JPH10296043A - Gad adsorption filter for air conditioning device - Google Patents

Gad adsorption filter for air conditioning device

Info

Publication number
JPH10296043A
JPH10296043A JP9111325A JP11132597A JPH10296043A JP H10296043 A JPH10296043 A JP H10296043A JP 9111325 A JP9111325 A JP 9111325A JP 11132597 A JP11132597 A JP 11132597A JP H10296043 A JPH10296043 A JP H10296043A
Authority
JP
Japan
Prior art keywords
gas
adsorption
activated carbon
adsorption layer
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9111325A
Other languages
Japanese (ja)
Inventor
Takao Hattori
部 隆 雄 服
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9111325A priority Critical patent/JPH10296043A/en
Publication of JPH10296043A publication Critical patent/JPH10296043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas adsorption filter suitable for an air conditioning device for adsorbing and removing in a wide range of various kinds of gas components in a living space. SOLUTION: An adsorption filter F is provided with a preceding stage adsorption layer 1 and a succeeding adsorption layer 3 disposed on the downstream side of air flow of the layer 1. Respective layers 1 and 3 are of the constitution of fixing gas adsorbers on the surfaces of respective honeycomb base gratings 1a and 3a. The gas adsorbers used for the preceding adsorption layer 1 is unmodified active carbon, and the gas adsorber used for the succeeding adsorption layer 3 is, for example, chemically modified active carbon for adsorbing aldehydes. In the adsorption filter F, mainly generated gas content can be adsorbed by the unmodified active carbon on the preceding adsorption layer, and then mainly for example, aldehydes like aldehyde and the like can be adsorbed by the chemically modified active carbon on the succeeding adsorption layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生活居住空間にお
ける種々のガス成分の吸着除去に適した空気調和装置用
ガス吸着フィルタの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a gas adsorption filter for an air conditioner suitable for adsorbing and removing various gas components in a living space.

【0002】[0002]

【従来の技術】従来、生活居住空間に存在する臭気ガス
や有毒ガスは、その種類が多岐に渡り、且つ比較的濃度
が低いため、これらのガスの吸着除去には、椰子殻活性
炭等の無修飾活性炭が多用されている。一方、産業分野
では、比較的種類の限定された高密度の排出ガスを対象
とし、化学修飾活性炭の混合物を充填塔などに高密度で
充填した充填塔方式のものが用いられている。
2. Description of the Related Art Conventionally, odorous gases and toxic gases existing in living and living spaces are of various types and relatively low in concentration. Modified activated carbon is frequently used. On the other hand, in the industrial field, a packed-tower system in which a mixture of chemically modified activated carbon is packed in a packed tower or the like at a high density is used for a relatively limited type of high-density exhaust gas.

【0003】ここで、上記「化学修飾活性炭」とは、あ
る特定物質の吸着能を有する化学物質の添着処理が施さ
れた活性炭をいい、上記「無修飾活性炭」とは、そのよ
うな処理が施されていない活性炭をいう。
[0003] Here, the above-mentioned "chemically modified activated carbon" refers to activated carbon to which a chemical substance having an ability to adsorb a specific substance has been applied, and the above-mentioned "unmodified activated carbon" refers to such a treated substance. Activated carbon that has not been treated.

【0004】そして、上記無修飾活性炭だけでは、生活
居住空間における種々のガス成分の内、アルデヒド類系
ガスやアンモニア等の塩基性ガスのような、比較的分子
量が小さく極性の高いガス成分の吸着能が低く、生活臭
気に対するバランスの良い脱臭効果が期待できない。一
方、上記充填塔方式のものでは、圧力損失が大きいた
め、空気調和装置用のフィルタには適していない。
[0004] The unmodified activated carbon alone adsorbs gas components having a relatively small molecular weight and a high polarity, such as aldehyde-based gases and basic gases such as ammonia, among various gas components in the living space. The performance is low, and a well-balanced deodorizing effect on living odors cannot be expected. On the other hand, the packed tower method is not suitable for a filter for an air conditioner due to a large pressure loss.

【0005】[0005]

【発明が解決しようとする課題】そこで、従来、活性炭
等の粒状脱臭剤と、ゼオライト等の無機系多孔質粒子に
触媒を担持させた吸着体による吸着フィルタ(特開平8
−299720号公報参照)や、塩基を添着した活性
炭、リンゴ酸及び鉄塩を添着した活性炭、及び中性活性
炭を混合した吸着体による吸着フィルタ(特開平8−1
0315号公報参照)も提案されている。
Therefore, conventionally, an adsorbent filter comprising a granular deodorizer such as activated carbon and an adsorbent in which a catalyst is supported on inorganic porous particles such as zeolite (Japanese Patent Laid-open No.
JP-A-299720), an adsorption filter comprising an adsorbent obtained by mixing activated carbon impregnated with a base, activated carbon impregnated with malic acid and iron salts, and neutral activated carbon.
No. 0315) has also been proposed.

【0006】しかしながら、前者のフィルタでは、活性
炭と触媒の吸着速度が異なるため、常時バランスのとれ
た吸着性能を期待することができない。また、後者のフ
ィルタでは、塩基性ガスやアルデヒド類系のガスに対す
る吸着能が低いという問題がある。
However, in the former filter, since the adsorption speeds of the activated carbon and the catalyst are different, it is impossible to always expect a balanced adsorption performance. In addition, the latter filter has a problem in that the ability to adsorb a basic gas or an aldehyde-based gas is low.

【0007】また、無修飾活性炭、アンモニア吸着用化
学修飾活性炭、及びアルデヒド類吸着用化学修飾活性炭
をそれぞれ吸着体とする3つの吸着層からなる3層式の
フィルタ(特開昭62−241526号公報参照)が提
案されているが、3層以上の多層構造では、空気調和装
置用のフィルタとしては圧力損失が大きくなり過ぎると
いう問題がある。
Further, a three-layer filter comprising three adsorbent layers each having unmodified activated carbon, chemically modified activated carbon for adsorbing ammonia, and chemically modified activated carbon for adsorbing aldehydes (Japanese Patent Laid-Open No. 62-241526). However, with a multilayer structure having three or more layers, there is a problem that the pressure loss becomes too large for a filter for an air conditioner.

【0008】本発明は、以上のような点を考慮してなさ
れたものであり、生活居住空間における多種のガス成分
を幅広く効果的に吸着除去でき、空気調和装置に適した
ガス吸着フィルタを提供することを目的とする。
The present invention has been made in view of the above points, and provides a gas adsorption filter which can adsorb and remove a wide variety of gas components in a living space widely and effectively, and is suitable for an air conditioner. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】第1の手段は、無修飾活
性炭をガス吸着体とする前段吸着層と、この前段吸着層
に対して空気流の下流側に配置され、化学修飾活性炭を
ガス吸着体とする後段吸着層とを備えたことを特徴とす
る空気調和装置用ガス吸着フィルタである。
The first means comprises a pre-adsorption layer using unmodified activated carbon as a gas adsorber, and a downstream side of the air flow with respect to the pre-adsorption layer, which converts the chemically modified activated carbon into gas. A gas adsorption filter for an air conditioner, comprising: a subsequent adsorption layer serving as an adsorbent.

【0010】この第1の手段によれば、前段吸着層の無
修飾活性炭によって、主に一般ガス成分を吸着した後、
後段吸着層の化学修飾活性炭によって主に、一般ガス成
分に比較して低分子量で極性の高いガス成分を吸着する
ことができる。このことにより、一般ガス成分は勿論、
一般ガス成分に比較して低分子量で極性の高いガス成分
についても、高い吸着性能を発揮することができる。ま
た、3層以上の吸着層を備えたものに比べ、圧力損失を
小さく抑えることができる。
According to the first means, after the general gas components are mainly adsorbed by the unmodified activated carbon in the pre-adsorption layer,
The chemically modified activated carbon in the latter adsorption layer can mainly adsorb a gas component having a low molecular weight and a high polarity as compared with a general gas component. This allows, of course, general gas components,
Even with a gas component having a low molecular weight and a high polarity as compared with a general gas component, high adsorption performance can be exhibited. Further, the pressure loss can be suppressed to be smaller than that having three or more adsorption layers.

