JPH10294120A - Operating method for phosphoric acid fuel cell - Google Patents

Operating method for phosphoric acid fuel cell

Info

Publication number
JPH10294120A
JPH10294120A JP9101433A JP10143397A JPH10294120A JP H10294120 A JPH10294120 A JP H10294120A JP 9101433 A JP9101433 A JP 9101433A JP 10143397 A JP10143397 A JP 10143397A JP H10294120 A JPH10294120 A JP H10294120A
Authority
JP
Japan
Prior art keywords
phosphoric acid
electrolyte
fuel
fuel cell
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9101433A
Other languages
Japanese (ja)
Inventor
Akitoshi Seya
彰利 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9101433A priority Critical patent/JPH10294120A/en
Publication of JPH10294120A publication Critical patent/JPH10294120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize operation by properly obtaining the refilling time of phosphoric acid kept in cells that constitute a fuel cell layered product. SOLUTION: A fuel cell layered product 10 is constructed by laminating unit blocks 20, which are built by laminating multiple cells 11 interposing separators 12 between them, interposing cooling plates 13 between them. In this case, an output current, an output voltage and a temperature of a cell- cooling water supplied to the cooling plates are measured with an ammeter 16, a voltmeter 15 and a thermometer 17, respectively; from these values the maximum temperature of the cells 11 is calculated and also the phosphoric acid scattering amount is obtained by measuring its scattering velocity; when these values have reached an upper limit, the phosphoric acid is refilled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、りん酸を電解質
として用いるりん酸型燃料電池に係わり、蒸発飛散して
減少する電解質の量を把握し補給する運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid fuel cell using phosphoric acid as an electrolyte, and relates to an operation method for recognizing and replenishing the amount of electrolyte which is reduced by evaporation and scattering.

【0002】[0002]

【従来の技術】図3は、りん酸型燃料電池の燃料電池積
層体の基本構成単位である単位セルの構成を模式的に示
した断面図である。単位セルは、りん酸を保持したマト
リックス1の両面に燃料電極6と空気電極7を配し、さ
らにその外側にりん酸を保持したリザーバプレート9を
配して構成されている。このうち、燃料電極6は、燃料
電極触媒層2と、燃料ガスを通流させるガス流路8を備
えた燃料電極基材4よりなり、空気電極は、空気電極触
媒層3と、空気を通流させるガス流路8を備えた空気電
極基材5よりなる。
2. Description of the Related Art FIG. 3 is a sectional view schematically showing the structure of a unit cell which is a basic structural unit of a fuel cell stack of a phosphoric acid type fuel cell. The unit cell has a configuration in which a fuel electrode 6 and an air electrode 7 are arranged on both surfaces of a matrix 1 holding phosphoric acid, and a reservoir plate 9 holding phosphoric acid is arranged outside the fuel electrode 6 and the air electrode 7. The fuel electrode 6 is composed of the fuel electrode catalyst layer 2 and the fuel electrode substrate 4 provided with a gas flow path 8 for allowing fuel gas to flow. The air electrode is formed of the air electrode catalyst layer 3 and air. The air electrode substrate 5 is provided with a gas flow path 8 for flowing.

【0003】図4は、上記のごとき構成の単位セルを用
いて構成された燃料電池積層体の要部の構成を示す断面
図である。単位セル11をセパレータ12を介して順次
積層してブロックを構成し、さらにこのブロックを冷却
板13を介装して積層することにより燃料電池積層体が
構成されている。燃料電池積層体の各側面にガスの供
給、排出用のマニホールドを組み込み、各単位セルの燃
料電極のガス流路8に水素濃度の高い燃料ガスを、また
空気電極のガス流路8に空気等の酸素を含む酸化剤ガス
を供給し、それぞれ燃料電極触媒層2、および空気電極
触媒層3へと送り、電気化学反応により電気エネルギー
を得ている。また、この電気化学反応は発熱反応である
ので、燃料電池積層体に介装された冷却板13に電池冷
却水を供給することにより、生じた発熱を除去し、単位
セル11を所定運転温度に保持している。
FIG. 4 is a cross-sectional view showing the structure of a main part of a fuel cell stack constructed using the unit cells having the above-described structure. A unit cell 11 is sequentially stacked via a separator 12 to form a block, and the block is stacked with a cooling plate 13 interposed therebetween to form a fuel cell stack. A gas supply / discharge manifold is installed on each side of the fuel cell stack, and a fuel gas having a high hydrogen concentration is supplied to the gas flow path 8 of the fuel electrode of each unit cell, and air or the like is supplied to the gas flow path 8 of the air electrode. Is supplied to the fuel electrode catalyst layer 2 and the air electrode catalyst layer 3 to obtain electric energy by an electrochemical reaction. Further, since this electrochemical reaction is an exothermic reaction, the generated heat is removed by supplying the cell cooling water to the cooling plate 13 interposed in the fuel cell stack, and the unit cell 11 is brought to a predetermined operating temperature. keeping.

