JPH10296265A - Electrolytic apparatus - Google Patents

Electrolytic apparatus

Info

Publication number
JPH10296265A
JPH10296265A JP10571597A JP10571597A JPH10296265A JP H10296265 A JPH10296265 A JP H10296265A JP 10571597 A JP10571597 A JP 10571597A JP 10571597 A JP10571597 A JP 10571597A JP H10296265 A JPH10296265 A JP H10296265A
Authority
JP
Japan
Prior art keywords
tank
acid
exchange membrane
solution
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10571597A
Other languages
Japanese (ja)
Inventor
Masayoshi Kondo
政義 近藤
Kiyomi Funabashi
清美 船橋
Takayuki Matsumoto
隆行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10571597A priority Critical patent/JPH10296265A/en
Publication of JPH10296265A publication Critical patent/JPH10296265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively recover cations from a solution containing a strong acid in an electrodialysis and utilize the recovered acid at the same time. SOLUTION: When a separation object solution containing a strong acid is injected to an electrodialysis device, an acid component is recovered by installing an anion exchange membrane 15 on an anode side of an ion exchange resin 14. Because adsorption amount of cations is increased by recovery of the acid, by subjecting the solution as it is to recovery by electrodialysis concentration is raised by adsorption to the resin. This is then subjected to electrodialysis to enhance efficiency of transmission through a cation exchange membrane 1 installed on a cathode side of the ion exchange resin 14 and recovery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強酸を含む電解時に
好適な装置に関する。
The present invention relates to an apparatus suitable for electrolysis containing a strong acid.

【0002】[0002]

【従来の技術】閉鎖系における物質リサイクル技術開発
において、Na,K,Clなど1価イオンとCa,M
g,SO4,PO4などの多価イオンをミネラル成分とし
て有する溶液(ヒトの尿など)からヒトが生存するに必
要なNaClと植物の生育に必要なイオンを分離して回
収する方法としては、特開平7−397281 号公報に示すも
のがある。
2. Description of the Related Art In the development of material recycling technology in closed systems, monovalent ions such as Na, K, Cl and Ca, M
g, SO 4 , PO 4, etc. As a method for separating and recovering NaCl required for human survival and ions required for plant growth from a solution having multivalent ions as mineral components (human urine, etc.), And JP-A-7-397281.

【0003】[0003]

【発明が解決しようとする課題】従来の技術は、電気透
析において図2(a)に示すように、原液タンク9には
強酸を含む溶液が含まれている。この溶液を処理する
際、イオン交換樹脂14が充填されている原液濃縮槽2
1に注入させて溶液中に含まれる陽イオンM+ をイオン
交換樹脂14に吸着させ、溶液中に含まれる陽イオン濃
度をイオン交換樹脂に吸着させる濃縮作用によって高め
る。吸着された陽イオンM+ は、電気透析時にイオン交
換樹脂14の陰極電極13側に引っ張られることによっ
て陰極電極13側に設置してある陽イオン交換膜1を選
択的に透過し、陰極極液槽23に移動してくるものであ
る。
According to the prior art, in electrodialysis, as shown in FIG. 2 (a), a stock solution tank 9 contains a solution containing a strong acid. When processing this solution, the stock solution concentration tank 2 filled with the ion exchange resin 14
The cation M + contained in the solution is adsorbed on the ion exchange resin 14 to increase the concentration of the cation contained in the solution by the concentration action of adsorbing the ion exchange resin. The adsorbed cation M + is selectively pulled through the cation exchange membrane 1 provided on the cathode electrode 13 side by being pulled toward the cathode electrode 13 side of the ion exchange resin 14 at the time of electrodialysis. It moves to the tank 23.

【0004】しかし、強酸を含む溶液では分配係数の低
下により、イオン交換樹脂14への吸着力が低下しイオ
ン交換樹脂14での溶液中の陽イオンM+ の濃縮が低下
するため、溶液中に含まれる他のイオン(H+,O2イオ
ンなど)が溶液中の陽イオンM+ よりも桁で高いため、
電気透析による回収では陽イオンM+ の回収効率が低下
する。
[0004] However, in a solution containing a strong acid, the distribution coefficient decreases, so that the adsorption force to the ion exchange resin 14 decreases, and the concentration of the cation M + in the solution in the ion exchange resin 14 decreases. Since other ions contained (H + , O 2 ions, etc.) are orders of magnitude higher than the cations M + in solution,
In the recovery by electrodialysis, the recovery efficiency of the cation M + decreases.

