JPH10293067A - Infrared imaging apparatus - Google Patents

Infrared imaging apparatus

Info

Publication number
JPH10293067A
JPH10293067A JP9115064A JP11506497A JPH10293067A JP H10293067 A JPH10293067 A JP H10293067A JP 9115064 A JP9115064 A JP 9115064A JP 11506497 A JP11506497 A JP 11506497A JP H10293067 A JPH10293067 A JP H10293067A
Authority
JP
Japan
Prior art keywords
temperature
infrared
detecting element
constant
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9115064A
Other languages
Japanese (ja)
Other versions
JP3237822B2 (en
Inventor
Takeshi Shima
毅 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11506497A priority Critical patent/JP3237822B2/en
Publication of JPH10293067A publication Critical patent/JPH10293067A/en
Application granted granted Critical
Publication of JP3237822B2 publication Critical patent/JP3237822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an infrared imaging apparatus which can be made small and lightweight, whose power consumption can be made low and whose sensitivity can be made constant over a wide ambient temperature range. SOLUTION: Infrared rays from an optical system 1 are converted into a change in the resistance of an infrared detecting element 2. When a current is made to flow to the infrared detecting element 2 from a read circuit 3, it is read out as a voltage change so as to be processed by an imaged-signal processing circuit 4. On the basis of the signal of a temperature sensor 7, a constant-temperature control circuit 5 changes the temperature of the infrared detecting element 2 into a constant temperature near an ambient temperature, and a current control circuit 6 controls the current of the read circuit 3 according to the ambient temperature or the like so as to cancel a sensitivity change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線撮像装置に
関し、特に常温の赤外線検知素子を使用し、被写体の温
度変化を赤外線検知素子の抵抗変化として検出するボロ
メータ方式の非冷却型の赤外線撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging apparatus, and more particularly to a bolometer type non-cooled infrared imaging apparatus which uses a normal temperature infrared detecting element and detects a temperature change of a subject as a resistance change of the infrared detecting element. About.

【0002】[0002]

【従来の技術】従来、この種の赤外線撮像装置は、環境
温度に拘わらず赤外線検知素子の温度を特定温度に恒温
化し感度を一定に保つようにするか又は感度変化を犠牲
にして赤外線検知素子の温度を環境温度近傍に恒温化す
るという手法が採用されていた。
2. Description of the Related Art Conventionally, an infrared imaging device of this kind has been designed to keep the sensitivity of an infrared detecting element constant at a specific temperature regardless of the environmental temperature so as to keep the sensitivity constant, or to sacrifice a change in sensitivity. A method of keeping the temperature constant near the ambient temperature has been adopted.

【0003】[0003]

【発明が解決しようとする課題】上記前者の従来技術の
ように環境温度に拘わらず赤外線検知素子の温度を特定
温度に恒温化するように構成したものは、環境温度と特
定温度の間に大きな温度差がある場合に規模の大きな温
度制御器が必要になるものであり、また、温度制御器の
能力により使用環境等が限られた範囲に限定されてしま
うという難点があった。
The structure in which the temperature of the infrared detecting element is kept constant at a specific temperature regardless of the ambient temperature, as in the former prior art, is large between the environmental temperature and the specific temperature. When there is a temperature difference, a large-scale temperature controller is required, and the use environment and the like are limited to a limited range due to the capability of the temperature controller.

【0004】また、上記後者の従来技術のように赤外線
検知素子の温度だけを環境温度近傍に恒温化する構成の
ものにおいては、赤外線検知素子の抵抗が環境温度によ
り変化するので、赤外線検知素子の抵抗を検出するため
に常に同一電圧(電流)を印加したのでは検出電流(電
圧)が環境温度に応じて変動し感度が変化してしまうと
いう難点があった。
[0004] In the latter prior art, in which only the temperature of the infrared detecting element is kept constant near the ambient temperature, the resistance of the infrared detecting element changes depending on the environmental temperature. If the same voltage (current) is always applied to detect the resistance, there is a problem that the detected current (voltage) fluctuates according to the environmental temperature and the sensitivity changes.

【0005】本発明の目的は、小型・軽量・低消費電力
化が実現でき、且つ広い使用環境温度範囲にわたって感
度を一定に保つことができる赤外線撮像装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared imaging device which can realize small size, light weight, low power consumption, and can keep sensitivity constant over a wide range of use environment temperature.

【0006】[0006]

【課題を解決するための手段】温度センサにより環境温
度を検出し、赤外線検知素子を環境温度近傍に恒温化す
る手段(図1の5)と、環境温度信号に基づき赤外線検
知素子に印加する電圧(電流)量を制御する手段(図1
の6)を具備する。
Means for detecting the environmental temperature with a temperature sensor and for keeping the infrared detecting element constant at or near the environmental temperature (5 in FIG. 1), and a voltage applied to the infrared detecting element based on the environmental temperature signal Means for controlling (current) amount (FIG. 1)
6) is provided.