【0004】本構成において、マトリックスに保持され
たりん酸は、温度上昇に伴って蒸発し、供給される燃料
ガスや酸化剤ガスの流れとともに徐々に飛散するので、
保持量は徐々に減少する。このようにりん酸の保持量が
減少すると、マトリックスによる燃料ガスと酸化剤ガス
のガスシール性が低下し、これらのガスが直接反応し
て、燃料電池積層体に損傷が生じることとなる。このた
め、従来のりん酸型燃料電池においては、図4に示した
ごとく、冷却板13に電圧測定リード14A,14Bを
設置して電圧計15によってブロックの出力電圧を測定
し、その電圧の異常低下によってりん酸の不足状態の発
生を検知し、この異常信号によりマトリックスにりん酸
を補給して、常時所定量のりん酸を保持させている。
[0004] In this configuration, the phosphoric acid retained in the matrix evaporates as the temperature rises and gradually disperses with the flow of the supplied fuel gas or oxidizing gas.
Retention decreases gradually. When the amount of retained phosphoric acid decreases in this manner, the gas sealing performance of the fuel gas and the oxidizing gas by the matrix decreases, and these gases directly react with each other, causing damage to the fuel cell stack. For this reason, in the conventional phosphoric acid type fuel cell, as shown in FIG. 4, voltage measurement leads 14A and 14B are provided on the cooling plate 13 and the output voltage of the block is measured by the voltmeter 15, and the abnormal voltage is detected. The occurrence of a shortage of phosphoric acid is detected by the decrease, and the matrix is replenished with phosphoric acid based on this abnormal signal, so that a predetermined amount of phosphoric acid is constantly held.

【0005】[0005]

【発明が解決しようとする課題】従来のりん酸型燃料電
池においては、上記のごとく、単位セルを積層した各ブ
ロックの発電電圧を測定し、その異常低下の検出により
りん酸の不足を検知して補給時期を知る手段としている
が、上記のりん酸の飛散速度は、燃料ガスや酸化剤ガス
の流量に依存するとともに、図5に示したごとく電池の
温度によっても変化し、温度が高くなると飛散速度も増
大する。一方、各ブロックは両端に位置する冷却板によ
って冷却され所定温度に維持されているので、各ブロッ
ク内では、冷却板に隣接する単位セルの温度が最も低
く、中央部分に位置する単位セルの温度が最も高くな
る。したがって、ブロックを構成する各単位セルのりん
酸の飛散速度はそれぞれ異なることとなり、測定したブ
ロックの発電電圧に異常低下が認められはじめた時に
は、すでに最も飛散量の多い単位セルにおいて燃料ガス
と酸化剤ガスとの直接反応が生じ、回復不可能な損傷が
進行している場合が数多く見られ、りん酸の補給時期の
検知方法として必ずしも適切でないという問題点があっ
た。
In the conventional phosphoric acid fuel cell, as described above, the power generation voltage of each block in which the unit cells are stacked is measured, and the shortage of phosphoric acid is detected by detecting the abnormal decrease. The scattering speed of the phosphoric acid depends on the flow rates of the fuel gas and the oxidizing gas, and also varies depending on the temperature of the battery as shown in FIG. The flying speed also increases. On the other hand, since each block is cooled by the cooling plates located at both ends and maintained at a predetermined temperature, in each block, the temperature of the unit cell adjacent to the cooling plate is the lowest, and the temperature of the unit cell located in the central portion is Is the highest. Therefore, the scattering rate of phosphoric acid in each unit cell constituting the block will be different, and when the measured power generation voltage of the block begins to decrease abnormally, the fuel gas and the oxidized gas in the unit cell with the largest scattering amount have already been observed. In many cases, irreparable damage has progressed due to direct reaction with the agent gas, and there has been a problem that it is not always appropriate as a method for detecting the time of replenishing phosphoric acid.

【0006】この発明の目的は、燃料電池積層体を構成
する単位セルに保持されたりん酸の補給時期が的確に検
知され、安定して運転できるりん酸型燃料電池の運転方
法を提供することにある。
An object of the present invention is to provide a method of operating a phosphoric acid type fuel cell which can accurately detect the time of replenishment of phosphoric acid held in a unit cell constituting a fuel cell stack and can operate stably. It is in.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電解質としてのりん酸を保持
したマトリックスの両面に燃料電極と空気電極を配して
形成された単位セルを、冷却配管を備えた冷却板を適宜
挿入して積層し、冷却配管に電池冷却水を通流し、燃料
電極に燃料ガスを、また空気電極に酸化剤ガスを供給し
て、電気化学反応により電気エネルギーを得るりん酸型
燃料電池において、 (1)出力電流と発電時間、あるいは、出力電圧と電池
冷却水のうちの少なくともいずれか一方と出力電流と発
電時間を測定し、これらの測定値より電解質の補給時期
を算定し、電解質を補給して運転することとする。
In order to achieve the above-mentioned object, in the present invention, a unit cell formed by arranging a fuel electrode and an air electrode on both surfaces of a matrix holding phosphoric acid as an electrolyte is provided. A cooling plate provided with a cooling pipe is appropriately inserted and laminated, a battery cooling water is passed through the cooling pipe, a fuel gas is supplied to a fuel electrode, and an oxidant gas is supplied to an air electrode. (1) Output current and power generation time, or output voltage and / or battery cooling water, output current and power generation time are measured. The replenishment time is calculated, and the operation is performed by replenishing the electrolyte.