【0005】本発明の目的は、これら溶液中の陽イオン
+ を回収効率を低下させることのなく、回収すること
のできる技術を提供するものである。
An object of the present invention is to provide a technique capable of recovering the cation M + in these solutions without lowering the recovery efficiency.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成する請
求項1の発明の特徴は、イオン交換樹脂を充填する槽を
構成するイオン交換膜は陽極電極側のイオン交換膜は陰
イオン交換膜を用い、強酸に含まれる陰イオンを陽極電
極側に移動させることにより、溶液中に含まれる酸濃度
を低減させるものである。また、陰極電極側のイオン交
換膜は陽イオン交換膜を用いて溶液中に含まれるM+
オンを陰極電極側へ移動させる。
According to a first aspect of the present invention, there is provided an ion exchange membrane comprising a tank for filling an ion exchange resin, wherein the ion exchange membrane on the anode electrode side is an anion exchange membrane. Is used to move the anions contained in the strong acid to the anode electrode side, thereby reducing the concentration of the acid contained in the solution. The ion exchange membrane on the cathode electrode side uses a cation exchange membrane to move M + ions contained in the solution to the cathode electrode side.

【0007】上記の目的を達成する請求項2の発明の特
徴は、イオン交換樹脂の充填されている濃縮槽から移動
してきた陰イオンが酸回収槽と脱塩槽と分けている陽イ
オン交換膜を透過して移動してきた陰イオンの極液槽へ
の移動を防止させ、陽極電極表面で塩素ガスなどの有毒
ガスの発生を防止するためのものである。
According to a second aspect of the present invention, there is provided a cation exchange membrane in which anions transferred from a concentration tank filled with an ion exchange resin are separated into an acid recovery tank and a desalination tank. This is to prevent the anions, which have passed through the electrode, from moving to the electrode bath, and to prevent generation of toxic gas such as chlorine gas on the surface of the anode electrode.

【0008】上記の目的を達成する請求項3の発明の特
徴は、脱塩槽と回収槽を循環する電解質(溶液)を区分
けすることによって、脱塩槽内のCl~ などのイオン濃
度を上昇させないものである。
A feature of the third aspect of the present invention that achieves the above object is to separate the electrolyte (solution) circulating in the desalting tank and the recovery tank to increase the concentration of ions such as Cl ~ in the desalting tank. It is something that will not be done.

【0009】上記の目的を達成する請求項4の発明の特
徴は、陽イオン交換膜で挟むことによって構成されるこ
とから、陰イオンの移動を防止するためのものである。
A feature of the invention of claim 4 that achieves the above object is to prevent the movement of anions, since it is constituted by being sandwiched between cation exchange membranes.

【0010】前記の目的を達成する請求項5の発明の特
徴は、陰イオン交換膜で陰イオンを選択的に移動・回収
し、陽イオン交換膜で陰イオンの移動を防止し、両イオ
ン交換膜で構成された槽内で効率よく留めることを目的
とするものである。
According to a fifth aspect of the present invention which achieves the above object, an anion exchange membrane selectively moves and collects anions, and a cation exchange membrane prevents anions from migrating. The purpose of this is to efficiently keep the inside of a tank composed of a membrane.

【0011】上記の目的を達成する請求項6の発明の特
徴は、陽イオンを陰極側へ移動させ、回収槽内で反応さ
せることによって、酸を回収するものであり、陰イオン
は選択的に透過させないことを目的とするものである。
A feature of the invention of claim 6 that achieves the above object is to recover an acid by moving cations to the cathode side and reacting them in a recovery tank, and selectively removing anions. The purpose is to prevent transmission.

【0012】上記の目的を達成する請求項7の発明の特
徴は、濃縮槽,脱塩槽,回収槽の反応を効率よく発生さ
せるため、陽陰両極極板が設置してある極液槽内の極液
の液性を調整するためのものである。
[0012] The feature of the invention according to claim 7 that achieves the above object is that in order to efficiently generate a reaction in a concentration tank, a desalination tank, and a recovery tank, the inside of an electrode tank in which a positive and negative bipolar plate is installed is provided. The purpose is to adjust the liquid properties of the polar solution.

