濃度になるように精密に混合し、
混合の際の除熱はプレート式熱交換器を用いる事によ
り、効率的に高純度アンモニア水を製造することができ
る。
In general, the product is once stored in a product storage tank, and if necessary, filled in a container for transportation or a lorry through a filter. In the method of the present invention, purified liquid ammonia is passed through ultrapure water and a line mixer (dispersion mixer), and precisely mixed to a predetermined concentration by a flow control valve installed in each line,
The heat removal at the time of mixing can efficiently produce high-purity ammonia water by using a plate heat exchanger.

【0013】液体アンモニアをラインミキサーを用いな
いで直接超純水に混合させる場合は、均一な混合調整が
出来ないばかりか、発熱による圧力上昇があり非常に危
険である。尚、装置の材質に関しては、SUS304で
も良いが、フッ素樹脂をライニングしたものがより好ま
しい。
When liquid ammonia is directly mixed with ultrapure water without using a line mixer, uniform mixing and adjustment cannot be performed, and pressure rise due to heat generation is very dangerous. In addition, as for the material of the device, SUS304 may be used, but a material lined with a fluorine resin is more preferable.

【0014】上記方法において、活性炭で処理と加圧蒸
留の工程を加圧蒸留後、活性炭処理に変える方法は、活
性炭からのパーティクルや微量の金属不純物による汚染
が予想されるので好ましくない。また、液体アンモニア
またはアンモニア水を蒸発させて冷却、液化したアンモ
ニアを、活性炭処理のみ或いは、加圧蒸留のみでも不純
物の除去が完全でなく、好ましくない。
In the above method, the method of performing the treatment with activated carbon and the distillation under pressure under pressure distillation and then changing to the treatment with activated carbon is not preferable because contamination from particles from the activated carbon or a small amount of metal impurities is expected. Further, it is not preferable that the ammonia removed by cooling and liquefying by evaporating the liquid ammonia or aqueous ammonia is not completely removed by the activated carbon treatment alone or the pressure distillation alone.

【0015】この様にして製造されたアンモニア水は、
極めて不純物が少ないので現状はもとより、次世代半導
体製造用途(64MDRAM以上)に充分使用できるも
のである。更に、液体混合方式であるためアンモニアの
ロスが少なく(従来の吸収法だと仕込み量の数%あ
る。)、製造装置は小型で済み、流量制御を精密にする
ことにより濃度調整のための中間槽が要らなくなるとい
う利点がある。製造・出荷に要する時間がほぼ半減と大
幅に短縮できることも分かった。
[0015] The ammonia water thus produced is
Since it has a very small amount of impurities, it can be sufficiently used for the next generation semiconductor manufacturing applications (64 MDRAM or more) as well as at present. Furthermore, since the liquid mixing method is used, the loss of ammonia is small (a few percent of the charged amount in the case of the conventional absorption method). There is an advantage that a tank is not required. It was also found that the time required for manufacturing and shipping could be reduced by almost half.

【0016】また、蒸留器との併用で、今後のオンサイ
ト方式によるアンモニア水製造への展開も期待できるも
のである。以下に実施例をあげて詳しく説明する。
[0016] In addition, the combined use with a still can be expected to be applied to the on-site production of ammonia water in the future. An example will be described below in detail.

【0017】[0017]

【実施例】【Example】

実施例1 予め活性炭塔(2)により予備精製された工業用液体ア
ンモニアを210kg〜230kg/hrでボトム温度
35〜45℃、塔内圧力を13〜15kg/cm2に制
御した加圧蒸留塔(3)に供給し、トップより流出する
精製されたアンモニアガスをコンデンサー(4)により
冷却液化した後、液体状態で受け器(5)に貯めた。
Example 1 A pressurized distillation column in which industrial liquid ammonia preliminarily purified by an activated carbon tower (2) was controlled at 210 kg to 230 kg / hr at a bottom temperature of 35 to 45 ° C. and a pressure in the column at 13 to 15 kg / cm 2 ( The purified ammonia gas supplied to 3) and discharged from the top was cooled and liquefied by a condenser (4), and then stored in a liquid state in a receiver (5).