【0011】第2の手段は、第1の手段において、前記
前段吸着層の厚さを、前記後段吸着層の厚さの1.5倍
以上としたものである。
A second means is the first means, wherein the thickness of the preceding adsorption layer is 1.5 times or more the thickness of the latter adsorption layer.

【0012】第3の手段は、第1の手段において、前記
前段吸着層と前記後段吸着層とは、それぞれ、単位セル
の集合からなり前記ガス吸着体が固着される基体格子を
有し、前記前段吸着層と前記後段吸着層との間の間隔
を、前記後段吸着層の基体格子の単位セル寸法以下とし
たものである。
[0013] A third means is the first means, wherein the former adsorbing layer and the latter adsorbing layer each have a base lattice formed of a set of unit cells and to which the gas adsorbent is fixed. The distance between the first-stage adsorption layer and the second-stage adsorption layer is set to be equal to or less than the unit cell size of the substrate lattice of the second-stage adsorption layer.

【0013】第4の手段は、第1の手段において、前記
前段吸着層と前記後段吸着層とは、それぞれ、単位セル
の集合からなり前記ガス吸着体が固着される基体格子を
有し、前記前段吸着層の基体格子の単位セル寸法を、前
記後段吸着層の基体格子の単位セル寸法の0.5倍以下
としたものである。
A fourth means is the first means, wherein each of the former adsorbent layer and the latter adsorbent layer has a base lattice formed of a set of unit cells and to which the gas adsorbent is fixed, The unit cell size of the substrate lattice of the former adsorption layer is set to 0.5 times or less the unit cell size of the substrate lattice of the latter adsorption layer.

【0014】第5の手段は、第1の手段において、前記
前段吸着層と前記後段吸着層とは、それぞれ、単位セル
の集合からなり前記ガス吸着体が固着されるとともに単
位セル寸法が同一の基体格子を有し、前記前段吸着層
を、その基体格子の各単位セル軸が、前記後段吸着層の
基体格子の格子交差点にそれぞれ対応するように配置し
たものである。
A fifth means is that, in the first means, the former adsorbent layer and the latter adsorbent layer are each composed of a set of unit cells, and the gas adsorbent is fixed and the unit cell dimensions are the same. A substrate lattice is provided, and the former adsorption layer is arranged such that each unit cell axis of the substrate lattice corresponds to a lattice intersection of the substrate lattice of the latter adsorption layer.

【0015】以上の第2乃至第5の手段によれば、第1
の手段において、特に一般ガス成分に比較して低分子量
で極性の高いガス成分について、長時間に渡って高い吸
着性能を保つことができる。
According to the second to fifth means, the first
In particular, high adsorption performance can be maintained over a long period of time especially for a gas component having a low molecular weight and a high polarity as compared with a general gas component.

【0016】第6の手段は、少なくとも、無修飾活性
炭、アルデヒド類吸着用の化学修飾活性炭、及び塩基性
ガス吸着用の化学修飾活性炭の3種の活性炭粒子の混合
物を、基体格子の表面に固着させてなることを特徴とす
る空気調和装置用ガス吸着フィルタである。
The sixth means is that a mixture of at least three types of activated carbon particles of unmodified activated carbon, chemically modified activated carbon for adsorption of aldehydes, and chemically modified activated carbon for adsorption of basic gas is fixed to the surface of the substrate lattice. A gas adsorption filter for an air conditioner, characterized in that the gas adsorption filter is characterized in that:

【0017】この第6の手段によれば、3種の活性炭粒
子の混合物によって、アルデヒド類、塩基性ガス及びそ
の他の一般ガス成分の各ガス成分について高い吸着性能
を発揮することができる。また、多層式の吸着層を備え
たものに比べ、圧力損失を小さく抑えることができる。
According to the sixth means, a mixture of three types of activated carbon particles can exhibit high adsorption performance for aldehydes, basic gas and other general gas components. Further, the pressure loss can be suppressed to be smaller than that provided with a multilayer adsorption layer.

【0018】第7の手段は、第6の手段において、前記
活性炭粒子の混合物は、前記無修飾活性炭30〜50重
量%、前記アルデヒド類吸着用の化学修飾活性炭30〜
50重量%、前記塩基性ガス吸着用の化学修飾活性炭1
5〜25重量%よりなるものである。
According to a seventh aspect, in the sixth aspect, the mixture of the activated carbon particles comprises 30 to 50% by weight of the unmodified activated carbon and 30 to 50% by weight of the chemically modified activated carbon for adsorbing aldehydes.
50% by weight, the chemically modified activated carbon for basic gas adsorption 1
5 to 25% by weight.

【0019】この第7の手段によれば、第6の手段にお
いて、アルデヒド類、塩基性ガス、及びその他の一般ガ
ス成分の各ガス成分をバランス良く、且つ効果的に吸着
することができる。
According to the seventh means, the aldehydes, the basic gas, and other general gas components can be adsorbed in a well-balanced and effective manner in the sixth means.

【0020】第8の手段は、第6又は第7の手段におい
て、前記活性炭粒子の混合物を構成する活性炭粒子はい
ずれも、20〜42メッシュの標準ふるいを通過する範
囲の粒径を有するものである。
Eighth means is the sixth or seventh means, wherein each of the activated carbon particles constituting the mixture of the activated carbon particles has a particle size within a range passing through a standard sieve of 20 to 42 mesh. is there.

【0021】この第8の手段によれば、第6又は第7の
手段において、圧力損失を比較的低く抑えつつ、アルデ
ヒド類、塩基性ガス、及びその他の一般ガス成分の各ガ
ス成分をバランス良く吸着することができる。
According to the eighth aspect, in the sixth or seventh aspect, the gas components of the aldehydes, the basic gas, and other general gas components are balanced with a relatively low pressure loss. Can be adsorbed.

【0022】[0022]

【発明の実施の形態】次に、図面を参照して本発明の実
施の形態について説明する。図1乃至図7は本発明によ
る空気調和装置用ガス吸着フィルタの実施の形態を示す
図である。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 to 7 are views showing an embodiment of a gas adsorption filter for an air conditioner according to the present invention.

【0023】[第1の実施形態]まず、図1を参照して
本発明の第1の実施形態について説明する。図1(a)
において、空気調和装置用ガス吸着フィルタFは、前段
吸着層1と、この前段吸着層1に対して空気流の下流側
に配置された後段吸着層3とを備えている。また、各吸
着層1,3は、それぞれ基体格子1a,3aの表面にガ
ス吸着体を固着させた構造を有している。
[First Embodiment] First, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 (a)
, The gas adsorption filter F for an air conditioner includes a pre-stage adsorption layer 1 and a post-stage adsorption layer 3 disposed downstream of the air flow with respect to the pre-stage adsorption layer 1. Further, each of the adsorption layers 1 and 3 has a structure in which a gas adsorbent is fixed to the surface of the base lattices 1a and 3a, respectively.

【0024】ここで、図1(b)には、前段吸着層1の
基体格子1aの一部が示されている。図1(b)に示す
ように、この基体格子1aは、多数の六角形断面の単位
セル2の集合からなるハニカム状のものである。なお、
後段吸着層3の基体格子3aも、基本的に図1(b)に
示す基体格子1aと同様の形状のものである。
Here, FIG. 1 (b) shows a part of the base lattice 1a of the pre-adsorption layer 1. As shown in FIG. 1 (b), the substrate lattice 1a is a honeycomb-shaped one composed of a group of a large number of unit cells 2 having a hexagonal cross section. In addition,
The base lattice 3a of the latter adsorption layer 3 is also basically the same in shape as the base lattice 1a shown in FIG.

【0025】また、前段吸着層1に用いられるガス吸着
体は無修飾活性炭であり、段吸着層3に用いられるガス
吸着体はアルデヒド類吸着用の化学修飾活性炭である。
ここで、上記「化学修飾活性炭」とは、ある特定物質
(この場合はアルデヒド類)の吸着能を有する化学物質
(この場合は、例えば第1級アミン)の添着処理が施さ
れた活性炭をいい、上記「無修飾活性炭」とは、そのよ
うな処理が施されていない活性炭をいう。
The gas adsorbent used in the first adsorption layer 1 is unmodified activated carbon, and the gas adsorbent used in the first adsorption layer 3 is chemically modified activated carbon for aldehyde adsorption.
Here, the above-mentioned “chemically modified activated carbon” refers to activated carbon that has been subjected to an impregnation treatment with a chemical substance (in this case, for example, a primary amine) capable of adsorbing a specific substance (in this case, aldehydes). The “unmodified activated carbon” refers to activated carbon that has not been subjected to such treatment.