【0013】上記の目的を達成する請求項8の発明の特
徴は、濃縮槽,脱塩槽,回収槽の反応を効率よく発生さ
せるため、それぞれの槽内の液性を調整するためのもの
である。
A feature of the invention of claim 8 that achieves the above object is to adjust the liquidity in each of the tanks in order to efficiently generate reactions in the concentration tank, the desalination tank, and the recovery tank. is there.

【0014】本発明の作用を図1(a)を用いて説明す
る。図2で示した従来の電気透析装置とは異なり、イオ
ン交換樹脂14は陽極電極2側に陰イオン交換膜15,
陰極電極13側に陽イオン交換膜1を設置して、陽イオ
ン交換樹脂14を挟むように電解セル、すなわち原液濃
縮槽21を形成している。原液タンク9より原液ポンプ
10を介して陽イオン交換樹脂14が充填してある強酸
を含む分離対象溶液を原液濃縮槽21に流入する。原液
濃縮槽21に流入した溶液中の陰イオン成分(主にCl
~ )は酸回収槽20側の陰イオン交換膜15を透過して
酸回収槽20に移動する。酸回収槽20の陽極側には陽
イオン交換膜1が設置されており、陰極電極13に引っ
張られて、この陽イオン交換膜1を透過した陽イオン
(主にH+ )と反応して酸回収ポンプ8によって循環し
ている溶液と共に、酸回収タンク7に回収される。酸回
収槽20に陽イオン(主にH+ )を供給する脱塩槽19
の溶液は脱塩タンク6内の溶液を脱塩ポンプ5を介して
循環・滞留している。原液濃縮槽21において陰イオン
(主にCl~ 成分)が回収されるため、酸濃度が低下す
ることにより、陽イオン交換樹脂14に吸着する原液溶
液中の陽イオンの吸着量が増加することにより、溶液中
濃度より陽イオン濃度は高くなる。そのため、陰極側電
極13に引き寄せられ回収される陽イオンM+ の効率は
高くなるのである。陽イオン交換樹脂14の陰極側には
陽イオン交換膜1が設置してあり、陽イオンM+ はこの
陽イオン交換膜1を選択的に透過し濃縮槽22に移動し
てくる。移動してきた陽イオンM+ は濃縮液回収ポンプ
12により循環されている溶液と共に、濃縮回収タンク
11に回収される。それぞれのイオンの移動は図1
(b)に示している。陽イオンは陽イオン交換膜を選択
的に透過し、陰イオンは陰イオン交換膜を選択的に透過
する。
The operation of the present invention will be described with reference to FIG. Unlike the conventional electrodialysis apparatus shown in FIG. 2, the ion exchange resin 14 has an anion exchange membrane 15,
The cation exchange membrane 1 is installed on the cathode electrode 13 side, and an electrolytic cell, that is, a stock solution concentration tank 21 is formed so as to sandwich the cation exchange resin 14. A solution to be separated containing a strong acid filled with a cation exchange resin 14 flows from a stock solution tank 9 through a stock solution pump 10 into a stock solution concentration tank 21. Anion component (mainly Cl) in the solution flowing into the stock solution concentration tank 21
~) Permeate the anion exchange membrane 15 on the acid recovery tank 20 side and move to the acid recovery tank 20. The cation exchange membrane 1 is provided on the anode side of the acid recovery tank 20, and is pulled by the cathode electrode 13 and reacts with cations (mainly H + ) transmitted through the cation exchange membrane 1 to react with the acid. The acid is recovered in the acid recovery tank 7 together with the solution circulated by the recovery pump 8. Desalination tank 19 for supplying cations (mainly H + ) to acid recovery tank 20
Is circulated and retained in the desalting tank 6 via the desalting pump 5. Since anions (mainly Cl- components) are recovered in the undiluted solution concentration tank 21, the amount of cations in the undiluted solution adsorbed on the cation exchange resin 14 increases due to the decrease in acid concentration. The cation concentration is higher than the concentration in the solution. For this reason, the efficiency of the cation M + attracted to and collected by the cathode 13 increases. The cation exchange membrane 1 is provided on the cathode side of the cation exchange resin 14, and the cations M + selectively pass through the cation exchange membrane 1 and move to the concentration tank 22. The moved cations M + are collected in the concentration recovery tank 11 together with the solution circulated by the concentrate recovery pump 12. Figure 1 shows the movement of each ion.
This is shown in FIG. Cations selectively permeate through the cation exchange membrane and anions selectively permeate through the anion exchange membrane.