【0007】即ち、本発明の赤外線撮像装置は、赤外線
検知素子の抵抗を検出して撮像する撮像装置において、
前記赤外線検知素子を環境温度近傍の温度に恒温化する
恒温化手段と、赤外線検知素子の抵抗を電圧又は電流を
印加することにより読み取る抵抗検出手段と、環境温度
又は恒温温度に応じて赤外線検知素子に印加する前記電
流又は電圧を補正する制御手段とを有する。また、赤外
線検知素子の抵抗値を検出する前記抵抗検出手段として
は、一定電荷を蓄積した後、当該電荷を一定時間前記赤
外線検知素子を介して放電する容量手段を備え、前記容
量手段の電荷の放電終了時点の電圧を読み取る構成とす
る。更に、前記容量手段の電荷の放電路にはトランジス
タを用いた定電流手段を備え、当該トランジスタの制御
電極のバイアスを前記環境温度又は恒温温度に応じて制
御する。
That is, an infrared imaging apparatus according to the present invention is an imaging apparatus for detecting the resistance of an infrared detecting element to perform imaging.
Constant temperature means for keeping the infrared detecting element at a temperature close to the environmental temperature, resistance detecting means for reading the resistance of the infrared detecting element by applying voltage or current, and infrared detecting element according to the environmental temperature or the constant temperature And control means for correcting the current or the voltage applied to the device. Further, the resistance detecting means for detecting the resistance value of the infrared detecting element includes a capacitance means for accumulating a fixed electric charge and then discharging the electric charge via the infrared detecting element for a predetermined time, and The voltage at the end of discharge is read. Further, a constant current means using a transistor is provided in a discharge path of the electric charge of the capacitance means, and a bias of a control electrode of the transistor is controlled according to the environmental temperature or the constant temperature.

【0008】より具体的には、本発明の赤外線撮像装置
は、赤外線検知素子と、前記赤外線検知素子を環境温度
に恒温化する恒温化回路と、コンデンサと該コンデンサ
に一定電荷を充電するスイッチと該コンデンサの充電電
荷を赤外線検知素子に一定時間放電するトランジスタと
を備え前記コンデンサの電荷放電後の電圧を出力する読
出回路と、前記トランジスタのベース電圧を環境温度又
は恒温温度に応じて補正し赤外線検知素子に流れる電流
値を制御する制御回路とを有する。
More specifically, the infrared imaging apparatus of the present invention comprises an infrared detecting element, a thermostat circuit for thermostatting the infrared detecting element to an environmental temperature, a capacitor and a switch for charging the capacitor with a constant charge. A readout circuit that includes a transistor that discharges the charge of the capacitor to the infrared detection element for a certain period of time and outputs a voltage after discharging the charge of the capacitor; and correcting the base voltage of the transistor according to the ambient temperature or the constant temperature to detect the infrared ray. A control circuit for controlling a value of a current flowing through the sensing element.

【0009】本発明によれば、赤外線検知素子の温度を
環境温度近傍に恒温化することから、恒温部に規模の小
さな温度制御器を使用でき、また、低消費電力で広い環
境温度範囲で使用可能な赤外線撮像装置を構成できる。
According to the present invention, since the temperature of the infrared detecting element is kept constant near the ambient temperature, a small-scale temperature controller can be used in the constant temperature section, and it can be used with low power consumption and in a wide environmental temperature range. A possible infrared imaging device can be configured.

【0010】更に、赤外線検知素子に印加する電圧(電
流)を環境温度の信号に基づき制御することから、環境
温度変化に基づく赤外線撮像装置の感度変化をなくすこ
とができる。
Further, since the voltage (current) applied to the infrared detecting element is controlled based on the environmental temperature signal, it is possible to eliminate a change in the sensitivity of the infrared imaging apparatus due to the environmental temperature change.

【0011】[0011]

【発明の実施の形態】本発明の赤外線撮像装置の一実施
の形態について説明する。図1は本実施の形態の基本構
成を示すブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the infrared imaging apparatus according to the present invention will be described. FIG. 1 is a block diagram showing a basic configuration of the present embodiment.