【0026】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、前段吸
着層の無修飾活性炭によって、主に一般ガス成分を吸着
した後、後段吸着層の化学修飾活性炭によって主に、一
般ガス成分に比較して低分子量で極性の高いアセトアル
デヒド等のアルデヒド類のガス成分を吸着することがで
きる。このことにより、一般ガス成分は勿論、一般ガス
成分に比較して低分子量で極性の高いアルデヒド類のガ
ス成分についても、高い吸着性能を発揮することができ
る。また、3層以上の吸着層を備えたものに比べ、圧力
損失を小さく抑えることができる。
Next, the operation of the present embodiment having such a configuration will be described. According to the present embodiment, after the general gas component is mainly adsorbed by the unmodified activated carbon of the former adsorption layer, mainly the chemically modified activated carbon of the latter adsorption layer has a low molecular weight and a high polarity compared to the general gas component. Gas components of aldehydes such as acetaldehyde can be adsorbed. As a result, not only general gas components but also gas components of aldehydes having low molecular weight and high polarity as compared with general gas components can exhibit high adsorption performance. Further, the pressure loss can be suppressed to be smaller than that having three or more adsorption layers.

【0027】[0027]

【実施例】ここで、本実施形態の一実施例を示せば、前
段吸着層1として、厚さ(図1(a)の空気流れ方向の
厚さをいう。以下同様。)10mm、単位セル寸法2.5
mmの基体格子1aの表面に、20〜42メッシュの標準
ふるいを通過する範囲の粒径を有する無修飾椰子殻活性
炭を1平方メートル当たり1kgの割合で固着したものを
用いる。また、後段吸着層3として、厚さ5mm、単位セ
ル寸法5.5mmの基体格子3aの表面に、20〜42メ
ッシュの標準ふるいを通過する範囲の粒径を有するアル
デヒド吸着用の化学修飾活性炭を1平方メートル当たり
1kgの割合で固着したものを用いる。また、両吸着層
1,3同士の間の間隔は1mmとする。
Here, if an example of the present embodiment is shown, the pre-adsorption layer 1 is 10 mm thick (refers to the thickness in the air flow direction of FIG. Dimension 2.5
Unmodified coconut shell activated carbon having a particle size in the range of passing through a standard sieve of 20 to 42 mesh is fixed to the surface of a substrate lattice 1a of 1 mm per square meter at a rate of 1 kg per square meter. Further, as the latter-stage adsorption layer 3, chemically modified activated carbon for aldehyde adsorption having a particle size in a range of passing through a standard sieve of 20 to 42 mesh is provided on the surface of a base lattice 3a having a thickness of 5 mm and a unit cell size of 5.5 mm. Use what is fixed at a rate of 1 kg per square meter. The distance between the two adsorbing layers 1 and 3 is 1 mm.

【0028】なお、本実施形態において、後段吸着層3
のガス吸着体に、アルデヒド類吸着用の化学修飾活性炭
を用いる場合について説明したが、後段吸着層3のガス
吸着体に、一般ガス成分に比較して低分子量で極性の高
いその他のガス成分(例えば、塩基性のガス成分)の吸
着能を高めた化学修飾活性炭を用いてもよい。そして、
その場合は、当該ガス成分に対して、上述した作用効果
と同様の作用効果を期待することができる。
In the present embodiment, the latter adsorbing layer 3
Although the case where chemically modified activated carbon for aldehydes adsorption is used as the gas adsorbent of the above is described, the gas adsorbent of the latter adsorbing layer 3 is provided with another gas component having a low molecular weight and a high polarity compared to a general gas component ( For example, a chemically modified activated carbon having an improved ability to adsorb a basic gas component) may be used. And
In that case, the same effect as the above-described effect can be expected for the gas component.

【0029】[第2の実施形態]次に、本発明の第2の
実施形態について説明する。本実施形態は、上記第1の
実施形態において、前段吸着層1の厚さを後段吸着層3
の厚さの1.5倍以上としたものであり、その他の構成
は図1に示す上記第1の実施形態と同様である。
[Second Embodiment] Next, a second embodiment of the present invention will be described. This embodiment is different from the first embodiment in that the thickness of the pre-adsorption layer 1 is
Is 1.5 times or more the thickness of the first embodiment, and the other configuration is the same as that of the first embodiment shown in FIG.

【0030】次に、本実施形態に関する試験結果につい
て説明する。上記第1の実施形態の実施例に示すような
ガス吸着フィルタを基準に、後段吸着層3の厚さに対す
る前段吸着層1の厚さの比率(前段厚さ/後段厚さ比)
をパラメータとしてガス吸着性能の試験を行った。
Next, the test results regarding the present embodiment will be described. The ratio of the thickness of the former adsorption layer 1 to the thickness of the latter adsorption layer 3 based on the gas adsorption filter as shown in the example of the first embodiment (the former thickness / the latter thickness ratio).
A gas adsorption performance test was performed using as a parameter.

【0031】具体的には、一定本数のタバコからの発煙
を充満させた試験チャンバー内にガス吸着フィルタを設
置し、送風ファンによって一定通過風速で一定時間の通
風を行い、チャンバー内のガス除去率を測定する試験
を、上記前段厚さ/後段厚さ比の異なる数種類の吸着フ
ィルタ毎に行った。
Specifically, a gas adsorption filter is installed in a test chamber filled with smoke from a certain number of cigarettes, and air is blown for a certain time at a constant passing air velocity by a blower fan, and the gas removal rate in the chamber is reduced. Was measured for each of several types of adsorption filters having different thickness ratios of the preceding stage / the latter stage.

【0032】その結果、図2に示すような、前段厚さ/
後段厚さ比と、アセトアルデヒドに対する吸着破過相対
時間との関係が得られた。ここで、「吸着破過時間」と
は、(アセトアルデヒドに対する)吸着開始から、飽和
吸着によって吸着対象物質(アセトアルデヒド)を吸着
できなくなるまでの経過時間をいう。また、本実施形態
における「吸着破過相対時間」は、前段厚さ/後段厚さ
比が1の場合の吸着破過時間を基準とする相対的な吸着
破過時間である。
As a result, as shown in FIG.
The relationship between the latter thickness ratio and the relative breakthrough time for adsorption to acetaldehyde was obtained. Here, the “adsorption breakthrough time” refers to the elapsed time from the start of adsorption (for acetaldehyde) to the point where the substance to be adsorbed (acetaldehyde) can no longer be adsorbed by saturated adsorption. In addition, the “adsorption breakthrough relative time” in the present embodiment is a relative suction breakthrough time based on the adsorption breakthrough time when the ratio of the former-stage thickness / the latter-stage thickness is 1.

【0033】そして、図2に示す結果から、前段厚さ/
後段厚さ比が1.5以上の領域で、前段厚さ/後段厚さ
比がそれより小さい領域に比べて、吸着破過相対時間が
大幅に向上していることが分かる。従って、前段吸着層
1の厚さを後段吸着層3の厚さの1.5倍以上とする本
実施形態によれば、アセトアルデヒドについて、長時間
に渡って高い吸着性能を保つことができる。
Then, from the results shown in FIG.
It can be seen that in the region where the ratio of the rear-stage thickness is 1.5 or more, the adsorption breakthrough relative time is significantly improved as compared with the region where the ratio of the front-stage thickness / the rear-stage thickness is smaller. Therefore, according to this embodiment in which the thickness of the first-stage adsorption layer 1 is set to be 1.5 times or more the thickness of the second-stage adsorption layer 3, it is possible to maintain high adsorption performance for acetaldehyde for a long time.

【0034】なお、図2に示す吸着破過相対時間は、前
段厚さ/後段厚さ比が1.5以上の領域でほぼ一定とな
る一方、前段厚さ/後段厚さ比が10を超えるとフィル
タの圧力損失が顕著に増加するので、本実施形態におい
ては、前段厚さ/後段厚さ比を1.5〜10の範囲内と
することが好ましい。
It should be noted that the relative adsorption breakthrough time shown in FIG. 2 is substantially constant in a region where the ratio of the front-stage thickness / the rear-stage thickness is 1.5 or more, while the ratio of the front-stage thickness / the rear-stage thickness exceeds 10. In this embodiment, it is preferable that the ratio of the front-stage thickness / the rear-stage thickness be in the range of 1.5 to 10 because the pressure loss of the filter significantly increases.