【0015】これらの電気透析によるイオンの移動を容
易にするため、陽極電極2が設置してある陽極極液槽1
8と陰極電極13が設置してある陰極極液槽23には電
解質を含む溶液が循環している。陽極極液槽18には陽
極液調整タンク4内の電解質を含んだ溶液を陽極極液ポ
ンプ3で循環している。陰極極液槽23には陽極液調整
タンク17内の電解質を含んだ溶液を陽極極液ポンプ1
6で循環している。
To facilitate the transfer of ions by electrodialysis, an anodic electrode solution tank 1 in which an anodic electrode 2 is installed is provided.
A solution containing an electrolyte circulates in a catholyte bath 23 in which the cathode 8 and the cathode 13 are installed. A solution containing the electrolyte in the anolyte adjustment tank 4 is circulated in the anolyte solution tank 18 by the anolyte solution pump 3. The solution containing the electrolyte in the anolyte adjustment tank 17 is supplied to the anolyte pump
Circulating at 6.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)以下、本発明の実施例を図1(a)を用い
て説明する。原液ポンプ10で原液タンク9内の強酸を
含む分離対象溶液は、陽イオン交換樹脂14が設置して
ある電気透析装置へ注入する。陽イオン交換樹脂14の
両側は電気透析装置の電極として使用されるそれぞれの
極板で、陽極電極2側には陰イオンを透過する陰イオン
交換膜15が設置してあり、陰極電極13側には陽イオ
ンを透過する陽イオン交換膜1が設置してあり、両イオ
ン交換膜で挟まれるように電解セル(原液濃縮槽21)
が構成されており、この槽に陽イオン交換樹脂14が充
填され原液濃縮槽21となっている。原液ポンプ10で
原液濃縮槽21に注入された強酸を含む分離対象溶液
は、電解をかけることによって、陰イオン(主にCl~
成分)は陰イオン交換膜15を透過して酸回収槽20に
移動する。強酸に含まれる陰イオンと原液中の陰イオン
が酸回収槽20に移動する。強酸では、酸を構成する陰
イオン成分濃度が高く、また導電率も高いため電子の移
動はこの酸を構成する陰イオンが支配的であるため、電
解によって、分離対象溶液中の強濃度が低下する。それ
に伴い陽イオン交換樹脂14に吸着する陽イオン
(M+ )の量は大きくなる。陽イオン交換樹脂14に吸
着した陽イオン(M+ )は、電解によって陽イオン交換
膜1を透過して濃縮槽22に移動してくる。この濃縮槽
22内の溶液は濃縮液回収ポンプ12を介して濃縮回収
タンク11に回収されると共に、濃縮槽22から濃縮回
収タンク11間を循環しており、原液中の陽イオン(M
+ )は濃縮される。一方、陰イオン交換膜15を透過し
て酸回収槽20に移動してきた陰イオン(主にCl~ 成
分)は、酸回収槽20の陽極側の脱塩槽19内のH+
分が陽イオン交換膜1を透過して酸回収槽20に移動し
てくることによって、酸回収槽20内で陽イオンと陰イ
オンが反応し、酸として生成する。酸回収槽20内の溶
液は酸回収ポンプ8を介して、酸回収タンク7に回収さ
れ、利用できるものは利用する。酸回収槽20にH+
分を供給する脱塩槽19は陽イオン交換膜1に挟まれる
ように構成されており、原液濃縮槽21からのCl~ 成
分の移動を少なくして、陽極極液槽18への浸入を防ぐ
役目もある。脱塩槽19内の溶液は脱塩タンク6内の溶
液を脱塩ポンプ5を介して循環させて、酸回収槽20に
+ 成分を供給する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. The solution to be separated containing the strong acid in the stock solution tank 9 is injected into the electrodialysis apparatus provided with the cation exchange resin 14 by the stock solution pump 10. On both sides of the cation exchange resin 14 are respective electrode plates used as electrodes of an electrodialyzer, and on the side of the anode electrode 2, an anion exchange membrane 15 that transmits anions is installed, and on the side of the cathode electrode 13. Is provided with a cation exchange membrane 1 that transmits cations, and an electrolytic cell (stock solution concentration tank 21) is sandwiched between both ion exchange membranes.
This tank is filled with a cation exchange resin 14 to form a stock solution concentrating tank 21. The solution to be separated containing a strong acid injected into the stock solution concentrating tank 21 by the stock solution pump 10 is subjected to electrolysis to form anions (mainly Cl ~).
The component passes through the anion exchange membrane 15 and moves to the acid recovery tank 20. Anions contained in the strong acid and anions in the stock solution move to the acid recovery tank 20. In a strong acid, the concentration of the anion component in the acid is high and the conductivity is high, so the electron transfer is dominated by the anion in the acid, so the electrolysis reduces the strong concentration in the solution to be separated. I do. Accordingly, the amount of cations (M + ) adsorbed on the cation exchange resin 14 increases. The cations (M + ) adsorbed on the cation exchange resin 14 pass through the cation exchange membrane 1 by electrolysis and move to the concentration tank 22. The solution in the concentration tank 22 is collected in the concentration / recovery tank 11 via the concentrated liquid recovery pump 12 and circulates from the concentration tank 22 to the concentration / recovery tank 11 so that the cations (M
+ ) Is concentrated. On the other hand, the anions (mainly Cl- components) that have passed through the anion exchange membrane 15 and moved to the acid recovery tank 20 are converted into H + components in the desalting tank 19 on the anode side of the acid recovery tank 20. By passing through the exchange membrane 1 and moving to the acid recovery tank 20, cations and anions react in the acid recovery tank 20, and are generated as an acid. The solution in the acid recovery tank 20 is recovered in the acid recovery tank 7 via the acid recovery pump 8, and any available one is used. The desalting tank 19 for supplying the H + component to the acid recovery tank 20 is configured so as to be sandwiched between the cation exchange membranes 1. It also serves to prevent intrusion into the tank 18. The solution in the desalting tank 19 circulates the solution in the desalting tank 6 through the desalting pump 5 to supply the H + component to the acid recovery tank 20.

