JPH10296070A - Modifying method for surface of earth and sand, powder and granular material - Google Patents

Modifying method for surface of earth and sand, powder and granular material

Info

Publication number
JPH10296070A
JPH10296070A JP9140824A JP14082497A JPH10296070A JP H10296070 A JPH10296070 A JP H10296070A JP 9140824 A JP9140824 A JP 9140824A JP 14082497 A JP14082497 A JP 14082497A JP H10296070 A JPH10296070 A JP H10296070A
Authority
JP
Japan
Prior art keywords
sand
earth
silicon
powder
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9140824A
Other languages
Japanese (ja)
Inventor
Hikari Onto
光 恩藤
Tsutomu Nagasaki
務 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9140824A priority Critical patent/JPH10296070A/en
Publication of JPH10296070A publication Critical patent/JPH10296070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Glanulating (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modifying method for a surface by which efficiency of a process and expense is contrived and such general-purpose properties are held that are capable of applying to not only ordinary material of construction but also reutilization of waste by using crude silane as a surface modifier for giving water repellency to earth and sand, powder and granular material. SOLUTION: In the modifying method for the surface of earth and sand, powder and granular material, a crude reaction product (crude silane) of silicon and methyl chloride or chlorobenzene is directly used as a surface modifier. A high reactive chlorine atom bonding to a silicon atom with a hydrocarbon group immediately takes the hydrogen atom of a hydroxyl group on the surface of material to be worked and becomes hydrogen chloride. The remaining oxygen atom bonds to a silicon atom having strong affinity and forms a water repellent trimethyl siloxy group and triphenyl siloxy group. Also, since these silanes are a monomer, molecular length is several to ten-add Å and extremely small and permeability is good. Further, stability is excellent because a film is not formed but chemical bonding of both a water repellent group and the surface of material to be worked is caused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は建設発生土や建設発生汚
泥、又は燃え殻などの産業廃棄物、一般廃棄物に撥水性
を齋し、埋設物保護、無用植物の発生防止、止水などの
用途に適した特性を付与して再利用化を図る為の、土
砂、粉体及び粒状物の表面改質方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides water repellency to industrial waste and general waste such as construction waste soil, construction waste sludge, and cinders, to protect buried objects, to prevent the generation of useless plants, and to stop water. The present invention relates to a method for modifying the surface of earth and sand, powder, and granular materials for imparting characteristics suitable for use and for recycling.

【0002】[0002]

【従来の技術】従来土砂、粉体及び粒状物に撥水性を与
える為に施す表面改質としての被膜加工は、ジメチルハ
イドロジェンシロキサンポリマーなどのシリコーン製品
を水中エマルジョンまたは単に水と撹拌混合したものを
噴霧したのち加熱乾燥させる方法で行われてきた。この
目的で使用されるシリコーン製品の製造には実に多くの
工程を要する。まず珪素と塩化メチル、又は珪素とクロ
ロベンゼンを銅系触媒の下で化合させる直接法と呼ばれ
る製法でシラン混合物を合成し、それを何種類かのシラ
ン{炭化水素基と水素、珪素及び塩素の化合物、一般式
は R(m+n)HmSiC1(4−m+n)(1≦m+n
≦3,m=0or1,n=1〜3)Rは炭化水素基} に蒸留分留したのち、加水分解してシラノールというヒ
ドロキシル基誘導体を得る。加水分解時に発生する塩化
水素を処理したあと縮合重合させてポリシロキサンと
し、その中の多くの部分を占める環状構造のシクロシロ
キサンを、濃硫酸等により開環(クラッキング)して直
鎖状ポリシロキサンとしたのち、分子鎖両端のヒドロキ
シル基を一官能性の炭化水素−珪素基に置換して安定な
シロキサンポリマーを得るという具合である。
2. Description of the Related Art Conventionally, film processing as a surface modification for imparting water repellency to earth and sand, powders and granules is performed by mixing a silicone product such as a dimethyl hydrogen siloxane polymer with an emulsion in water or simply stirring and mixing with water. Has been sprayed and then dried by heating. The production of silicone products used for this purpose requires quite a number of steps. First, a silane mixture is synthesized by a method called direct method in which silicon and methyl chloride, or silicon and chlorobenzene are combined under a copper-based catalyst, and then converted into several types of silane, a compound of a hydrocarbon group and hydrogen, silicon and chlorine. And the general formula is R (m + n) HmSiC1 (4-m + n) (1 ≦ m + n
≦ 3, m = 0or1, n = 1 to 3) R is distilled and distilled into a hydrocarbon group 加 水 and then hydrolyzed to obtain a hydroxyl group derivative called silanol. Hydrogen chloride generated during hydrolysis is treated and polycondensed by condensation polymerization to form a polysiloxane. The cyclic structure of the cyclosiloxane, which occupies a large portion of the polysiloxane, is opened (cracked) with concentrated sulfuric acid or the like to form a linear polysiloxane. After that, the hydroxyl groups at both ends of the molecular chain are replaced with a monofunctional hydrocarbon-silicon group to obtain a stable siloxane polymer.