【0035】[第3の実施形態]次に、本発明の第3の
実施形態について説明する。本実施形態は、上記第1の
実施形態において、前段吸着層1と後段吸着層3との間
の間隔を、後段吸着層3の基体格子3aの単位セル寸法
以下としたものであり、その他の構成は図1に示す上記
第1の実施形態と同様である。
[Third Embodiment] Next, a third embodiment of the present invention will be described. This embodiment is different from the first embodiment in that the distance between the former adsorbing layer 1 and the latter adsorbing layer 3 is set to be equal to or less than the unit cell size of the base lattice 3a of the latter adsorbing layer 3. The configuration is the same as that of the first embodiment shown in FIG.

【0036】次に、本実施形態に関する試験結果につい
て説明する。上記第1の実施形態の実施例に示すような
ガス吸着フィルタを基準に、前段吸着層1と後段吸着層
3との間の間隔(前段/後段間隔)をパラメータとして
ガス吸着性能の試験を行った。
Next, the test results of the present embodiment will be described. Based on the gas adsorption filter as shown in the example of the first embodiment, a test of the gas adsorption performance was performed using the distance between the pre-adsorption layer 1 and the post-adsorption layer 3 (the pre-stage / post-stage interval) as a parameter. Was.

【0037】具体的には、一定本数のタバコからの発煙
を充満させた試験チャンバー内にガス吸着フィルタを設
置し、送風ファンによって一定通過風速で一定時間の通
風を行い、チャンバー内のガス除去率を測定する試験
を、上記前段/後段間隔の異なる数種類の吸着フィルタ
毎に行った。
More specifically, a gas adsorption filter is installed in a test chamber filled with smoke from a certain number of cigarettes, and air is blown for a certain time at a constant passing air velocity by a blower fan, and the gas removal rate in the chamber is reduced. Was measured for each of several types of adsorption filters having different pre-stage / post-stage intervals.

【0038】その結果、図3に示すような、前段/後段
間隔と、アセトアルデヒドに対する吸着破過相対時間と
の関係が得られた。ここで、本実施形態における「吸着
破過相対時間」は、前段/後段間隔が6mmの場合の吸着
破過時間を基準とする相対的な吸着破過時間である。
As a result, as shown in FIG. 3, a relationship was obtained between the former-stage / second-stage intervals and the relative breakthrough time with respect to acetaldehyde. Here, the "adsorption breakthrough relative time" in the present embodiment is a relative suction breakthrough time based on the suction breakthrough time when the distance between the first and second stages is 6 mm.

【0039】そして、図3に示す結果から、前段/後段
間隔が後段吸着層3の単位セル寸法5.5mm以下の領域
で、前段/後段間隔がそれより大きい領域に比べて、吸
着破過相対時間が向上していることが分かる。従って、
前段吸着層1と後段吸着層3との間の間隔を、後段吸着
層3の基体格子3aの単位セル寸法以下とする本実施形
態によれば、アセトアルデヒドについて、長時間に渡っ
て高い吸着性能を保つことができる。
From the results shown in FIG. 3, it can be seen that, in the region where the front / rear gap is less than 5.5 mm in the unit cell size of the latter adsorbing layer 3, the adsorbing breakthrough relative to the region where the former / later spacing is larger. It can be seen that the time has improved. Therefore,
According to the present embodiment in which the distance between the first-stage adsorption layer 1 and the second-stage adsorption layer 3 is equal to or less than the unit cell size of the substrate lattice 3a of the second-stage adsorption layer 3, high acetaldehyde adsorption performance is maintained for a long time. Can be kept.

【0040】なお、前段吸着層1と後段吸着層3とが接
触した状態では、一方の吸着体が飽和すると、他方の飽
和していない吸着体の側へ分子が移動してしまう平衡吸
着の現象が発生するので、これを防ぐために両吸着層
1,3同士の接触を避ける必要がある。そして、両吸着
層1,3の基体格子1a,3aの膨張等を考慮すれば、
両吸着層1,3同士の接触を避けるには、前段/後段間
隔を最低限1mmは確保する必要があると考えられる。従
って、本実施形態においては、前段/後段間隔を、後段
吸着層3の基体格子3aの単位セル寸法以下で且つ1mm
以上の範囲内とすることが好ましい。
In the state where the first-stage adsorption layer 1 and the second-stage adsorption layer 3 are in contact with each other, if one adsorbent is saturated, molecules move to the other non-saturated adsorbent, and the phenomenon of equilibrium adsorption occurs. To prevent this, it is necessary to avoid contact between the two adsorbing layers 1 and 3. In consideration of the expansion of the base lattices 1a and 3a of the two adsorbing layers 1 and 3,
In order to avoid contact between the two adsorbing layers 1 and 3, it is considered necessary to secure a minimum distance of 1 mm between the first and second stages. Therefore, in the present embodiment, the distance between the first and second stages is set to be equal to or less than the unit cell size of the base lattice 3a of the second adsorption layer 3 and 1 mm.
It is preferable to be within the above range.

【0041】[第4の実施形態]次に、本発明の第2の
実施形態について説明する。本実施形態は、上記第1の
実施形態において、前段吸着層1の基体格子1aの単位
セル寸法を、後段吸着層3の基体格子3aの単位セル寸
法の0.5倍以下としたものであり、その他の構成は図
1に示す上記第1の実施形態と同様である。
[Fourth Embodiment] Next, a fourth embodiment of the present invention will be described. In the present embodiment, the unit cell size of the base lattice 1a of the first adsorption layer 1 in the first embodiment is 0.5 times or less the unit cell size of the base lattice 3a of the second adsorption layer 3. The other configuration is the same as that of the first embodiment shown in FIG.

【0042】次に、本実施形態に関する試験結果につい
て説明する。上記第1の実施形態の実施例に示すような
ガス吸着フィルタを基準に、後段吸着層3の基体格子3
aの単位セル寸法に対する前段吸着層1の基体格子1a
の単位セル寸法の比率(前段セル寸法/後段セル寸法
比)をパラメータとして、ガス吸着性能の試験を行っ
た。
Next, the test results relating to the present embodiment will be described. On the basis of the gas adsorption filter as shown in the example of the first embodiment, the substrate grid 3 of the subsequent adsorption layer 3 is used.
The base lattice 1a of the pre-adsorption layer 1 with respect to the unit cell size of a
The gas adsorption performance was tested using the ratio of the unit cell dimensions (the former cell dimension / the latter cell dimension ratio) as a parameter.

【0043】具体的には、一定本数のタバコからの発煙
を充満させた試験チャンバー内にガス吸着フィルタを設
置し、送風ファンによって一定通過風速で一定時間の通
風を行い、チャンバー内のガス除去率を測定する試験
を、上記前段セル寸法/後段セル寸法比の異なる数種類
の吸着フィルタ毎に行った。
Specifically, a gas adsorption filter is installed in a test chamber filled with smoke from a certain number of cigarettes, and air is blown for a certain time at a constant passing air velocity by a blower fan, and the gas removal rate in the chamber is reduced. Was measured for several kinds of adsorption filters having different ratios of the former-stage cell dimensions / the latter-stage cell dimensions.

【0044】その結果、図4に示すような、前段セル寸
法/後段セル寸法比と、アセトアルデヒドに対する吸着
破過相対時間との関係が得られた。ここで、本実施形態
における「吸着破過相対時間」は、前段セル寸法/後段
セル寸法比が0.5の場合の吸着破過時間を基準とする
相対的な吸着破過時間である。
As a result, as shown in FIG. 4, a relationship between the ratio of the size of the former-stage cell / the size of the latter-stage cell and the relative breakthrough time for acetaldehyde was obtained. Here, the “adsorption breakthrough relative time” in the present embodiment is a relative adsorption breakthrough time based on the adsorption breakthrough time when the former-stage cell size / the latter-stage cell size ratio is 0.5.