【0018】次に、この精製した液体アンモニア(8)
を重量百分率で28.5%となる様に、超純水(9)
を、比例制御されたそれぞれの流量調節弁(10、1
1)よりラインミキサー(12)に導入し、発生する熱
をプレート式熱交換器(13)により除去しながら混合
後、0.1μmのフィルターを通して専用のコンテナー
に充填した。
Next, the purified liquid ammonia (8)
In ultrapure water (9) so that the weight percentage becomes 28.5%.
To the respective flow control valves (10, 1
From 1), the mixture was introduced into a line mixer (12), mixed while removing generated heat by a plate heat exchanger (13), and filled in a dedicated container through a 0.1 μm filter.

【0019】ここで使用したラインミキサーはテフロン
ライニング仕様で、プレート式熱交換器(13)はSU
S304の材質のものを金属不純物の溶出をなくすた
め、充分アンモニア水による共洗いを行った後に使用し
た。得られたアンモニア水の品質は第1表に示した様に
極めて高品質であった。
The line mixer used here was a Teflon-lined specification, and the plate heat exchanger (13) was SU
The material of S304 was used after sufficiently co-washing with ammonia water in order to eliminate elution of metal impurities. The quality of the obtained ammonia water was extremely high as shown in Table 1.

【0020】[0020]

【表1】第1表 ─────────────────── 項目 単位 分析値 ─────────────────── NH3 % 28.79 PO4 ppm 0.02 以下 SO4 ppm 0.02 以下 Cl ppm 0.02 以下 CO3 限度内 0.4 以下 強熱残分 ppm 0.4 以下 Al ppb 0.01 以下 Ba ppb 0.01 以下 Ca ppb 0.01 以下 Cd ppb 0.01 以下 Co ppb 0.01 以下 Cr ppb 0.01 Cu ppb 0.01 以下 Fe ppb 0.01 以下 K ppb 0.01 Li ppb 0.01 以下 Mg ppb 0.01 以下 Mn ppb 0.01 以下 Na ppb 0.01 Ni ppb 0.01 以下 Pb ppb 0.01 以下 Sr ppb 0.01 以下 Zn ppb 0.01ハ゜ーティクル 0.2μm以上 個/ml 81.8 ─────────────────── 注1:濃度の単位は重量基準 注2:メタル分析はICP質量分析装置により実施し
た。
[Table 1] Table 1 ─────────────────── Item Unit Analysis value ─────────────────── NH 3 % 28.79 PO 4 ppm 0.02 or less SO 4 ppm 0.02 or less Cl ppm 0.02 or less Within CO 3 limit 0.4 or less Ignition residue ppm 0.4 or less Al ppb 0.01 or less Ba ppb 0.01 or less Ca ppb 0.01 or less Cd ppb 0.01 or less Co ppb 0.01 or less Cr ppb 0.01 Cu ppb 0.01 or less Fe ppb 0.01 or less K ppb 0.01 Li ppb 0.01 or less Mg ppb 0.01 or less Mn ppb 0.01 or less Na ppb 0.01 Ni ppb 0.01 or less Pb ppb 0.01 or less Sr ppb 0.01 or less Zn ppb 0.01 Vehicle 0.2 μm or more ml 81.8 ─────────────────── Note 1: Units of concentration are based on weight Note 2: Metal analysis was performed by ICP mass spectrometer.

【0021】注3:PO4、SO4、Clはイオンクロマトグラ
フにより分析した。 注4:パーティクルはパーティクルカウンターにより測
定した。 その他の重金属(Ag、As、Au、B、Ba、Be、Bi、Ga、G
e、Mo、Nb、Sb、Si、Sn、Ta、Ti、Tl、V、Zr)もすべ
て、定量限界以下の水準であることをICP質量分析装
置及びICP発光分析装置等で確認した。
Note 3: PO 4 , SO 4 , and Cl were analyzed by ion chromatography. Note 4: Particles were measured by a particle counter. Other heavy metals (Ag, As, Au, B, Ba, Be, Bi, Ga, G
e, Mo, Nb, Sb, Si, Sn, Ta, Ti, Tl, V, and Zr) were all confirmed to be below the limit of quantification with an ICP mass spectrometer and an ICP emission spectrometer.