【0003】[0003]

【発明が解決しようとする課題】珪素と塩化メチル或い
はクロロベンゼンの直接合成によって得られる粗反応生
成物に含まれるシラン類はその沸点が接近しており、僅
かな沸点の差を利用して分留し、また数次の加工を経て
精製した製品を再度希釈して被膜剤として使用すること
は工程的な無駄があった。また、精製の工程を経ること
によって頗る高価となった材料を使用するという経済的
な無駄が避けられなかった。例として珪素と塩化メチル
の粗反応生成物に含まれるシラン類の沸点を示すと概ね
次のとおりである。 (CHSiCl 沸点 70℃ (CH)SiCl 沸点 66℃ SiHCl 沸点 32℃ (CH)HSiCl 沸点 41℃ (CHSiCl 沸点 57℃ SiCl 沸点 57℃ それぞれの生成物は接近した沸点をもっており、トリメ
チルクロロシランと四塩化珪素は共沸する。また珪素と
クロロベンゼンの粗反応生成物についても、 (C)SiCl 沸点201℃ (CSiCl 沸点309℃ (CSiCl 沸点207℃ の如くである。これが分留にあたって大規模な設備と膨
大な経費を要する理由である。更にその後に控える加水
分解、塩化水素回収、縮合重合、開環、置換等精製に要
する費用はシリコーン製品の価格を極めて高価なものと
し、より広い分野での利用を阻害する原因となってい
る。また、土砂状物や粉体の撥水処理剤として使用され
るシリコーン製品の分子長は数百から一千Åに達し、被
加工物に対する浸透性も良好とはいえない。本発明はこ
れらの欠点を除くためになされたものである。
The silanes contained in the crude reaction product obtained by the direct synthesis of silicon and methyl chloride or chlorobenzene have similar boiling points, and fractional distillation is carried out by utilizing a slight difference in boiling points. Further, it is wasteful in terms of process to dilute the product purified through several steps of processing again and use it as a coating agent. In addition, economical waste of using materials that have become extremely expensive due to the purification process has been unavoidable. As an example, the boiling points of silanes contained in a crude reaction product of silicon and methyl chloride are generally as follows. (CH 3 ) 2 SiCl 2 Boiling point 70 ° C. (CH 3 ) SiCl 3 Boiling point 66 ° C. SiHCl 3 Boiling point 32 ° C. (CH 3 ) HSiCl 2 Boiling point 41 ° C. (CH 3 ) 3 SiCl Boiling point 57 ° C. SiCl 4 Boiling point 57 ° C. The substances have close boiling points, and trimethylchlorosilane and silicon tetrachloride azeotrope. The crude reaction product of silicon and chlorobenzene also has a boiling point of (C 6 H 5 ) SiCl 3 201 ° C. (C 6 H 5 ) 2 SiCl 2 boiling point 309 ° C. (C 6 H 5 ) 3 SiCl boiling point 207 ° C. . This is why fractionation requires large equipment and enormous costs. Furthermore, the costs required for subsequent purification, such as hydrolysis, hydrogen chloride recovery, condensation polymerization, ring opening, and substitution, make the price of the silicone product extremely expensive and hinder its use in a wider range of fields. Further, the molecular length of a silicone product used as a water-repellent treating agent for sediment-like materials or powders reaches several hundreds to 1,000 Å, and its permeability to a workpiece is not good. The present invention has been made to eliminate these disadvantages.