【0008】(2)あるいは、発電電力量と発電時間、
あるいは、発電電力量と発電時間と電池冷却水温度を測
定し、これらの測定値より電解質の補給時期を算定し、
電解質を補給して運転することとする 図4のごとく複数の単位セル11をセパレータ12を介
在させて積層し、両端に冷却配管を備えた冷却板13を
配したブロックを単位として構成される燃料電池積層体
においては、各ブロックの内部の単位セル11の最高温
度は、ブロック内での発熱量と熱拡散条件、並びに冷却
板13の冷却条件により決まる。このうち、ブロック内
での発熱量は出力電流と出力電圧により定まり、ブロッ
ク内での熱拡散条件は、単位セル11とセパレータ12
の熱伝達性能、すなわち熱抵抗で定まる。また、冷却板
13の冷却条件は、備えられた冷却配管に通流される電
池冷却水の温度条件並びに冷却板13の熱伝達性能、す
なわち熱抵抗で定まる。また、これらの因子のうち、単
位セル11とセパレータ12の熱抵抗、および冷却板1
3の熱抵抗は、構成に固有のもので一定である。したが
って、出力電流と出力電圧、並びに電池冷却水の温度条
件を知れば、単位セル11の曝される最高温度が知られ
ることとなる。
(2) Alternatively, the amount of generated power and the generation time,
Alternatively, the amount of generated power, the generated time, and the battery cooling water temperature are measured, and the time for replenishing the electrolyte is calculated from these measured values.
It is assumed that the fuel cell is operated by replenishing the electrolyte. As shown in FIG. 4, the fuel is constituted by a block in which a plurality of unit cells 11 are stacked with a separator 12 interposed therebetween and a cooling plate 13 provided with cooling pipes at both ends is provided as a unit. In the battery stack, the maximum temperature of the unit cell 11 inside each block is determined by the amount of heat generated in the block, the heat diffusion condition, and the cooling condition of the cooling plate 13. Of these, the amount of heat generated in the block is determined by the output current and the output voltage, and the heat diffusion conditions in the block are determined by the unit cell 11 and the separator 12.
Heat transfer performance, that is, heat resistance. The cooling condition of the cooling plate 13 is determined by the temperature condition of the battery cooling water flowing through the provided cooling pipe and the heat transfer performance of the cooling plate 13, that is, the thermal resistance. Among these factors, the thermal resistance of the unit cell 11 and the separator 12 and the cooling plate 1
The thermal resistance of No. 3 is specific to the configuration and is constant. Therefore, if the output current and the output voltage and the temperature condition of the battery cooling water are known, the maximum temperature to which the unit cell 11 is exposed is known.

【0009】一方、図5に示したように、マトリックス
に保持された電解質のりん酸の飛散速度は保持される温
度に依存し、温度が高くなるほど大きくなるので、上記
のブロックにおいても、最高温度に曝される単位セル1
1において最も急速にりん酸が飛散することとなる。し
たがって、上記の(1)のごとく、出力電流、出力電圧
並びに電池冷却水温度を知れば、上記のブロックにおけ
るりん酸の最高飛散速度が知られ、発電時間を測定して
最高飛散速度に乗ずれば、最高飛散量が知られることと
なり、この値より補給時期を設定すれば、りん酸の不足
状態を生じることなく補給することができる。なお、上
記において、出力電圧は、燃料電池積層体に固有のI−
V特性をもとに出力電流より求めることも可能であり、
また、電池冷却水温度は通常一定に保持して使用される
ので定数として扱うことができる。したがって、出力電
流のみ、あるいは出力電流と電池冷却水温度、あるいは
出力電流と出力電圧によっても、最高温度、したがって
りん酸の最高飛散速度が知られ、発電時間の測定値を用
いて最高飛散量が知られ、りん酸の補給時期を適切に設
定できることとなる。
On the other hand, as shown in FIG. 5, the scattering speed of the phosphoric acid in the electrolyte held in the matrix depends on the held temperature, and increases as the temperature increases. Unit cell 1 exposed to
In No. 1, phosphoric acid is scattered most rapidly. Therefore, as described in (1) above, if the output current, output voltage and battery cooling water temperature are known, the maximum scattering speed of phosphoric acid in the above-described block is known, and the power generation time is measured to deviate from the maximum scattering speed. For example, the maximum amount of scattering is known, and if the replenishment time is set based on this value, replenishment can be performed without causing a shortage of phosphoric acid. In the above description, the output voltage is the I-
It is also possible to obtain from the output current based on the V characteristic,
Also, since the battery cooling water temperature is usually used while being kept constant, it can be treated as a constant. Therefore, only the output current, or the output current and the battery cooling water temperature, or the output current and the output voltage, the maximum temperature, and thus the maximum scattering speed of phosphoric acid, is known, and the maximum scattering amount is measured using the measured value of the power generation time. It is known that the replenishment time of phosphoric acid can be appropriately set.