【0045】そして、図4に示す結果から、前段セル寸
法/後段セル寸法比が1以下の領域で、その比が1より
大きい領域に比べて、吸着破過相対時間が向上している
ことが分かる。また、特に前段セル寸法/後段セル寸法
比が0.5以下の領域では、吸着破過相対時間の大幅な
向上が見られる。従って、前段吸着層1の基体格子1a
の単位セル寸法を、後段吸着層3の基体格子3aの単位
セル寸法の0.5倍以下とする本実施形態によれば、ア
セトアルデヒドについて、長時間に渡って高い吸着性能
を保つことができる。
From the results shown in FIG. 4, it can be seen that the relative time for adsorption breakthrough is improved in the region where the former-stage cell size / the latter-stage cell size ratio is 1 or less as compared with the region where the ratio is larger than 1. I understand. Particularly, in a region where the ratio of the former-stage cell size / the latter-stage cell size is 0.5 or less, a large improvement in the adsorption breakthrough relative time is observed. Therefore, the base lattice 1a of the pre-adsorption layer 1
According to the present embodiment in which the unit cell size is 0.5 times or less the unit cell size of the base lattice 3a of the subsequent adsorption layer 3, high acetaldehyde adsorption performance can be maintained for a long time.

【0046】なお、図4に示す吸着破過相対時間は、前
段セル寸法/後段セル寸法比が0.1を下回るとフィル
タの圧力損失が顕著に増加するので、本実施形態におい
ては、前段セル寸法/後段セル寸法比を0.1〜0.5
の範囲内とすることが好ましい。
It should be noted that the relative time of the adsorption breakthrough shown in FIG. 4 is significantly reduced when the ratio of the former-stage cell size to the latter-stage cell size is less than 0.1. 0.1 / 0.5
Is preferably within the range.

【0047】[第5の実施形態]次に、本発明の第5の
実施形態について説明する。本実施形態は、図5に示す
ように、上記第1の実施形態において、前段吸着層1と
後段吸着層3の各基体格子1a,3aの単位セル2,4
の寸法を同一とするとともに、前段吸着層1を、その基
体格子1aの各単位セル2の軸(単位セル軸)5が、後
段吸着層3の基体格子3aの格子交差点6にそれぞれ対
応するように配置したものであり、その他の構成は図1
に示す上記第1の実施形態と同様である。
[Fifth Embodiment] Next, a fifth embodiment of the present invention will be described. As shown in FIG. 5, this embodiment is different from the first embodiment in that the unit cells 2, 4 of the base lattices 1a, 3a of the pre-adsorption layer 1 and the post-adsorption layer 3 are different.
And the axes of the unit cells 2 of the base lattice 1a (unit cell axes) 5 correspond to the grid intersections 6 of the base lattice 3a of the latter adsorption layer 3, respectively. The other configuration is shown in FIG.
Is the same as the first embodiment shown in FIG.

【0048】次に、本実施形態に関する試験結果につい
て説明する。上記第1の実施形態の実施例に示すような
ガス吸着フィルタを基準に、各吸着層1,3の基体格子
1a,3aの単位セル2,4の寸法を同一寸法とし、前
段吸着層1の各単位セル軸(前段セル軸)5が後段吸着
層3の基体格子3aの格子交差点(後段格子交差点)6
に対応した位置関係のもの(本実施形態)と、前段セル
軸5が後段セル4の軸(後段セル軸)7に対応した位置
関係のもの(比較例)の2種類について、ガス吸着性能
の試験を行った。
Next, the test results relating to the present embodiment will be described. On the basis of the gas adsorption filter as shown in the example of the first embodiment, the dimensions of the unit cells 2 and 4 of the base lattices 1a and 3a of the adsorption layers 1 and 3 are set to be the same, and Each unit cell axis (first cell axis) 5 is a lattice intersection (second lattice intersection) 6 of the base lattice 3a of the second adsorption layer 3.
The gas adsorption performance of two types, one having a positional relationship corresponding to the above (the present embodiment) and one having a positional relationship corresponding to the axis of the preceding cell 4 (the latter cell axis) 7 (comparative example). The test was performed.

【0049】具体的には、一定本数のタバコからの発煙
を充満させた試験チャンバー内にガス吸着フィルタを設
置し、送風ファンによって一定通過風速で一定時間の通
風を行い、チャンバー内のガス除去率を測定する試験
を、本実施形態の吸着フィルタと、上記比較例の吸着フ
ィルタについて行った。
More specifically, a gas adsorption filter is installed in a test chamber filled with smoke from a certain number of cigarettes, and air is blown for a certain time at a constant passing air velocity by a blower fan. Was measured for the adsorption filter of the present embodiment and the adsorption filter of the comparative example.

【0050】その結果、図6に示すような、前段セル軸
5の後段基体格子3aに対する位置関係を変えた場合
の、アセトアルデヒドに対する吸着破過相対時間の違い
が得られた。ここで、本実施形態における「吸着破過相
対時間」は、前段セル軸5が後段格子交差点6に対応す
るもの(本実施形態の吸着フィルタ)の吸着破過時間を
基準とする相対的な吸着破過時間である。
As a result, as shown in FIG. 6, there was obtained a difference in the relative breakthrough time of adsorption to acetaldehyde when the positional relation of the former cell shaft 5 with respect to the latter substrate lattice 3a was changed. Here, the “adsorption breakthrough relative time” in the present embodiment refers to the relative suction based on the suction breakthrough time of the one in which the preceding cell axis 5 corresponds to the latter lattice intersection 6 (the suction filter of the present embodiment). Breakthrough time.

【0051】そして、図6に示す結果から、前段セル軸
5が後段格子交差点6に対応する位置関係を有する本実
施形態の吸着フィルタによれば、前段セル軸5が後段セ
ル軸7に対応する位置関係を有する比較例に比べ、アセ
トアルデヒドに対する吸着破過相対時間が2倍以上に延
びることが分かる。従って、比較例のような前段セル軸
5が後段セル軸7に対応する位置関係からずれることに
よって吸着性能が向上し、特に本実施形態のように前段
セル軸5が後段格子交差点6に対応する位置関係を有す
ることによって、アセトアルデヒドについて、長時間に
渡って高い吸着性能を保つことができる。
According to the results shown in FIG. 6, according to the adsorption filter of this embodiment in which the preceding cell axis 5 has a positional relationship corresponding to the latter lattice intersection 6, the former cell axis 5 corresponds to the latter cell axis 7. It can be seen that the relative adsorption breakthrough time for acetaldehyde is more than doubled compared to the comparative example having a positional relationship. Accordingly, the adsorbing performance is improved by shifting the former cell shaft 5 from the positional relationship corresponding to the latter cell shaft 7 as in the comparative example. In particular, the former cell shaft 5 corresponds to the latter lattice intersection 6 as in the present embodiment. By having a positional relationship, it is possible to maintain high adsorption performance for acetaldehyde for a long time.

【0052】なお、以上の第2〜第5の実施形態におい
て、アセトアルデヒドに対する試験を行う場合について
説明したが、一般ガス成分に比較して低分子量で極性の
高いその他のガス成分(例えば、他のアルデヒド類や塩
基性のガス成分)に関しても、当該ガス成分の吸着能を
高めた化学修飾活性炭を後段吸着層3に適用することに
より、基本的に上述した第2〜第5の各実施形態の作用
効果と同様の作用効果を期待することができる。
In the above-described second to fifth embodiments, the case where a test for acetaldehyde is performed has been described. However, other gas components having a low molecular weight and a high polarity compared to general gas components (for example, other gas components). Aldehydes and basic gas components) are also applied to the latter adsorption layer 3 by applying a chemically modified activated carbon having an enhanced ability to adsorb the gas components, thereby basically providing the second to fifth embodiments described above. The same operation and effect as the operation and effect can be expected.

【0053】また、以上の第2〜第5の実施形態によれ
ば、後段吸着層3の化学修飾活性炭が、長時間に渡って
高い吸着性能を保つことで、前段吸着層1の無修飾活性
炭の吸着性能とのバランスを長時間維持することが可能
となる。このことにより、各吸着層1,3による種類の
異なる臭気ガス成分の吸着除去率のバランスが変化し難
いため、臭気ガス濃度のアンバランス化による悪臭発生
を抑制効果を期待することもできる。
Further, according to the second to fifth embodiments, the chemically modified activated carbon of the latter adsorption layer 3 maintains high adsorption performance for a long period of time, so that the unmodified activated carbon of the former adsorption layer 1 It is possible to maintain the balance with the adsorption performance for a long time. This makes it difficult for the balance between the adsorption removal rates of the different types of odor gas components by the respective adsorption layers 1 and 3 to change easily, so that the effect of suppressing the generation of offensive odor due to the unbalanced odor gas concentration can be expected.