【0017】これら各部位の働きにより酸を回収すると
ともに陽イオン成分も効率よく回収できる。
The action of each of these sites allows the acid to be recovered and the cation component to be recovered efficiently.

【0018】(実施例2)本発明の実施例を図3を用い
て説明する。第1実施例の変形でイオン交換樹脂14を
充填した原液濃縮槽21を多段化した。大容量の強酸を
含む溶液の処理に適用できる。
(Embodiment 2) An embodiment of the present invention will be described with reference to FIG. In the modification of the first embodiment, the stock solution concentration tank 21 filled with the ion exchange resin 14 is multi-staged. Applicable to the treatment of solutions containing large volumes of strong acids.

【0019】(実施例3)本発明の実施例を図4を用い
て説明する。第1実施例,第2実施例の変形で、イオン
交換樹脂14を充填した原液濃縮槽21を多段化した構
成であるが、電極極板の変わりに中間電極24を設置し
た。中間電極24を用いることによって、イオン交換膜
の特性を無視し、漏洩したイオンによる回収液の純度に
影響が少なくなる。また、中間に金属板を設置するた
め、強度的にも優れたものになる。
(Embodiment 3) An embodiment of the present invention will be described with reference to FIG. In a modification of the first and second embodiments, the stock solution concentrating tank 21 filled with the ion exchange resin 14 is multi-staged, but an intermediate electrode 24 is provided instead of the electrode plate. By using the intermediate electrode 24, the characteristics of the ion exchange membrane are ignored, and the influence of the leaked ions on the purity of the recovered liquid is reduced. Further, since the metal plate is provided in the middle, the strength is excellent.