【0010】また、発電電力量と発電時間を測定すれ
ば、発電電力量を発電時間で除することによって平均の
発電電力が知られる。さらに、燃料電池積層体に固有の
I−V特性を用いれば、この平均の発電電力より平均の
発電電流が求められる。したがって、上記の発電電流の
測定値に代わって発電電力量を用いることとし、上記の
(2)のごとく、発電電力量と発電時間、あるいは、発
電電力量と発電時間と電池冷却水温度を測定することと
しても、電解質として保持したりん酸の最高飛散量が知
られ、りん酸の補給時期を適切に設定できることとな
る。
If the amount of generated power and the generation time are measured, the average generated power is known by dividing the generated power by the generation time. Furthermore, if an IV characteristic unique to the fuel cell stack is used, an average generated current can be obtained from the average generated power. Therefore, the generated power amount is used instead of the measured value of the generated current, and the generated power amount and power generation time or the generated power amount, power generation time and battery cooling water temperature are measured as described in (2) above. In this case, the maximum scattering amount of the phosphoric acid retained as the electrolyte is known, and the time for replenishing the phosphoric acid can be set appropriately.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<実施例1>図1は、本発明の燃料電池の運転方法の実
施例1により運転される燃料電池積層体の断面図であ
る。図に示した燃料電池積層体10は、複数の単位セル
11をセパレータ12を介して積層して単位ブロック2
0を構成し、さらに単位ブロック20を冷却板13を介
在させて積層することにより構成されている。電流計1
6は、燃料電池積層体10の出力電流を測定する電流計
であり、電圧計15は、単位ブロック20の発生電圧を
測定する電圧計であり、また、温度計17は、冷却板1
3に組み込まれた冷却配管へ供給される電池冷却水の温
度を測定する温度計である。
<Embodiment 1> FIG. 1 is a cross-sectional view of a fuel cell stack operated according to Embodiment 1 of the method for operating a fuel cell of the present invention. The fuel cell stack 10 shown in the figure has a unit block 2 formed by stacking a plurality of unit cells 11 with a separator 12 interposed therebetween.
0, and the unit blocks 20 are further laminated with the cooling plate 13 interposed therebetween. Ammeter 1
6 is an ammeter for measuring the output current of the fuel cell stack 10, a voltmeter 15 is a voltmeter for measuring the voltage generated in the unit block 20, and the thermometer 17 is for the cooling plate 1
3 is a thermometer for measuring the temperature of the battery cooling water supplied to the cooling pipe incorporated in 3.

【0012】本実施例の運転方法においては、上記の電
流計16により測定された出力電流、電圧計15により
測定された出力電圧、および温度計17により測定され
た電池冷却水の温度から、単位セル11のマトリックス
に保持されたりん酸の飛散量を算出してりん酸の補給時
期を知り、これをもとにりん酸を補給する方法を用いて
燃料電池を運転する。
In the operation method of this embodiment, the unit is calculated from the output current measured by the ammeter 16, the output voltage measured by the voltmeter 15, and the temperature of the battery cooling water measured by the thermometer 17. The amount of the phosphoric acid scattered in the matrix of the cell 11 is calculated to determine the replenishment time of the phosphoric acid, and the fuel cell is operated using a method of replenishing the phosphoric acid based on the calculated timing.

【0013】すなわち、出力電流をI〔A〕,単位セル
当たりの発生電圧をV〔V〕,電池冷却水の温度をTW
〔℃〕とすれば、単位セルの最高温度TMAX 〔℃〕は次
式で表わされる。
That is, the output current is I [A], the generated voltage per unit cell is V [V], and the temperature of the battery cooling water is T W
[° C.], the maximum temperature T MAX [° C.] of the unit cell is expressed by the following equation.

【0014】[0014]

【数1】 TMAX =g(RC ,RCOOL,n)(1.26−V)I+TW (1) ただし、(1)式のRC は単位セルの熱抵抗、RCOOL
冷却板の熱抵抗、nは各単位ブロックに積層された単位
セルの個数であり、gはこれらの数値より定まる常数で
ある。したがって、出力電流I、発生電圧V、電池冷却
水の温度TW を測定することにより、式(1)より単位
セルの最高温度TMAX が知られる。
T MAX = g (R C , R COOL , n) (1.26−V) I + T W (1) where R C is the thermal resistance of the unit cell, and R COOL is the heat of the cooling plate. The resistance n is the number of unit cells stacked in each unit block, and g is a constant determined from these values. Therefore, by measuring the output current I, the generated voltage V, and the battery cooling water temperature T W , the maximum temperature T MAX of the unit cell is known from the equation (1).