【0054】[第6の実施形態]次に、本発明の第6の
実施形態について説明する。本実施形態は、図1(b)
に示す基体格子1aと同様の単体のハニカム状基体格子
の表面に、無修飾活性炭、アルデヒド類吸着用の化学修
飾活性炭、及び塩基性ガス吸着用の化学修飾活性炭の3
種の活性炭粒子の混合物をガス吸着体として固着させて
なるガス吸着フィルタである。ここで、上記アルデヒド
類吸着用の化学修飾活性炭は、例えば第1級アミンの添
着処理が施された活性炭であり、塩基性ガス吸着用の化
学修飾活性炭は、酸の添着処理が施された活性炭であ
る。
[Sixth Embodiment] Next, a sixth embodiment of the present invention will be described. In the present embodiment, FIG.
On the surface of a single honeycomb-shaped base lattice similar to the base lattice 1a shown in (3), unmodified activated carbon, chemically modified activated carbon for adsorbing aldehydes, and chemically modified activated carbon for adsorbing basic gas are placed.
This is a gas adsorption filter in which a mixture of activated carbon particles of various types is fixed as a gas adsorbent. Here, the chemically modified activated carbon for adsorbing aldehydes is, for example, activated carbon subjected to a primary amine impregnation treatment, and the chemically modified activated carbon for basic gas adsorption is activated carbon subjected to an acid impregnation treatment. It is.

【0055】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、3種の
活性炭粒子の混合物によって、アルデヒド類系ガス、ア
ンモニア等の塩基性ガス、及びその他の一般ガス成分の
各ガス成分について高い吸着性能を発揮することができ
る。また、多層式の吸着層を備えたものに比べ、圧力損
失を小さく抑えることができる。
Next, the operation of the present embodiment having such a configuration will be described. According to this embodiment, a mixture of three types of activated carbon particles can exhibit high adsorption performance with respect to each of the aldehyde-based gas, the basic gas such as ammonia, and other general gas components. Further, the pressure loss can be suppressed to be smaller than that provided with a multilayer adsorption layer.

【0056】なお、本実施形態において、活性炭粒子の
混合物として、無修飾活性炭30〜50wt%(重量パー
セント)、アルデヒド類吸着用の化学修飾活性炭30〜
50wt%、塩基性ガス吸着用の化学修飾活性炭15〜2
5wt%からなるものを用いることが、アルデヒド類、塩
基性ガス、及びその他の一般ガス成分の各ガス成分をバ
ランス良く、且つ効果的に吸着する上で好ましい。ま
た、各活性炭粒子には、いずれも20〜42メッシュの
標準ふるいを通る粒径のものを用いることが、圧力損失
を比較的低く抑えつつ、アルデヒド類系ガス、塩基性ガ
ス、及びその他の一般ガス成分の各ガス成分をバランス
良く吸着する上で好ましい。
In this embodiment, as a mixture of activated carbon particles, 30 to 50% by weight (% by weight) of unmodified activated carbon and 30 to 50% by weight of chemically modified activated carbon for adsorbing aldehydes are used.
50wt%, chemically modified activated carbon for basic gas adsorption 15-2
The use of 5 wt% is preferred in order to adsorb aldehydes, basic gas, and other general gas components in a well-balanced and effective manner. In addition, for each activated carbon particle, a particle having a particle size passing through a standard sieve of 20 to 42 mesh is used, while keeping the pressure loss relatively low, while using aldehyde-based gas, basic gas, and other general gas. This is preferable for adsorbing each gas component of the gas components in a well-balanced manner.

【0057】次に、図7を参照して、本実施形態の一実
施例について、6つの比較例との比較において説明す
る。
Next, with reference to FIG. 7, an example of the present embodiment will be described in comparison with six comparative examples.

【0058】まず、本実施例は、基体格子として、単位
セル寸法4.2mm、厚さ5mm、縦159mm×横283mm
のハニカム状基体格子を用い、この基体格子の表面に、
無修飾活性炭(以下Aという。)、アルデヒド類吸着用
の化学修飾活性炭(第1級アミン添着炭)粒子(以下B
という。)、及び塩基性ガス吸着用の化学修飾活性炭
(酸添着炭)粒子(以下Cという。)の3種の活性炭粒
子の混合物を、バインダによって固着したものである。
First, in this embodiment, a unit cell size of 4.2 mm, a thickness of 5 mm, a length of 159 mm and a width of 283 mm was used as a substrate lattice.
Using a honeycomb-shaped substrate lattice of
Unmodified activated carbon (hereinafter referred to as A), chemically modified activated carbon (primary amine-impregnated carbon) particles for adsorbing aldehydes (hereinafter referred to as B)
That. ) And a mixture of three types of activated carbon particles of a chemically modified activated carbon (acid-impregnated carbon) particle for adsorbing a basic gas (hereinafter referred to as C).

【0059】また、3種の活性炭粒子の混合比率は、A
40wt%/B40wt%/C20wt%であり、A〜Cの各
活性炭粒子には、いずれも20〜42メッシュの標準ふ
るいを通過する範囲の粒径のものを用いている。そし
て、基体格子表面への活性炭粒子混合物の固着量は、1
平方メートル当たり1kgである。
The mixing ratio of the three types of activated carbon particles is A
40 wt% / B 40 wt% / C 20 wt%, and each of the activated carbon particles A to C has a particle size within a range that passes through a standard sieve of 20 to 42 mesh. The amount of the activated carbon particle mixture adhered to the substrate lattice surface is 1
1 kg per square meter.

【0060】(比較例)まず、比較例1は、上記実施例
の活性炭混合比率を、A100wt%/B0wt%/C0wt
%に変えたもの、即ち、同一粒径の無修飾活性炭のみを
用いたものである。
(Comparative Example) First, in Comparative Example 1, the mixture ratio of activated carbon in the above example was A100 wt% / B0 wt% / C0 wt.
%, That is, only unmodified activated carbon having the same particle size is used.

【0061】次に、比較例2は、上記実施例のA〜Cの
各活性炭粒子の粒径を、それぞれ100メッシュの標準
ふるいを通過する範囲の粒径に代えたものであって、基
体格子表面への活性炭粒子混合物の固着量を、この粒径
のものでは最大の1平方メートル当たり0.7kgとした
ものである。また、比較例3は、上記実施例のA〜Cの
各活性炭粒子の粒径を、それぞれ20メッシュ以下の標
準ふるいを通過する範囲の粒径に代えたものであって、
基体格子表面への活性炭粒子混合物の固着量を1平方メ
ートル当たり1.3kgとしたものである。
Next, in Comparative Example 2, each of the activated carbon particles of Examples A to C was replaced with a particle size within a range of passing through a 100-mesh standard sieve. The fixed amount of the activated carbon particle mixture on the surface is set to 0.7 kg per square meter, which is the maximum for the particle size. In Comparative Example 3, the particle size of each of the activated carbon particles A to C in the above example was changed to a particle size in a range passing through a standard sieve of 20 mesh or less.
The amount of the activated carbon particle mixture fixed to the surface of the substrate lattice was set to 1.3 kg per square meter.

【0062】次に、比較例4、5、及び6は、上記実施
例の活性炭混合比率を、それぞれA20wt%/B40wt
%/C40wt%、A40wt%/B20wt%/C40wt
%、及びA50wt%/B40wt%/C10wt%に変えた
ものである。
Next, in Comparative Examples 4, 5, and 6, the activated carbon mixing ratio of the above example was A20 wt% / B40 wt%, respectively.
% / C40wt%, A40wt% / B20wt% / C40wt
% And A50 wt% / B40 wt% / C10 wt%.