【0020】(実施例4)本発明の実施例を図5を用い
て説明する。第1実施例の変形で、強酸を含む溶液の酸
成分を電気透析であらかじめ回収するユニットと陽イオ
ン成分と、強酸に含まれる陰イオン以外を回収するユニ
ットに分かれている。強酸を含む溶液中の酸をあらかじ
め回収するユニットにはイオン交換樹脂14が充填され
ていないのは、強酸に含まれる陰イオン(主にCl~ )
は、他イオンに比べて約10倍ほど早く回収できること
から、樹脂を充填せずに回収する。酸成分を回収された
原液はバルブ25を開放し、バルブ26を閉鎖すると酸
回収ユニットは閉ループとなり、酸の回収を重点的に行
える特徴を有する。酸を十分に回収した後、送液ポンプ
27で酸成分以外のイオンの回収するユニットに送液で
きるのも特徴である。また、バルブ26を開放し、バル
ブ25を閉鎖することによって、酸回収ユニットと酸成
分以外のイオン回収ユニットの同時稼働による酸回収,
イオン回収を同時に別ユニットで可能であるのも特徴で
ある。
(Embodiment 4) An embodiment of the present invention will be described with reference to FIG. In a modification of the first embodiment, a unit for recovering an acid component of a solution containing a strong acid by electrodialysis in advance, a cation component, and a unit for recovering anion other than the anion contained in the strong acid are divided. The unit for previously recovering the acid in the solution containing the strong acid is not filled with the ion-exchange resin 14 because of the anions (mainly Cl 強) contained in the strong acid.
Can be recovered about 10 times faster than other ions, and thus can be recovered without filling the resin. When the stock solution from which the acid component has been recovered opens the valve 25 and closes the valve 26, the acid recovery unit forms a closed loop, and has a feature that the acid recovery can be focused. Another feature is that after the acid is sufficiently recovered, the solution can be sent to a unit for collecting ions other than the acid component by the solution sending pump 27. Further, by opening the valve 26 and closing the valve 25, acid recovery by simultaneous operation of the acid recovery unit and the ion recovery unit other than the acid component,
Another feature is that ion collection can be performed simultaneously in another unit.

【0021】(実施例5)本発明の実施例を図6を用い
て説明する。第1実施例の変形で、強酸を含む溶液中に
含まれる酸を回収して濃度・純度の高い酸の再利用す
る。原液濃縮槽21に流入した原液を電気透析によっ
て、処理し、原液濃縮槽21から出た溶液を酸回収した
酸回収槽20に戻して純度を高める。これによって、酸
回収ポンプ8は必要なくなり設備面でのコストが有利で
ある。
(Embodiment 5) An embodiment of the present invention will be described with reference to FIG. In a modification of the first embodiment, an acid contained in a solution containing a strong acid is recovered and the acid having a high concentration and purity is reused. The stock solution that has flowed into the stock solution concentration tank 21 is processed by electrodialysis, and the solution that has come out of the stock solution concentration tank 21 is returned to the acid recovery tank 20 where the acid has been recovered, thereby increasing the purity. This eliminates the need for the acid recovery pump 8, which is advantageous in equipment costs.

【0022】[0022]

【発明の効果】本発明の効果は、強酸溶液中の陽イオン
を電気透析時に効率よく回収する。本発明を適用するこ
とにより、強酸を含む溶液中でも陽イオンの回収が効率
よくできるとともに、強酸の再利用も可能である。
The effect of the present invention is that cations in a strong acid solution are efficiently collected during electrodialysis. By applying the present invention, cations can be efficiently recovered even in a solution containing a strong acid, and the strong acid can be reused.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の電解装置の説明図。FIG. 1 is an explanatory view of an electrolytic device according to a first embodiment of the present invention.

【図2】従来型の電解装置の説明図。FIG. 2 is an explanatory view of a conventional electrolytic device.

【図3】本発明の実施例2の電解装置の系統図。FIG. 3 is a system diagram of an electrolytic apparatus according to a second embodiment of the present invention.

【図4】本発明の実施例3の電解装置の系統図。FIG. 4 is a system diagram of an electrolytic device according to a third embodiment of the present invention.

【図5】本発明の実施例4の電解装置の系統図。FIG. 5 is a system diagram of an electrolytic device according to a fourth embodiment of the present invention.