【0022】比較例1 蒸留精製操作までは実施例1と同じで、混合調整をSU
S304製の濃度調整槽で、蒸留塔から出てくるアンモ
ニアガスを予め仕込んでおいた超純水に吸収させて製造
した。この時の濃度調整はアンモニア吸収液をポンプで
循環冷却しながら行った。最終濃度は28.5%であっ
た。
Comparative Example 1 The procedure was the same as in Example 1 up to the distillation purification operation.
It was manufactured by absorbing ammonia gas coming out of the distillation column into ultrapure water previously charged in a concentration adjusting tank made of S304. At this time, the concentration was adjusted while circulating and cooling the ammonia absorbing solution with a pump. Final concentration was 28.5%.

【0023】得られたアンモニア水の分析値を表2にし
めす。実施例1の表1に示す分析値と比較例1の表2の
分析値を比較すると本願発明方法の方が純度が高い。こ
の理由は、吸収操作及び混合調整のための冷却循環操作
によって濃度調整槽内面、ポンプ等の接液部からの微量
金属の溶出が促進されるためである。
The analytical values of the obtained ammonia water are shown in Table 2. Comparing the analysis values shown in Table 1 of Example 1 with the analysis values shown in Table 2 of Comparative Example 1, the method of the present invention has higher purity. The reason for this is that the elution of trace metals from the inner surface of the concentration adjusting tank and the liquid contact part such as a pump is promoted by the absorption circulation operation and the cooling circulation operation for mixing adjustment.

【0024】[0024]

【表2】第2表 ───────────── 項目 単位 分析値 ───────────── Al ppb 0.25 Ba ppb 0.05 Ca ppb 0.30 Cr ppb 0.09 Cu ppb 0.02 Fe ppb 0.15 K ppb 0.31 Li ppb 0.25 Mg ppb 0.01 以下 Na ppb 0.60 Ni ppb 0.08 Pb ppb 0.05 Zn ppb 0.09 ───────────── 注1:メタル分析はICP質量分析装置により実施し
た。
[Table 2] Table 2 ───────────── Item Unit Analysis value ───────────── Al ppb 0.25 Ba ppb 0.05 Ca ppb 0.30 Cr ppb 0.09 Cu ppb 0.02 Fe ppb 0.15 K ppb 0.31 Li ppb 0.25 Mg ppb 0.01 or less Na ppb 0.60 Ni ppb 0.08 Pb ppb 0.05 Zn ppb 0.09 ───────────── Note 1: Metal analysis is ICP mass spectrometer Was carried out by

【0025】[0025]

【発明の効果】本発明方法は、精製された液体アンモニ
アと超純水を、液体アンモニアがガス化しないように圧
力制御しながら一定の重量比でラインミキサーを通して
混合し、この時の発熱は、プレート熱交に除去する単純
な方法で、極めて不純物の少ない半導体のウエット洗浄
用途に適した高純度アンモニア水を得ることができる。
According to the method of the present invention, the purified liquid ammonia and ultrapure water are mixed through a line mixer at a constant weight ratio while controlling the pressure so that the liquid ammonia does not gasify. By a simple method of removing by plate heat exchange, it is possible to obtain high-purity aqueous ammonia suitable for use in wet cleaning of semiconductors having extremely few impurities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明によるアンモニア水の製造フロ
ーにおけるアンモニアの精製フローを示したものであ
る。
FIG. 1 shows a flow of purifying ammonia in a flow of producing ammonia water according to the present invention.

【図2】 図2は本発明によるアンモニア水の製造フロ
ーにおける精製された液体アンモニアと超純水の混合フ
ローを示したものである。
FIG. 2 shows a mixed flow of purified liquid ammonia and ultrapure water in an ammonia water production flow according to the present invention.

【符号の説明】[Explanation of symbols]

1 液体アンモニア 2 活性炭塔 3 蒸留塔 4 コンデンサー 5 受け器 6 ヒーター 7 廃液 8 精製された液体アンモニア 9 超純水 10 流量調節弁 11 流量調節弁 12 ラインミキサー 13 プレート式熱交換器 14 フィルター 15 圧力調整弁 16 アンモニア濃度計 17 製品 DESCRIPTION OF SYMBOLS 1 Liquid ammonia 2 Activated carbon tower 3 Distillation tower 4 Condenser 5 Receptor 6 Heater 7 Waste liquid 8 Purified liquid ammonia 9 Ultrapure water 10 Flow control valve 11 Flow control valve 12 Line mixer 13 Plate heat exchanger 14 Filter 15 Pressure control Valves 16 Ammonia concentration meter 17 Products