【0004】[0004]

【課題を解決するための手段】本発明は珪素と塩化メチ
ルまたはクロロベンゼンの粗反応生成物(以下粗シラン
と称する。)を直接表面改質剤として使用することを特
徴とする。
The present invention is characterized in that a crude reaction product of silicon and methyl chloride or chlorobenzene (hereinafter referred to as crude silane) is directly used as a surface modifier.

【0005】大部分のシリコーン製品の共通な中間生成
物である粗シランには、珪素−塩化メチル反応生成物に
ついてはメチルトリクロロシラン、ジメチルジクロロシ
ラン、トリメチルクロロシラン、メチルジクロロシラ
ン、珪素−クロロベンゼン反応生成物についてはフェニ
ルトリクロロシラン、ジフェニルジクロロシラン、トリ
フェニルクロロシランが挙げられるが、いずれも撥水性
の炭化水素基を有することで共通している。他にも撥水
性を持つ炭化水素基を持つ有機化合物は多いが、これら
の直接法で得られるシラン類が他の化合物と異なってい
るのは、極めて反応性の高い塩素原子が炭化水素基を従
えた珪素原子と結合しているという点である。
[0005] Crude silane, a common intermediate of most silicone products, includes methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, methyldichlorosilane, and silicon-chlorobenzene reaction products for silicon-methyl chloride reaction products. Examples of the substance include phenyltrichlorosilane, diphenyldichlorosilane, and triphenylchlorosilane, all of which have a water-repellent hydrocarbon group. There are many other organic compounds with hydrocarbon groups that have water repellency, but the silanes obtained by these direct methods are different from other compounds because the extremely reactive chlorine atom has a hydrocarbon group. The point is that it is bonded to the silicon atom.

【0006】[0006]

【作用】炭化水素基を従えた珪素原子と結合している高
反応性の塩素原子は被加工物表面のヒドロキシル基の水
素原子を瞬時に奪って塩化水素となり、残された酸素原
子は親和性の強い珪素原子と結びついて撥水性のトリメ
チルシロキシ基やトリフェニルシロキシ基を形成する。
しかもこれらシラン類はモノマーである為、分子長は数
〜十数Åと極めて小さく、浸透性も良好である。また、
被膜形成ではなく撥水基と被加工物表面との化学的結合
である為安定性にも優れている。
[Function] A highly reactive chlorine atom bonded to a silicon atom having a hydrocarbon group instantaneously deprives a hydrogen atom of a hydroxyl group on the surface of a workpiece to become hydrogen chloride, and the remaining oxygen atom has an affinity. And water-repellent trimethylsiloxy and triphenylsiloxy groups.
In addition, since these silanes are monomers, their molecular length is as small as several to several tens of degrees, and their permeability is good. Also,
It is not a film but a chemical bond between the water-repellent group and the surface of the workpiece.

【0007】[0007]