【図6】本発明の実施例5の電解装置の系統図。FIG. 6 is a system diagram of an electrolytic apparatus according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…陽イオン交換膜、2…陽極電極、3…陽極極液ポン
プ、4…陽極液調整タンク、5…脱塩ポンプ、6…脱塩
タンク、7…酸回収タンク、8…酸回収ポンプ、9…原
液タンク、10…原液ポンプ、11…濃縮液回収タン
ク、12…濃縮液回収ポンプ、13…陰極電極、14…
陽イオン交換樹脂、15…陰イオン交換膜、16…陰極
極液ポンプ、17…陰極液調整タンク、18…陽極極液
槽、19…脱塩槽、20…酸回収槽、21…原液濃縮
槽、22…濃縮槽、23…陰極極液槽。
DESCRIPTION OF SYMBOLS 1 ... Cation exchange membrane, 2 ... Anode electrode, 3 ... Anode electrode solution pump, 4 ... Anolyte adjustment tank, 5 ... Demineralization pump, 6 ... Desalination tank, 7 ... Acid recovery tank, 8 ... Acid recovery pump, 9: undiluted solution tank, 10: undiluted solution pump, 11: concentrated liquid recovery tank, 12: concentrated liquid recovery pump, 13: cathode electrode, 14 ...
Cation exchange resin, 15: anion exchange membrane, 16: cathodic solution pump, 17: catholyte adjustment tank, 18: anode solution tank, 19: desalination tank, 20: acid recovery tank, 21: stock solution concentration tank , 22 ... concentration tank, 23 ... cathode electrode tank.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】強酸を含む溶液を電気透析によって分離・
回収する電解装置において電解質を有し、陰イオン交換
膜と陽イオン交換膜の間の濃縮槽にイオン交換樹脂を充
填できることを特徴とする電解装置。
A solution containing a strong acid is separated by electrodialysis.
An electrolysis apparatus comprising an electrolyte in a recovery electrolysis apparatus, wherein an ion exchange resin can be filled in a concentration tank between an anion exchange membrane and a cation exchange membrane.
【請求項2】請求項1において、直流電源装置の陽極側
電極の極液槽とイオン交換樹脂が充填してある濃縮槽の
間に、脱塩槽が1槽以上設けられている電解装置。
2. The electrolysis apparatus according to claim 1, wherein one or more desalination tanks are provided between the electrode tank of the anode electrode of the DC power supply and the concentration tank filled with the ion exchange resin.
【請求項3】請求項1または2において、上記脱塩槽内
を流通、もしくは循環する溶液が混ざり合うことがない
電解装置。
3. The electrolytic apparatus according to claim 1, wherein the solutions flowing or circulating in the desalting tank are not mixed.
【請求項4】請求項1,2または3において、上記脱塩
槽の少なくとも1槽は強酸を含む溶液や、流通・循環す
る酸回収槽内の陰イオンの混入を防ぐため、陽イオン交
換膜に挟まれた槽で構成されている電解装置。
4. A cation exchange membrane according to claim 1, wherein at least one of said desalting tanks is a cation exchange membrane in order to prevent a solution containing a strong acid or an anion from entering an circulating and circulating acid recovery tank. Electrolyzer consisting of a tank sandwiched between.
【請求項5】請求項1,2または3において、上記酸回
収槽の少なくとも1槽は、強酸を含む溶液から陰イオン
を透過させるために陰イオン交換膜と陽イオン交換膜で
挟まれた槽からなる電解装置。
5. The tank according to claim 1, wherein at least one of the acid recovery tanks is sandwiched between an anion exchange membrane and a cation exchange membrane to allow anions to permeate from a solution containing a strong acid. An electrolytic device comprising:
【請求項6】請求項3,4または5において、上記陽イ
オン交換膜と上記陰イオン交換膜で挟んで構成される上
記酸回収槽に隣接する上記脱塩槽を構成するために用い
る陽イオン交換膜の一枚は両脱塩槽を構成するために共
用している電解装置。
6. A cation according to claim 3, 4 or 5, wherein said cation is used to constitute said desalting tank adjacent to said acid recovery tank sandwiched between said cation exchange membrane and said anion exchange membrane. One of the exchange membranes is an electrolysis device that is commonly used to constitute both desalination tanks.
【請求項7】請求項1,2,3,4,5または6におい
て、上記陽極側電極及び上記陰極側電極を浸している電
解質を有する極液を循環ポンプによって、上記両極電極
が設置してある極液槽,極液を溜めることのできるタン
ク間を循環させたり、極液槽内や極液を溜めることので
きるタンクに滞留させることによって極液の液性を変化
させることができる電解装置。
7. The bipolar electrode according to claim 1, wherein the anolyte having an electrolyte bathing the anode and the cathode is circulated by a circulating pump. An electrolytic device that can change the liquid properties of an anolyte by circulating between a certain anolyte tank and a tank that can store the anolyte, or staying in the anolyte tank or a tank that can store the anolyte. .
【請求項8】請求項1,2,3,4,5,6または7に
おいて、それぞれの上記脱塩槽や上記濃縮槽,上記酸回
収槽等の槽はそれぞれの循環ポンプによってそれぞれの
槽と液を溜めることのできるタンク間を循環させたり、
上記脱塩槽,上記濃縮槽やそれぞれのタンク内に循環さ
せないで溜めることによって、液性を変化させることが
できる電解装置。
8. The tank according to claim 1, wherein each of said desalting tank, said concentrating tank and said acid collecting tank is connected to each tank by a respective circulating pump. Circulate between tanks that can store liquid,
An electrolytic device capable of changing the liquid property by storing it in the desalting tank, the concentrating tank and the respective tanks without circulating them.
JP10571597A 1997-04-23 1997-04-23 Electrolytic apparatus Pending JPH10296265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10571597A JPH10296265A (en) 1997-04-23 1997-04-23 Electrolytic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10571597A JPH10296265A (en) 1997-04-23 1997-04-23 Electrolytic apparatus