【0012】本実施の形態の赤外線撮像装置の基本構成
においては、赤外線を集光する光学系1と、集光された
赤外線が照射される赤外線検知素子2と、赤外線検知素
子2に電圧又は電流等を印加し赤外線量に基づく抵抗変
化を電流又は電圧等として読み出す読出回路3と、読み
出された出力を画像化する画像化信号処理回路4を備
え、更に、環境温度や恒温温度を検出する温度センサ7
と、前記温度センサ7の出力によりそれぞれ制御され、
赤外線検知素子2を感度温度近傍の温度に恒温化する恒
温化制御回路5及び赤外線検知素子2の読出感度を制御
するための電気量を制御する制御回路6とを備えてい
る。
In the basic configuration of the infrared imaging apparatus according to the present embodiment, an optical system 1 for collecting infrared light, an infrared detecting element 2 to which the collected infrared light is irradiated, and a voltage or current applied to the infrared detecting element 2 And a reading circuit 3 for reading a resistance change based on the amount of infrared rays as a current or a voltage, and an imaging signal processing circuit 4 for imaging the read output, and further detects an environmental temperature and a constant temperature. Temperature sensor 7
And controlled by the output of the temperature sensor 7, respectively.
The apparatus includes a control circuit 5 for controlling the temperature of the infrared detecting element 2 to a temperature close to the sensitivity temperature, and a control circuit 6 for controlling the quantity of electricity for controlling the reading sensitivity of the infrared detecting element 2.

【0013】同図において、光学系1で集光された赤外
線は、赤外線検知素子2の抵抗変化となり、読出回路3
によって電流又は電圧変化が読み出され画像化信号処理
回路4で処理され映像信号として出力される。
In FIG. 1, infrared light condensed by an optical system 1 causes a change in resistance of an infrared detecting element 2, and the readout circuit 3
Thus, a change in current or voltage is read out, processed by the imaging signal processing circuit 4, and output as a video signal.

【0014】一方、温度センサ7は、使用環境温度及び
恒温温度を検出し、恒温化制御回路5及び制御回路6に
供給する。
On the other hand, the temperature sensor 7 detects the use environment temperature and the constant temperature, and supplies them to the constant temperature control circuit 5 and the control circuit 6.

【0015】恒温化制御回路5は、温度センサ7の信号
に基づいて、例えば環境温度と赤外線検知素子の恒温温
度との偏差に相当する信号によるフィードバック制御を
行い、赤外線検知素子2の温度が環境温度近傍の温度に
恒温化するように制御する。
The constant temperature control circuit 5 performs feedback control based on a signal from the temperature sensor 7 based on a signal corresponding to, for example, a difference between the environmental temperature and the constant temperature of the infrared detecting element. The temperature is controlled to be constant near the temperature.

【0016】制御回路6は、温度センサ7の信号に基づ
いて赤外線撮像装置の感度が環境温度により変化しない
ように赤外線検知素子2の抵抗を検出するために印加す
る電圧又は電流を制御する。
The control circuit 6 controls the voltage or current applied to detect the resistance of the infrared detecting element 2 based on the signal of the temperature sensor 7 so that the sensitivity of the infrared imaging device does not change with the environmental temperature.

【0017】以上の構成・動作により、赤外線検知素子
2は、温度センサの出力に基づく恒温化制御回路5の制
御により恒温化され、赤外線撮像装置の電源投入以降の
温度上昇等に対しても常に環境温度の近傍温度に一定化
れる。
With the above configuration and operation, the temperature of the infrared detecting element 2 is controlled by the control of the constant temperature control circuit 5 based on the output of the temperature sensor. It is stabilized at a temperature near the ambient temperature.

【0018】一方、赤外線検知素子2の読出回路3は、
制御回路6により環境温度に応じた補正量を含む電流等
を出力して、環境温度による赤外線検知素子2の抵抗変
化に基づく感度変動をキャンセルするようにして赤外線
検知素子2の抵抗を電圧値等として読み出す。
On the other hand, the reading circuit 3 of the infrared detecting element 2
The control circuit 6 outputs a current or the like including a correction amount corresponding to the environmental temperature, and cancels a sensitivity variation based on a resistance change of the infrared detecting element 2 due to the environmental temperature, thereby changing a resistance of the infrared detecting element 2 to a voltage value or the like. Read as

【0019】したがって、読出回路3の出力及び画像化
信号処理回路4から得られる映像信号は、環境温度の変
化にかかわらず一定感度の信号となり、高精度な赤外線
撮像装置を構成できる。
Therefore, the output of the readout circuit 3 and the video signal obtained from the imaging signal processing circuit 4 become a signal having a constant sensitivity regardless of a change in environmental temperature, and a high-precision infrared imaging device can be constructed.