【0015】一方、各単位セルの空気電極、燃料電極に
供給される空気および燃料ガスの流量を、それぞれ
A ,FF 〔mol /h〕とし、温度T〔℃〕における電
解質の蒸気圧をv(T)〔atm 〕、電解質の分子量をM
とすれば、温度T〔℃〕における電解質の飛散速度w
(T)〔g/h〕は、
On the other hand, the flow rates of air and fuel gas supplied to the air electrode and fuel electrode of each unit cell are F A and F F [mol / h], respectively, and the vapor pressure of the electrolyte at the temperature T [° C.] v (T) [atm], the molecular weight of the electrolyte is M
Then, the scattering speed w of the electrolyte at the temperature T [° C.]
(T) [g / h]

【0016】[0016]

【数2】 w(T)=(FA +FF )・M・v(T) (2) で与えられる。このうちFA ,FF は、酸素利用率をU
2 、水素利用率をUH2 、入口水素分圧をPH2 とす
ると、次式(3)、(4)のごとく、出力電流Iの関数
として表わされる。
W (T) = (F A + F F ) · M · v (T) (2) Among F A, F F is an oxygen utilization rate U
Assuming that O 2 , the hydrogen utilization rate is UH 2 , and the inlet hydrogen partial pressure is PH 2 , it is expressed as a function of the output current I as in the following equations (3) and (4).

【0017】[0017]

【数3】 FA =I×3600/( 4×96490 ×0.208 ×UO2 ) (3) FF =I×3600/( 2×96490 ×UH2 ×PH2 ) (4) したがって、Δt分毎に出力電流I、発生電圧V、電池
冷却水温度TW を測定して、式(1)を用いて単位セル
の最高温度TMAX を算出し、ついで、算出したTMAX
おける電解質の蒸気圧v(TMAX )と式(3)、(4)
より得られるガス流量を用いて、式(2)により温度T
MAX における電解質の飛散速度w(TMA X )を算出す
る。さらに得られた飛散速度w(TMAX )にΔtを乗ず
れば、この時間間隔に飛散した電解質量が算定される。
Δt分毎に測定を繰り返して飛散した電解質量を算出
し、加算して飛散量の累積値を求め、この値が図2に示
したごとき飛散量の上限値を超えたとき電解質のりん酸
を補給する。
F A = I × 3600 / (4 × 96490 × 0.208 × UO 2 ) (3) F F = I × 3600 / (2 × 96490 × UH 2 × PH 2 ) (4) Therefore, every Δt output current I, generated voltage V, to measure the battery coolant temperature T W, to calculate the maximum temperature T MAX of the unit cell using the equation (1), then the vapor pressure of the electrolyte in the calculated T MAX v (T MAX ) and equations (3), (4)
Using the obtained gas flow rate, the temperature T
Calculating a flying rate w of the electrolyte in the MAX (T MA X). Further, by multiplying the obtained scattering velocity w (T MAX ) by Δt, the amount of the electrolyte scattered in this time interval is calculated.
The measurement is repeated every Δt minutes to calculate the scattered electrolytic mass, and the sum is calculated to obtain the cumulative value of the scattered amount. When this value exceeds the upper limit of the scattered amount as shown in FIG. Replenish.

【0018】なお、上記では、Δt分毎に出力電流Iと
発生電圧Vと電池冷却水温度TW を測定することとして
いるが、単位セルのI−V特性、V=f(I)を用いれ
ば、単位セルの最高温度TMAX は次式で表される。
In the above description, the output current I, the generated voltage V, and the battery cooling water temperature T W are measured every Δt, but the IV characteristic of the unit cell, V = f (I), is used. For example, the maximum temperature T MAX of the unit cell is expressed by the following equation.

【0019】[0019]