Publications (1)

Publication Number Publication Date
JPH10296265A true JPH10296265A (en) 1998-11-10

Family

ID=14415041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10571597A Pending JPH10296265A (en) 1997-04-23 1997-04-23 Electrolytic apparatus

Country Status (1)

Country Link
JP (1) JPH10296265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362594A (en) * 2016-08-30 2017-02-01 中国科学院青海盐湖研究所 Monovalent ion selectivity electrodialysis device and preparation method of lithium chloride concentrated liquor
CN116835790A (en) * 2023-06-15 2023-10-03 艾培克环保科技(上海)有限公司 Treatment process of butyl acrylate wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362594A (en) * 2016-08-30 2017-02-01 中国科学院青海盐湖研究所 Monovalent ion selectivity electrodialysis device and preparation method of lithium chloride concentrated liquor
CN116835790A (en) * 2023-06-15 2023-10-03 艾培克环保科技(上海)有限公司 Treatment process of butyl acrylate wastewater
CN116835790B (en) * 2023-06-15 2024-03-08 艾培克环保科技(上海)有限公司 Treatment process of butyl acrylate wastewater

Similar Documents

Publication Publication Date Title
Dermentzis Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization
Walters et al. Concentration of radioactive aqueous wastes. Electromigration through ion-exchange membranes
CN100415350C (en) Boron separation and recovery
US5593563A (en) Electrodeionization process for purifying a liquid
JP5138822B1 (en) Method for producing high purity lithium hydroxide
JPS6365912A (en) Method and apparatus for forming acid and base regenerating agent and use thereof in regeneration of ion exchange resin
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
JPH11221571A (en) Desalting of aqueous flow through sealed cell electrodialysis
KR20100099227A (en) Systems and methods for water treatment
US4306946A (en) Process for acid recovery from waste water
KR19980033215A (en) Fluorochemical Recovery and Recycling Methods Using Membranes
CN113023844B (en) Method for treating salt-containing fermentation waste liquid by combining diffusion dialysis with electrodialysis
CN208700815U (en) A kind of high slat-containing wastewater zero-discharge treatment system
CN101694007B (en) Treatment method of electroplating rinsewater
CN110510713A (en) A kind of electrodialysis plant and the method using electrodialysis plant separating acid and salt
US5804057A (en) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin
Dermentzis et al. An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions
US4357220A (en) Method and apparatus for recovering charged ions from solution
CN105154908A (en) Technology for recycling lithium hydroxide from solution through bipolar membrane method
US2796395A (en) Electrolytic desalting of saline solutions
CN108218101B (en) Low-cost treatment and recycling method for high-salt-content gas field water
US5578181A (en) Method for treating waste water containing neutral salts comprising monovalent ions
CN113184952B (en) Synchronous recovery device for nitrogen and phosphorus in wastewater and recovery method and application thereof
JP5188454B2 (en) Method for producing organic acid
JP2003001259A (en) Ultrapure water producing apparatus