フロントページの続き (72)発明者 平井 栄一 富山県婦負郡婦中町笹倉635 日産化学工 業株式会社富山工場内Continued on the front page (72) Inventor Eiichi Hirai 635 Sakura, Funaka-cho, Fukuno-gun, Toyama Nissan Chemical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液体アンモニアまたはアンモニア水を蒸
発させて得られるアンモニアを、液体アンモニアとし、
該液体アンモニアを活性炭で吸着処理した後、加圧蒸留
精製して得た液体アンモニアを液体の状態で水とライン
ミキサーで、混合して、高純度なアンモニア水を得る事
を特徴とする高純度アンモニア水の製造方法。
A liquid ammonia or ammonia obtained by evaporating aqueous ammonia is referred to as liquid ammonia,
After the liquid ammonia is adsorbed with activated carbon, the liquid ammonia obtained by pressure distillation purification is mixed with water in a liquid state with water using a line mixer to obtain high-purity ammonia water. Method for producing ammonia water.
【請求項2】 液体アンモニアと水との混合は加圧状態
で混合の際の除熱はプレート式熱交換器を用い、混合の
割合は、圧力調節弁の出口に設置した濃度計または密度
計により決める請求項1記載の高純度アンモニア水の製
造方法。
2. Mixing of liquid ammonia and water is performed under a pressurized condition and heat is removed using a plate heat exchanger. The mixing ratio is determined by a concentration meter or a density meter installed at the outlet of a pressure control valve. The method for producing high-purity aqueous ammonia according to claim 1, which is determined by:
【請求項3】 水が比抵抗値18Mohm・cm以上の
水である請求項1または2記載の高純度アンモニア水の
製造方法。
3. The method for producing high-purity ammonia water according to claim 1, wherein the water is water having a specific resistance of 18 Mohm · cm or more.
JP10588297A 1997-04-23 1997-04-23 Method for producing high-purity ammonia water Expired - Lifetime JP3887874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10588297A JP3887874B2 (en) 1997-04-23 1997-04-23 Method for producing high-purity ammonia water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588297A JP3887874B2 (en) 1997-04-23 1997-04-23 Method for producing high-purity ammonia water

Publications (2)

Publication Number Publication Date
JPH10297919A true JPH10297919A (en) 1998-11-10
JP3887874B2 JP3887874B2 (en) 2007-02-28

Family

ID=14419314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588297A Expired - Lifetime JP3887874B2 (en) 1997-04-23 1997-04-23 Method for producing high-purity ammonia water

Country Status (1)

Country Link
JP (1) JP3887874B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253708A (en) * 2000-03-09 2001-09-18 Mitsubishi Gas Chem Co Inc Manufacturing method of high purity ammonia water
FR2833854A1 (en) * 2001-12-21 2003-06-27 Air Liquide Electronics Sys Method and system for producing an ultra pure solution of a chemical product from the industrial quality chemical product in liquid form
US6709482B2 (en) * 2000-12-26 2004-03-23 Matheson Tri-Gas, Inc. Method for reducing trace impurities from a reactive fluid using preconditioned ultra-low emission carbon material
CN1298629C (en) * 2005-02-17 2007-02-07 昆明理工大学 Method for recoverying and utilization of pulluted ammonia water of brown coal pressurized gasification
CN106495183A (en) * 2016-11-07 2017-03-15 广东华特气体股份有限公司 A kind of purification process of ammonia
CN112499710A (en) * 2020-10-20 2021-03-16 阮氏化工(常熟)有限公司 Device and method for purifying ammonia water by using ammonia-containing wastewater
CN114644348A (en) * 2022-03-18 2022-06-21 西安吉利电子新材料股份有限公司 Preparation system and method for directly producing electronic-grade ammonia water from ammonia gas
CN115504486A (en) * 2022-09-20 2022-12-23 湖北兴福电子材料股份有限公司 Production method of ultra-pure electronic grade ammonia water