【数4】 TMAX =g(RC ,RCOOL,n)(1.26−f(I))I+TW (5) したがって、発生電圧Vの測定値を用いずとも式(5)
により単位セルの最高温度TMAX が算出できる。また、
電池冷却水を一定温度に保持して用いれば、電池冷却水
の温度の測定値を用いなくとも単位セルの最高温度T
MAX が算出でき、飛散した電解質量を算出して補給時期
を知り、適正に補給することができる。 <実施例2>本実施例の運転方法においては、Δt時間
毎に発電電力量と電池冷却水温度を測定し、これらの測
定値から単位セルの最高温度TMAX を算出し、さらに単
位セルのマトリックスに保持されたりん酸の飛散量を算
出してりん酸の補給時期を知り、これをもとにりん酸を
補給して運転する。
T MAX = g (R C , R COOL , n) (1.26−f (I)) I + T W (5) Therefore, the equation (5) can be obtained without using the measured value of the generated voltage V.
Can calculate the maximum temperature T MAX of the unit cell. Also,
If the battery cooling water is used at a constant temperature, the maximum temperature T of the unit cell can be obtained without using the measured value of the battery cooling water temperature.
MAX can be calculated, the scattered electrolytic mass is calculated, the replenishment time is known, and the replenishment can be performed appropriately. <Embodiment 2> In the operation method of the present embodiment, the amount of generated power and the temperature of the battery cooling water are measured every Δt time, the maximum temperature TMAX of the unit cell is calculated from these measured values, and The amount of phosphoric acid scattered in the matrix is calculated to determine the time of phosphoric acid replenishment, and the operation is performed by replenishing phosphoric acid based on this.

【0020】上記のごとく直流発電電力量を測定し、運
転時間t〔h〕における単位セル1個当たりの直流発電
電力量の測定値をA(t)〔kWh 〕とすれば、単位セル
1個当たりの運転時間0〜tにおける平均直流発電電力
P(t)〔kW〕は次式(6)で表わされる。一方、単位
セルのI−V特性、V=f(I)を用いれば、P(t)
〔kW〕は次式(7)で表わされる。
As described above, the amount of generated DC power is measured, and the measured value of the amount of generated DC power per unit cell during the operation time t [h] is A (t) [kWh]. The average DC generated power P (t) [kW] in the operating time 0 to t per is represented by the following equation (6). On the other hand, if the IV characteristic of the unit cell, V = f (I), is used, P (t)
[KW] is expressed by the following equation (7).

【0021】[0021]

【数5】 P(t)=A(t)/t (6) P(t)=I・f(I) (7) すなわち、直流発電電力量A(t)を測定すれば、二つ
の式より出力電流Iが算出される。この出力電流Iの算
定値と、電池冷却水温度の測定値を用いれば、実施例1
で述べたごとく、式(5)によって単位セルの最高温度
MAX が知られ、さらに、式(2)により温度TMAX
おける電解質の飛散速度w(TMAX )が算出される。さ
らに得られた飛散速度w(TMAX )に測定の時間間隔を
乗ずれば、飛散した電解質量が算定される。したがっ
て、所定時間毎に測定を行って、飛散した電解質量を算
出し、順次加算して飛散量の累積値を求め、この値が図
2に示したごとき飛散量の上限値を超えたとき電解質の
りん酸を補給する。
P (t) = A (t) / t (6) P (t) = Iff (I) (7) That is, if the amount of DC power generation A (t) is measured, two equations are obtained. Thus, the output current I is calculated. Using the calculated value of the output current I and the measured value of the battery cooling water temperature,
As described above, the maximum temperature T MAX of the unit cell is known from Expression (5), and the scattering speed w (T MAX ) of the electrolyte at the temperature T MAX is calculated from Expression (2). Further, by multiplying the obtained scattering speed w (T MAX ) by the time interval of measurement, the amount of the scattered electrolyte is calculated. Therefore, the measurement is performed at predetermined time intervals, the scattered electrolytic mass is calculated, and the cumulative value of the scattered amount is calculated by sequentially adding the scattered electrolytic mass. When this value exceeds the upper limit of the scattered amount as shown in FIG. Replenish the phosphoric acid.

【0022】なお、上記では、直流発電電力量A(t)
を測定することとしているが、交流発電電力量を測定す
ることとしても、一定常数を乗ずることにより直流発電
電力量が得られるので、同様に飛散した電解質量が算出
でき、適正に電解質のりん酸を補給することができる。
また、本実施例では、Δt時間毎に発電電力量と電池冷
却水温度を測定し、単位セルの最高温度TMAX 、さらに
単位セルのりん酸の飛散量を算出してりん酸の補給時期
を知り、これをもとにりん酸を補給して運転することと
しているが、通常よく用いられるように、電池冷却水を
一定温度に保持して運転すれば、電池冷却水の温度の測
定値を用いなくとも単位セルの最高温度TMAK が算出で
きるので、Δt時間毎に発電電力量を測定することによ
り、電解質の飛散量が知られ、効果的に電解質のりん酸
を補給することができる。
In the above description, the DC power generation amount A (t)
However, when measuring the AC power generation amount, the DC generation power amount can be obtained by multiplying by one stationary number, so that the amount of the scattered electrolytic mass can be calculated in the same manner, and the phosphoric acid of the electrolyte can be properly calculated. Can be replenished.
In this embodiment, the amount of generated power and the temperature of the battery cooling water are measured at every Δt time, and the maximum temperature T MAX of the unit cell and the amount of the phosphoric acid scattered in the unit cell are calculated to determine the replenishment time of the phosphoric acid. Knowing this, it is decided to operate with replenishing phosphoric acid based on this, but as is often used, if the battery cooling water is kept at a constant temperature and operated, the measured value of the battery cooling water temperature will be Since the maximum temperature T MAK of the unit cell can be calculated without using it, by measuring the amount of generated power at every Δt time, the amount of scattered electrolyte is known, and the phosphoric acid of the electrolyte can be effectively replenished.