【0063】(比較試験)以上の実施例及び6つの比較
例について、それぞれ一定本数のタバコからの発煙を充
満させた試験チャンバー内にガス吸着フィルタを設置
し、送風ファンによって一定通過風速で一定時間の通風
を行い、チャンバー内のガス除去率及び圧力損失(P
a:1m/s )を測定した。また、ガス除去率について
は、一般ガス成分として酢酸、アルデヒド類ガス成分と
してアセトアルデヒド、塩基性ガス成分としてアンモニ
アの各ガス除去率をそれぞれ計測した。
(Comparative Test) In each of the above Examples and the six Comparative Examples, a gas adsorption filter was installed in a test chamber filled with smoke from a fixed number of cigarettes, and a blowing fan was used for a fixed time at a constant passing air velocity. And the gas removal rate and pressure loss (P
a: 1 m / s). Regarding the gas removal rate, the respective gas removal rates of acetic acid as an ordinary gas component, acetaldehyde as an aldehyde gas component, and ammonia as a basic gas component were measured.

【0064】その結果、本実施例によれば、いずれのガ
ス成分についても除去率90%以上となり、各ガス成分
をバランス良く、且つ効果的に除去できることが確認さ
れた。これに対して、比較例1では、本実施例のように
化学修飾活性炭B,Cが混合されていないため、アセト
アルデヒド及びアンモニアの除去率がかなり低くなって
いる。また、比較例2では、本実施例と比べて活性炭の
粒子径が小さく、総活性炭量が少ないため、アセトアル
デヒド及びアンモニアの除去率が低くなっている。
As a result, according to this example, it was confirmed that the removal rate of all gas components was 90% or more, and that each gas component could be effectively removed in a well-balanced manner. On the other hand, in Comparative Example 1, since the chemically modified activated carbons B and C were not mixed as in this example, the removal rates of acetaldehyde and ammonia were considerably low. Further, in Comparative Example 2, the removal rate of acetaldehyde and ammonia was low because the particle size of the activated carbon was smaller and the total amount of activated carbon was smaller than in this example.

【0065】次に、比較例3では、ガス除去率では各ガ
ス成分とも本実施例と同等の数値が得られているが、活
性炭の粒子径が大きすぎるため、本実施例と比べて圧力
損失が2倍以上にまで増大している。また、比較例4で
は、本実施例と比べて無修飾活性炭Aの混合比率が低い
ため、酢酸の除去率がやや低くなっている。
Next, in Comparative Example 3, the same gas removal rate was obtained for each gas component as in this example. However, since the particle size of the activated carbon was too large, the pressure loss was lower than that in this example. Has more than doubled. In Comparative Example 4, since the mixing ratio of the unmodified activated carbon A was lower than in this example, the acetic acid removal rate was slightly lower.

【0066】更に、比較例5では、本実施例と比べてア
ルデヒド類吸着用の化学修飾活性炭Bの混合比率が低い
ため、アセトアルデヒドの除去率が低くなっている。ま
た、比較例6では、本実施例と比べて塩基性ガス吸着用
の化学修飾活性炭Cの混合比率が低いため、アンモニア
の除去率が低くなっている。
Further, in Comparative Example 5, since the mixing ratio of the chemically modified activated carbon B for adsorbing aldehydes is lower than in this example, the acetaldehyde removal rate is lower. In Comparative Example 6, the mixing ratio of the chemically modified activated carbon C for basic gas adsorption was lower than that of the present example, so that the ammonia removal rate was lower.

【0067】なお、以上の第1〜第6の実施形態におい
て、吸着層の基体格子として、六角形断面を有する単位
セルの集合からなるハニカム状の基体格子を用いる場合
について説明したが、これに限らず、四角形等の他の横
断面形状を有する単位セルの集合からなる基体格子を用
いてもよい。
In the first to sixth embodiments described above, a case has been described in which a honeycomb-shaped substrate lattice made up of a set of unit cells having a hexagonal cross section is used as the substrate lattice of the adsorption layer. However, the present invention is not limited thereto, and a base lattice made of a set of unit cells having other cross-sectional shapes such as a square may be used.

【0068】[0068]

【発明の効果】請求項1記載の発明によれば、一般ガス
成分は勿論、一般ガス成分に比較して低分子量で極性の
高いガス成分についても、高い吸着性能を発揮すること
ができるので、生活居住空間における多種多様なガス成
分を幅広く吸着除去することができる。また、3層以上
の吸着層を備えたものに比べ、圧力損失を小さく抑える
ことができるので、空気調和装置の空調性能や運転効率
の低下を少なくすることができる。
According to the first aspect of the present invention, not only general gas components but also gas components having a low molecular weight and a high polarity as compared with general gas components can exhibit high adsorption performance. A wide variety of gas components can be adsorbed and removed in a living space. In addition, since the pressure loss can be suppressed to be smaller than that of the air conditioner having three or more adsorption layers, it is possible to reduce a decrease in the air conditioning performance and the operation efficiency of the air conditioner.

【0069】請求項6記載の発明によれば、3種の活性
炭粒子の混合物によって、アルデヒド類、塩基性ガス、
及びその他の一般ガス成分の各ガス成分について高い吸
着性能を発揮することができる。このため、生活居住空
間における主要なガス成分を効果的に吸着除去すること
ができる。また、多層式の吸着層を備えたものに比べ、
圧力損失を小さく抑えることができるので、空気調和装
置の空調性能や運転効率の低下を少なくすることができ
る。
According to the sixth aspect of the present invention, an aldehyde, a basic gas,
And high adsorption performance for each gas component of other general gas components. Therefore, main gas components in the living space can be effectively adsorbed and removed. Also, compared to those with a multi-layer adsorption layer,
Since the pressure loss can be suppressed to a small value, a decrease in the air conditioning performance and operating efficiency of the air conditioner can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和装置用ガス吸着フィルタ
の第1の実施形態の構造を示す図であって、(a)は全
体縦断面図、(b)は基体格子の一部を示す斜視図。
FIG. 1 is a view showing a structure of a first embodiment of a gas adsorption filter for an air conditioner according to the present invention, wherein (a) is an entire longitudinal sectional view and (b) is a perspective view showing a part of a base lattice. FIG.

【図2】本発明による空気調和装置用ガス吸着フィルタ
の第2の実施形態の効果を示すグラフ。
FIG. 2 is a graph showing the effect of the second embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【図3】本発明による空気調和装置用ガス吸着フィルタ
の第3の実施形態の効果を示すグラフ。
FIG. 3 is a graph showing an effect of the third embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【図4】本発明による空気調和装置用ガス吸着フィルタ
の第4の実施形態の効果を示すグラフ。
FIG. 4 is a graph showing the effect of the fourth embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【図5】本発明による空気調和装置用ガス吸着フィルタ
の第5の実施形態の一部を示す拡大正面図。
FIG. 5 is an enlarged front view showing a part of a fifth embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【図6】本発明による空気調和装置用ガス吸着フィルタ
の第5の実施形態の効果を示すグラフ。
FIG. 6 is a graph showing the effect of the fifth embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【図7】本発明による空気調和装置用ガス吸着フィルタ
の第6の実施形態の効果を示す表。
FIG. 7 is a table showing the effect of the sixth embodiment of the gas adsorption filter for an air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