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548555B2 (en) * 2000-03-09 2010-09-22 三菱瓦斯化学株式会社 Method for producing high-purity ammonia water
JP2001253708A (en) * 2000-03-09 2001-09-18 Mitsubishi Gas Chem Co Inc Manufacturing method of high purity ammonia water
US6709482B2 (en) * 2000-12-26 2004-03-23 Matheson Tri-Gas, Inc. Method for reducing trace impurities from a reactive fluid using preconditioned ultra-low emission carbon material
US6710012B2 (en) * 2000-12-26 2004-03-23 Matheson Tri-Gas, Inc, Method for producing an ultra-low emission carbon material
US6783577B2 (en) * 2000-12-26 2004-08-31 Matheson Tri-Gas, Inc. Gas purifier system containing an ultra-low emission carbon material
US6783576B2 (en) * 2000-12-26 2004-08-31 Matheson Tri-Gas, Inc. Gas purifier system for removing trace impurities from a reactive fluid
US6797036B2 (en) * 2000-12-26 2004-09-28 Matheson Tri-Gas, Inc. Method for removing impurities from process gas stream
FR2833854A1 (en) * 2001-12-21 2003-06-27 Air Liquide Electronics Sys Method and system for producing an ultra pure solution of a chemical product from the industrial quality chemical product in liquid form
EP1325887A1 (en) * 2001-12-21 2003-07-09 Air Liquide Electronics Systems Process for producing the solution of a chemical product starting from the liquid phase of a chemical product
CN1298629C (en) * 2005-02-17 2007-02-07 昆明理工大学 Method for recoverying and utilization of pulluted ammonia water of brown coal pressurized gasification
CN106495183A (en) * 2016-11-07 2017-03-15 广东华特气体股份有限公司 A kind of purification process of ammonia
CN112499710A (en) * 2020-10-20 2021-03-16 阮氏化工(常熟)有限公司 Device and method for purifying ammonia water by using ammonia-containing wastewater
CN112499710B (en) * 2020-10-20 2023-01-24 阮氏化工(常熟)有限公司 Device and method for purifying ammonia water by using ammonia-containing wastewater
CN114644348A (en) * 2022-03-18 2022-06-21 西安吉利电子新材料股份有限公司 Preparation system and method for directly producing electronic-grade ammonia water from ammonia gas
CN115504486A (en) * 2022-09-20 2022-12-23 湖北兴福电子材料股份有限公司 Production method of ultra-pure electronic grade ammonia water
CN115504486B (en) * 2022-09-20 2024-03-12 湖北兴福电子材料股份有限公司 Production method of ultra-high-purity electronic grade ammonia water

Also Published As

Publication number Publication date
JP3887874B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US8540960B2 (en) Method for producing of ultra-clean and high-purity electronic grade reagents
RU2496767C2 (en) Method for continuous production of nitrobenzene
US5756063A (en) Process for manufacturing isocyanates and producing reagent grade hydrochloric acid therefrom
US4624789A (en) Mass transfer into porous granules using stratified semifluidized beds
TW418357B (en) Chemical generator with controlled mixing and concentration feedback and adjustment
JP2003519066A (en) Manufacturing method of high purity sulfuric acid
JPH10297919A (en) Production of high purity ammonia water
US7156225B2 (en) Reduced moisture compositions comprising an acid gas and a matrix gas, articles of manufacture comprising said compositions, and processes for manufacturing same
Zhao et al. Removal of ammonium ions from aqueous solutions using zeolite synthesized from red mud
TW539646B (en) Production of high purity hydrochloric acid
US6054109A (en) Method of purifying aqueous solution of hydrogen peroxide
CN108264052A (en) A kind of X/ZSM-5 core shells molecular sieve and preparation method thereof
US6969466B1 (en) Purification of ammonia
Liu et al. Adsorption optimization and mechanism of neutral red onto magnetic Ni0. 5Zn0. 5Fe2O4/SiO2 nanocomposites
KR20190086000A (en) Materials for zeolite adsorbent for the low-temperature separation of the non-polluting industrial gases, production method and use
Van den Broeck et al. Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor
CN107282022A (en) De-fluoridation adsorbent and preparation method thereof
CN101027248B (en) Process for producing fluorine gas
El-Qada et al. Utilization of activated carbon for the removal of basic dyes in fixed-bed microcolumn
JPS6261695A (en) Deoxidation and purification method of liquid
JPS58217401A (en) Method of separating hydrogen from gas mixture
Carberry et al. Clay adsorption treatment of non-ionic surfactants in wastewater
CA2266453C (en) Method for manufacturing hydroxylamine
US5021216A (en) Method of removing and crystallizing cation resin absorbed calcium and magnesium
KR100907674B1 (en) Method for producing highly concentrated hydroxylamine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term