【0023】[0023]

【発明の効果】上述のごとく、本発明によれば、電解質
としてのりん酸を保持したマトリックスの両面に燃料電
極と空気電極を配して形成された単位セルを、冷却配管
を備えた冷却板を適宜挿入して積層し、冷却配管に電池
冷却水を通流し、燃料電極に燃料ガスを、また空気電極
に酸化剤ガスを供給して、電気化学反応により電気エネ
ルギーを得るりん酸型燃料電池において、 (1)出力電流と発電時間、あるいは、出力電圧と電池
冷却水のうちの少なくともいずれか一方と出力電流と発
電時間を測定し、これらの測定値より電解質の補給時期
を算定し、電解質を補給して運転することとしたので、
単位セルに保持されたりん酸の補給時期が的確に検知さ
れることとなり、りん酸型燃料電池を安定して運転でき
る運転方法が得られることとなった。
As described above, according to the present invention, a unit cell formed by arranging a fuel electrode and an air electrode on both surfaces of a matrix holding phosphoric acid as an electrolyte can be used as a cooling plate having a cooling pipe. The fuel cell is a phosphoric acid fuel cell that obtains electric energy by an electrochemical reaction by supplying fuel gas to the fuel electrode and oxidizing gas to the air electrode by passing the cell cooling water through the cooling pipe and supplying the fuel gas to the air electrode. In (1) the output current and the power generation time, or the output voltage and / or the battery cooling water, the output current and the power generation time are measured, and the electrolyte supply time is calculated from these measured values. And decided to drive.
The timing of replenishing the phosphoric acid held in the unit cell is accurately detected, and an operation method capable of stably operating the phosphoric acid type fuel cell is obtained.

【0024】(2)また、発電電力量と発電時間、ある
いは、発電電力量と発電時間と電池冷却水温度を測定
し、これらの測定値より電解質の補給時期を算定し、電
解質を補給して運転することとしても、同様に、単位セ
ルに保持されたりん酸の補給時期が的確に検知されるの
で、りん酸型燃料電池を安定して運転できる運転方法と
して好適である。
(2) Also, the amount of generated power and the time of power generation, or the amount of generated power, the time of power generation, and the temperature of the battery cooling water are measured, and the replenishment time of the electrolyte is calculated from these measured values. Similarly, the time of replenishment of the phosphoric acid held in the unit cell is accurately detected, so that it is suitable as an operation method capable of stably operating the phosphoric acid type fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の運転方法の実施例1の方法
を適用して運転される燃料電池積層体の断面図
FIG. 1 is a cross-sectional view of a fuel cell stack operated by applying a method of operating a fuel cell according to a first embodiment of the present invention.

【図2】マトリックスに保持された電解質の飛散量と発
電時間の関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between the amount of scattered electrolyte held in a matrix and a power generation time.

【図3】りん酸型燃料電池の燃料電池積層体の基本構成
単位である単位セルの構成を模式的に示した断面図
FIG. 3 is a cross-sectional view schematically showing a configuration of a unit cell which is a basic structural unit of a fuel cell stack of a phosphoric acid type fuel cell.

【図4】図3の構成の単位セルを用いて構成された燃料
電池積層体の要部断面図
FIG. 4 is a cross-sectional view of a main part of a fuel cell stack configured using the unit cells having the configuration of FIG. 3;

【図5】マトリックスに保持された電解質の飛散速度の
温度依存性を示す特性図
FIG. 5 is a characteristic diagram showing the temperature dependence of the scattering speed of the electrolyte held in the matrix.

【符号の説明】[Explanation of symbols]

1 マトリックス 6 燃料電極 7 空気電極 10 燃料電池積層体 11 単位セル 12 セパレータ 13 冷却板 15 電圧計 16 電流計 17 温度計 20 単位ブロック Reference Signs List 1 matrix 6 fuel electrode 7 air electrode 10 fuel cell stack 11 unit cell 12 separator 13 cooling plate 15 voltmeter 16 ammeter 17 thermometer 20 unit block