1 前段吸着層 1a 前段吸着層の基体格子 2 前段吸着層の基体格子の単位セル 3 後段吸着層 3a 後段吸着層の基体格子 4 後段吸着層の基体格子の単位セル 5 前段吸着層の単位セル軸(前段セル軸) 6 後段吸着層の基体格子の格子交差点(後段格子交差
点) F ガス吸着フィルタ
DESCRIPTION OF SYMBOLS 1 Pre-adsorption layer 1a Substrate lattice of pre-adsorption layer 2 Unit cell of substrate lattice of pre-adsorption layer 3 Sub-adsorption layer 3a Substrate lattice of post-adsorption layer 4 Unit cell of substrate lattice of post-adsorption layer 5 Unit cell axis of pre-adsorption layer (Front cell axis) 6 Lattice intersection of the base lattice of the latter adsorption layer (Latter lattice intersection) F Gas adsorption filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/81 B01D 53/34 120D 53/72 F24F 1/00 371Z B01J 20/20 F24F 1/00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/81 B01D 53/34 120D 53/72 F24F 1/00 371Z B01J 20/20 F24F 1/00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】無修飾活性炭をガス吸着体とする前段吸着
層と、 この前段吸着層に対して空気流の下流側に配置され、化
学修飾活性炭をガス吸着体とする後段吸着層とを備えた
ことを特徴とする空気調和装置用ガス吸着フィルタ。
1. A pre-adsorption layer using unmodified activated carbon as a gas adsorbent, and a post-adsorption layer disposed downstream of the air flow with respect to the pre-adsorption layer and using chemically modified activated carbon as a gas adsorber. A gas adsorption filter for an air conditioner.
【請求項2】前記前段吸着層の厚さを、前記後段吸着層
の厚さの1.5倍以上とすることを特徴とする請求項1
記載の空気調和装置用ガス吸着フィルタ。
2. The method according to claim 1, wherein the thickness of the preceding adsorption layer is at least 1.5 times the thickness of the latter adsorption layer.
The gas adsorption filter for an air conditioner according to the above.
【請求項3】前記前段吸着層と前記後段吸着層とは、そ
れぞれ、単位セルの集合からなり前記ガス吸着体が固着
される基体格子を有し、 前記前段吸着層と前記後段吸着層との間の間隔を、前記
後段吸着層の基体格子の単位セル寸法以下とすることを
特徴とする請求項1記載の空気調和装置用ガス吸着フィ
ルタ。
3. The pre-adsorption layer and the post-adsorption layer each have a base lattice formed of a set of unit cells and to which the gas adsorbent is fixed. 2. The gas adsorption filter for an air conditioner according to claim 1, wherein an interval between the adjacent cells is equal to or less than a unit cell dimension of a substrate lattice of the second adsorption layer. 3.
【請求項4】前記前段吸着層と前記後段吸着層とは、そ
れぞれ、単位セルの集合からなり前記ガス吸着体が固着
される基体格子を有し、 前記前段吸着層の基体格子の単位セル寸法を、前記後段
吸着層の基体格子の単位セル寸法の0.5倍以下とする
ことを特徴とする請求項1記載の空気調和装置用ガス吸
着フィルタ。
4. The pre-adsorption layer and the post-adsorption layer each comprise a set of unit cells, each having a base lattice to which the gas adsorbent is fixed, and a unit cell dimension of the base lattice of the pre-adsorption layer. 2. The gas adsorption filter for an air conditioner according to claim 1, wherein the size of the unit cell is 0.5 times or less the unit cell size of the substrate lattice of the second adsorption layer. 3.
【請求項5】前記前段吸着層と前記後段吸着層とは、そ
れぞれ、単位セルの集合からなり前記ガス吸着体が固着
されるとともに単位セル寸法が同一の基体格子を有し、 前記前段吸着層を、その基体格子の各単位セル軸が、前
記後段吸着層の基体格子の格子交差点にそれぞれ対応す
るように配置したことを特徴とする請求項1記載の空気
調和装置用ガス吸着フィルタ。
5. The pre-adsorption layer comprises a set of unit cells, the gas adsorbent is fixed to the pre-adsorption layer, and the unit cell dimensions are the same. The gas adsorption filter for an air conditioner according to claim 1, wherein each of the unit cell axes of the substrate lattice is arranged so as to correspond to a lattice intersection of the substrate lattice of the subsequent adsorption layer.
【請求項6】少なくとも、無修飾活性炭、アルデヒド類
吸着用の化学修飾活性炭、及び塩基性ガス吸着用の化学
修飾活性炭の3種の活性炭粒子の混合物を、基体格子の
表面に固着させてなることを特徴とする空気調和装置用
ガス吸着フィルタ。
6. A mixture of at least three types of activated carbon particles, that is, unmodified activated carbon, chemically modified activated carbon for adsorbing aldehydes, and chemically modified activated carbon for adsorbing basic gas, which is fixed to the surface of the substrate lattice. A gas adsorption filter for an air conditioner, comprising:
【請求項7】前記活性炭粒子の混合物は、前記無修飾活
性炭30〜50重量%、前記アルデヒド類吸着用の化学
修飾活性炭30〜50重量%、前記塩基性ガス吸着用の
化学修飾活性炭15〜25重量%よりなることを特徴と
する請求項6記載の空気調和装置用ガス吸着フィルタ。
7. The mixture of activated carbon particles comprises 30 to 50% by weight of the unmodified activated carbon, 30 to 50% by weight of the chemically modified activated carbon for adsorbing aldehydes, and 15 to 25% of the chemically modified activated carbon for adsorbing basic gas. The gas adsorption filter for an air conditioner according to claim 6, wherein the gas adsorption filter is composed of% by weight.
【請求項8】前記活性炭粒子の混合物を構成する活性炭
粒子はいずれも、20〜42メッシュの標準ふるいを通
過する範囲の粒径を有することを特徴とする請求項6又
は7記載の空気調和装置用ガス吸着フィルタ。
8. The air conditioner according to claim 6, wherein all of the activated carbon particles constituting the mixture of the activated carbon particles have a particle size in a range of passing through a standard sieve of 20 to 42 mesh. For gas adsorption filter.
JP9111325A 1997-04-28 1997-04-28 Gad adsorption filter for air conditioning device Pending JPH10296043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9111325A JPH10296043A (en) 1997-04-28 1997-04-28 Gad adsorption filter for air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9111325A JPH10296043A (en) 1997-04-28 1997-04-28 Gad adsorption filter for air conditioning device

Publications (1)

Publication Number Publication Date
JPH10296043A true JPH10296043A (en) 1998-11-10

Family

ID=14558356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9111325A Pending JPH10296043A (en) 1997-04-28 1997-04-28 Gad adsorption filter for air conditioning device

Country Status (1)

Country Link
JP (1) JPH10296043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268089A (en) * 2016-08-25 2017-01-04 深圳市宜丽环保科技股份有限公司 A kind of air-conditioning filter net with environmental health function
US20200398254A1 (en) * 2017-02-13 2020-12-24 Calgon Carbon Corporation Chloramine and chlorine removal material and methods for making the same
WO2024090205A1 (en) * 2022-10-25 2024-05-02 東レ株式会社 Gas adsorbent and gas adsorption sheet, filter material, and air filter using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268089A (en) * 2016-08-25 2017-01-04 深圳市宜丽环保科技股份有限公司 A kind of air-conditioning filter net with environmental health function
US20200398254A1 (en) * 2017-02-13 2020-12-24 Calgon Carbon Corporation Chloramine and chlorine removal material and methods for making the same
WO2024090205A1 (en) * 2022-10-25 2024-05-02 東レ株式会社 Gas adsorbent and gas adsorption sheet, filter material, and air filter using same

Similar Documents

Publication Publication Date Title
JP2019534159A (en) Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
JPH11511058A (en) Double filter unit
JP5881872B1 (en) Decomposing apparatus and operating method thereof
JP2008086942A (en) Apparatus and method for cleaning air
JP2008104845A (en) Deodorizer, its manufacture method, and deodorizing filter
JPH10296043A (en) Gad adsorption filter for air conditioning device
JP2011025219A (en) Exhaust gas cleaning method containing water-soluble volatile hydrocarbon of large amount and high humidity
JP4904695B2 (en) Deodorizing body, method for producing deodorizing body, and deodorizing apparatus using the same
JP2000210372A (en) Air cleaning film and deodorant filter
JP2006255251A (en) Deodorizer, and deodorizing equipment using the deodorizer
JPS62183838A (en) Air purifier
JP2003166732A (en) Air cleaning device
JPH05154339A (en) Removal of nitrogen oxide
JPH05237342A (en) Purifier of gas
JP2006288689A (en) Voc eliminating device, regeneration method for it and industrial exhaust device
JP4295548B2 (en) Nitrogen oxide removing catalyst, denitration method and apparatus using the same
JP2004330124A (en) Material for decomposing and removing aldehyde gas and its manufacturing method
JP5061448B2 (en) Air conditioner
JP2007037670A (en) Deodorizer and deodorizing device
Fisk Can sorbent-based gas phase air cleaning for VOCs substitute for ventilation in commercial buildings?
JP2000262844A (en) Deodorizing filter
JP2950899B2 (en) Rotary gas processing equipment
JP4664064B2 (en) filter
JP2010042334A (en) Automobile exhaust gas removal filter
JP2005186002A (en) Exhaust gas decontamination apparatus for diesel engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130