【実施例】実施例では汚水管埋設工事で発生した掘削残
土を使用した。回転ドラムはφ=1500,L=400
0で容積7mである。撹拌を要する為、この大きさの
ドラムで、1バッチ1m程度の処理量が適当である。
まず残土を篩機で粒径0〜5mmに揃え、気密性の回転
ドラムに投入し、密閉したのちブロワー(真空発生機)
を作動させて300〜350mmHgに減圧する。粗シ
ランは加熱気化装置でガス化する。加熱の度合は90〜
100℃でよい。ブロワー側バルブを閉じた後、粗シラ
ンガス側のコックを開放し、液体量で1,000ccの
粗シランが消費されるまで、粗シランガスをドラム内に
導入する。10rpm程度でゆっくリドラムを回転さ
せ、10分間撹拌する。この時点でドラム内の気圧は5
50〜600mmHgとなる。
[EXAMPLES] In the examples, waste soil excavated during burial work for sewage pipes was used. Rotary drum φ = 1500, L = 400
0 and a volume of 7 m 3 . Since agitation is required, a processing amount of about 1 m 3 per batch is appropriate for a drum of this size.
First, the remaining soil is sieved to a particle size of 0 to 5 mm, put into an airtight rotating drum, sealed, and then blower (vacuum generator)
Is operated to reduce the pressure to 300 to 350 mmHg. Crude silane is gasified by a heating vaporizer. The degree of heating is 90 ~
100 ° C may be sufficient. After closing the blower-side valve, the cock on the crude silane gas side is opened, and the crude silane gas is introduced into the drum until 1,000 cc of crude silane is consumed in liquid amount. Rotate the drum slowly at about 10 rpm and stir for 10 minutes. At this point, the pressure inside the drum is 5
It becomes 50-600 mmHg.

【0008】次にドラム内に発生した塩化水素を処理す
る為アルカリ液を混入する。実施例では水酸化ナトリウ
ム20%溶液を1,500cc混合し、10rpmの回
転速度で10分間撹拌した。そののち水を張ったコンク
リート水槽に投入して水洗し、水を切って乾燥させる。
1,000ccの粗シランに含まれる塩素原子はおよそ
17.05molであるから発生し得る塩化水素の量も
等しいと思われるが、実際には残土中に存在する金属イ
オンと化合したり、未反応のまま残留する部分も少なく
ない。したがって水酸化ナトリウム20%溶液を3.0
00cc、すなわち[OH]イオン15mol分を混
合撹拌すると洗浄液は顕著なアルカリ性を示すがpH値
は使用する材料によってバラつきがある。粗シラン処理
後の材料取り出し時に塩化水素臭が残っていなければ残
留塩化水素と無機塩(この場合主として塩化ナトリウ
ム)の除去は水洗処理で充分である。
Next, an alkaline solution is mixed to treat the hydrogen chloride generated in the drum. In the example, 1,500 cc of a 20% sodium hydroxide solution was mixed and stirred at a rotation speed of 10 rpm for 10 minutes. After that, it is poured into a concrete tank filled with water, washed with water, drained and dried.
Since the amount of chlorine atoms contained in 1,000 cc of crude silane is about 17.05 mol, the amount of hydrogen chloride that can be generated is considered to be the same, but in actuality, it may be combined with metal ions present in the residual soil or unreacted. Not a few parts remain as they are. Therefore, a 20% sodium hydroxide solution was added to 3.0%.
When 100 cc, that is, 15 mol of [OH ] ions are mixed and stirred, the cleaning solution shows remarkable alkalinity, but the pH value varies depending on the material used. If no hydrogen chloride odor remains when the material is taken out after the crude silane treatment, the removal of residual hydrogen chloride and inorganic salts (in this case, mainly sodium chloride) by water washing is sufficient.

【0009】1回当りの処理量は被加工物1m程度が
望ましく、要する粗シランの量は1,000ccを目安
とし、被加工物の性状に合わせて増減する。吸収性の高
い素材には5割位増量しなければならないことがある
し、そうでない、例えば珪砂のように緻密な表面を持つ
素材では半分の量で十分な場合もある。また材料につい
ても、用途や施工場所によっては赤土の混入や染料など
による着色が必要な場合があるし、真砂土・砂・礫など
の土木材料への応用も有用である。
The amount of processing per one processing is preferably about 1 m 3 , and the required amount of crude silane is about 1,000 cc, and it is increased or decreased according to the properties of the processing object. For a highly absorbent material, it may be necessary to increase the amount by about 50%. For other materials, for example, a material having a dense surface such as silica sand, half the amount may be sufficient. Depending on the application and construction site, the material may need to be mixed with red soil or colored with a dye, or the like, and the application to civil engineering materials such as masago, sand, and gravels is also useful.