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解質としてのりん酸を保持したマトリッ
クス層の両面に燃料電極と空気電極を配して形成された
単位セルを、冷却配管を備えた冷却板を適宜挿入して積
層し、冷却配管に電池冷却水を通流し、燃料電極に燃料
ガスを、また空気電極に酸化剤ガスを供給して、電気化
学反応により電気エネルギーを得るりん酸型燃料電池に
おいて、出力電流と発電時間、あるいは、出力電圧と電
池冷却水温度のうちの少なくともいずれか一方と出力電
流と発電時間を測定し、これらの測定値より電解質の補
給時期を算定し、電解質を補給して運転することを特徴
とするりん酸型燃料電池の運転方法。
1. A unit cell formed by arranging a fuel electrode and an air electrode on both surfaces of a matrix layer holding phosphoric acid as an electrolyte is laminated by appropriately inserting a cooling plate provided with a cooling pipe, and cooling the unit cell. Output current and power generation time, or power supply time in a phosphoric acid fuel cell in which electric power is supplied by electrochemical reaction by supplying fuel gas to the fuel electrode and oxidizing gas to the air electrode by flowing cell cooling water through the piping Measuring at least one of the output voltage and the battery cooling water temperature, the output current and the power generation time, calculating the electrolyte replenishment time from these measured values, replenishing the electrolyte and operating. How to operate a phosphoric acid fuel cell.
【請求項2】電解質としてのりん酸を保持したマトリッ
クス層の両面に燃料電極と空気電極を配して形成された
単位セルを、冷却配管を備えた冷却板を適宜挿入して積
層し、冷却配管に電池冷却水を通流し、燃料電極に燃料
ガスを、また空気電極に酸化剤ガスを供給して、電気化
学反応により電気エネルギーを得るりん酸型燃料電池に
おいて、発電電力量と発電時間、あるいは発電電力量と
発電時間と電池冷却水温度を測定し、これらの測定値よ
り電解質の補給時期を算定し、電解質を補給して運転す
ることを特徴とするりん酸型燃料電池の運転方法。
2. A unit cell formed by arranging a fuel electrode and an air electrode on both sides of a matrix layer holding phosphoric acid as an electrolyte is laminated by appropriately inserting a cooling plate provided with a cooling pipe, and cooling the unit cell. In a phosphoric acid type fuel cell, in which the cell cooling water flows through the pipe, the fuel gas is supplied to the fuel electrode, and the oxidizing gas is supplied to the air electrode, and the electric energy is obtained by an electrochemical reaction, Alternatively, a method of operating a phosphoric acid type fuel cell, comprising measuring an amount of generated power, a power generation time, and a battery cooling water temperature, calculating an electrolyte replenishment time from the measured values, and replenishing the electrolyte for operation.
JP9101433A 1997-04-18 1997-04-18 Operating method for phosphoric acid fuel cell Pending JPH10294120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101433A JPH10294120A (en) 1997-04-18 1997-04-18 Operating method for phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9101433A JPH10294120A (en) 1997-04-18 1997-04-18 Operating method for phosphoric acid fuel cell

Publications (1)

Publication Number Publication Date
JPH10294120A true JPH10294120A (en) 1998-11-04

Family

ID=14300571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101433A Pending JPH10294120A (en) 1997-04-18 1997-04-18 Operating method for phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JPH10294120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105112A2 (en) * 2006-01-11 2007-09-20 Nissan Motor Co., Ltd. Fuel cell system with coolant circulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105112A2 (en) * 2006-01-11 2007-09-20 Nissan Motor Co., Ltd. Fuel cell system with coolant circulation
WO2007105112A3 (en) * 2006-01-11 2008-01-17 Nissan Motor Fuel cell system with coolant circulation
US8110313B2 (en) 2006-01-11 2012-02-07 Nissan Motor Co., Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US6878473B2 (en) Fuel cell power generating apparatus, and operating method and combined battery of fuel cell power generating apparatus
US7393602B2 (en) Method to begin coolant circulation to prevent MEA overheating during cold start
JP4131916B2 (en) Operation method of fuel cell power generator
JP2007188667A (en) Fuel cell system
JP2004199918A (en) Diagnostic method of fuel cell
US7148654B2 (en) Method and apparatus for monitoring fuel cell voltages
US7858248B2 (en) Fuel cell and fuel cell system
JP2796521B2 (en) Fuel cell
Fan et al. Prototype design of an extended range electric sightseeing bus with an air-cooled proton exchange membrane fuel cell stack based on a voltage control logic of hydrogen purging
JPH09223512A (en) Abnormality monitoring method of fuel cell and device therefor
JPH11312531A (en) Fuel cell system
JP2009211935A (en) Fuel cell system
JPH0955219A (en) Fuel cell power generating device and operation method
JP2007027047A (en) Fuel cell system
KR101283022B1 (en) Fuel cell stack
JPH10294120A (en) Operating method for phosphoric acid fuel cell
CN101512812B (en) Polymer electrolyte fuel cell system
JP2006092801A (en) Fuel cell system
JPH0945352A (en) Fuel cell monitoring device
JP2015185338A (en) Fuel cell system, and method
JP5498847B2 (en) Fuel cell stack
JPH09274929A (en) Phosphoric acid type fuel cell
JPH01122570A (en) Life prediction of fuel cell
JP2011243424A (en) Method of operating fuel cell
JP2009123472A (en) Operation method of fuel cell and fuel cell system