【0010】[0010]

【発明の効果】土砂、粉体及び粒状物に撥水性を与える
為の表面改質処理に粗シランを利用することにより、従
来シリコーン製品を使用していたことで避けられなかっ
た工程的且つ経済的な無駄を省いた。また、より広汎な
範囲での表面改質処理の応用を可能にし、無価物或いは
廃棄物としてその殆どを埋め立て処分に頼っていた建設
発生土、建設発生汚泥、燃え殻等を有価物化し、再利用
するための方途を開いた。
According to the present invention, the use of crude silane in the surface modification treatment for imparting water repellency to earth and sand, powders and granules results in a process and economy inevitable due to the conventional use of silicone products. Waste was eliminated. In addition, it has made possible the application of surface modification treatment in a wider range, and converted construction waste soil, construction sludge, cinders, etc., which had relied on landfill disposal of most of them as valuables or waste, into valuable resources, and Opened the way to use.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C09K 17/36 B09B 3/00 304J ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C09K 17/36 B09B 3/00 304J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】土砂、粉体及び粒状物に対し炭化水素−珪
素基を化学結合させることによって撥水性を付与する表
面改質方法
1. A surface modification method for imparting water repellency by chemically bonding a hydrocarbon-silicon group to earth, sand, powder and granules.
JP9140824A 1997-04-23 1997-04-23 Modifying method for surface of earth and sand, powder and granular material Pending JPH10296070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9140824A JPH10296070A (en) 1997-04-23 1997-04-23 Modifying method for surface of earth and sand, powder and granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9140824A JPH10296070A (en) 1997-04-23 1997-04-23 Modifying method for surface of earth and sand, powder and granular material

Publications (1)

Publication Number Publication Date
JPH10296070A true JPH10296070A (en) 1998-11-10

Family

ID=15277582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9140824A Pending JPH10296070A (en) 1997-04-23 1997-04-23 Modifying method for surface of earth and sand, powder and granular material

Country Status (1)

Country Link
JP (1) JPH10296070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777988A (en) * 2020-05-29 2020-10-16 清华苏州环境创新研究院 Hydrophobic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777988A (en) * 2020-05-29 2020-10-16 清华苏州环境创新研究院 Hydrophobic material and preparation method thereof
CN111777988B (en) * 2020-05-29 2022-12-09 清华苏州环境创新研究院 Hydrophobic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6395825B1 (en) Process for synthesis of silicone resin
US5010159A (en) Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
JPH1059984A (en) Oligomer mixture of condensed alkyl alkoxysilane
CN1377361A (en) Process for the formation of polyhedral oligomeric silsesquioxanes
JPH11157825A (en) Production of hydrophobic precipitated silica
JPH0267290A (en) Oleophilic bicyclic silicic acid derivative having birdcage-shaped structure and its production and use
US4221691A (en) Method of hydrolyzing chlorosilanes
CN111484621B (en) Polysilosilazane compound, method for preparing the same, composition comprising the same, and cured product thereof
JPS6250404B2 (en)
JPS63304028A (en) Production of organopolysiloxane
JPS6017214B2 (en) Soluble methylpolysiloxane and its manufacturing method
JPH10296070A (en) Modifying method for surface of earth and sand, powder and granular material
JPH10237177A (en) Production of network polysilane
US5605982A (en) Sheet and tube siloxane polymers
JPH0370737A (en) Organopolysiloxane and its preparation
US5945497A (en) Method for hydrolyzing organochlorosilanes
TW581778B (en) Process for synthesis of silicone resin
JPS602314B2 (en) Method for producing cyclic siloxane
US6075109A (en) Method of forming a granular siloxane gel having reduced chloride content
EP1059322A2 (en) Silicone resins and process for synthesis
JP4603634B2 (en) Process for producing organosiloxane from trihalosilane
JP2002173493A (en) Polyvalent reactive silicon compound substituted with polyalkylene glycol and method for manufacturing the same
JPH06179751A (en) Production of polyorganosilsesquioxane
RU2079516C1 (en) Method for production of organosilicium resins
KR100915216B1 (en) Production method of methylsiliconate monomer usable water-soluble water cutoff silicone from wasted chlorosilane