【0020】[0020]

【実施例】次に、本発明の実施例について説明する。図
2は本発明の実施例を示す図である。同図において、赤
外線検知素子2は、例えばペルチェ効果等を利用した金
属又は半導体を用いた赤外線により抵抗値が変化する検
知素子であり、読出回路3はスイッチSW、コンデンサ
等の電荷蓄積素子(C)とトランジスタTrから構成さ
れる。
Next, an embodiment of the present invention will be described. FIG. 2 is a diagram showing an embodiment of the present invention. In the figure, an infrared detecting element 2 is a detecting element whose resistance value changes by infrared rays using a metal or a semiconductor utilizing a Peltier effect or the like, for example, and a readout circuit 3 includes a charge storage element (C) such as a switch SW and a capacitor. ) And a transistor Tr.

【0021】図2の動作を説明すると、読出回路3にお
いて、まず、スイッチSWをオン状態としてコンデンサ
(C)を電源電圧VCまで充電する。次に、スイッチS
Wを一定時間オフ状態に切り替え、コンデンサ(C)の
充電電荷をトランジスタTrを介して放電し、トランジ
スタのベース電圧VB に応じた定電流を赤外線検知素子
2(抵抗値R)に流す。抵抗に電流を一定時間流した後
のコンデンサ(C)の端子間電圧は、抵抗値Rの大きさ
に応じて変化するから、コンデンサ(C)の放電後の端
子間電圧値から赤外線検知素子2の抵抗変化が検出で
き、このことから赤外線量を検出できる。
[0021] In the operation of Figure 2, in the reading circuit 3, first, to charge the capacitor (C) the switch SW is turned on to until the power supply voltage V C. Next, switch S
Switch the W constant time off state, the electric charge of the capacitor (C) discharges through the transistor Tr, a constant current is supplied in accordance with the base voltage V B of the transistor in the infrared sensing element 2 (the resistance value R). Since the voltage between the terminals of the capacitor (C) after the current has flowed through the resistor for a certain period of time changes according to the magnitude of the resistance value R, the infrared detection element 2 is determined from the voltage between the terminals after the discharge of the capacitor (C). Can be detected, from which the amount of infrared radiation can be detected.

【0022】ここで、前記一定時間後のコンデンサ
(C)の電圧は、放電後の電荷量により決定される。そ
して、コンデンサ(C)の容量をC、電荷をQとする
と、コンデンサの端子間電圧は、Q/Cで表され、ま
た、放電電流をI、放電期間(一定時間)τとすると放
電電荷は、I×τとなる。
Here, the voltage of the capacitor (C) after the predetermined time is determined by the charge amount after discharging. When the capacitance of the capacitor (C) is C and the charge is Q, the voltage between the terminals of the capacitor is represented by Q / C. When the discharge current is I and the discharge period (constant time) τ, the discharge charge is , I × τ.

【0023】また、赤外線検知素子(抵抗値R)の端子
間電圧は、トランジスタのベース電圧をVB、ベース・
エミッタ間電圧をVBEとすると、(VB −VBE)とな
り、放電電流Iは、I=(VB −VBE)/Rで表され
る。
The voltage between the terminals of the infrared detecting element (resistance value R) is V B ,
Assuming that the voltage between the emitters is V BE , it becomes (V B -V BE ), and the discharge current I is represented by I = (V B -V BE ) / R.

【0024】よって、放電期間τ後のコンデンサ(C)
の電圧Vは、充電電圧VCから放電電荷分の電圧τ(VB
−VBE)/C・Rを差し引いた、 V=VC−τ(VB −VBE)/C・R ……(1) で表される。
Therefore, the capacitor (C) after the discharge period τ
The voltage V, the voltage of the discharge charge amount from the charging voltage V C τ (V B
−V BE ) / C · R is subtracted, and is expressed as V = V C −τ (V B −V BE ) / C · R (1)

【0025】また、赤外線検知素子の抵抗値に対する電
圧変化dVは、(1)式より、 dV={τ(VB −VBE)/C・R}・β ……(2) 但し、β=dR/Rで、赤外線撮像装置としての被写体
温度に対する抵抗変化率で表される。
From the equation (1), the voltage change dV with respect to the resistance value of the infrared detecting element is given by dV = {τ (V B −V BE ) / C · R} · β (2) where β = It is expressed by dR / R as a resistance change rate with respect to a subject temperature as an infrared imaging device.

【0026】一方、赤外線検知素子の抵抗値Rは、環境
温度変化dTにより、 R=R0 (1+α・dT) ……(3) R0 :基準温度T0のときの抵抗値 のように変化する。
On the other hand, the resistance value R of the infrared detecting element is changed by the environmental temperature change dT as follows: R = R 0 (1 + α · dT) (3) R 0 : resistance value at the reference temperature T 0 I do.

【0027】また、トランジスタのVBEも温度特性をも
っており、 VBE=VBEO(1+∂VBE・dT) ……(4) VBEO :基準温度T0のときのVBE ∂VBE:VBEの温度微分係数 で近似できる。
The V BE of the transistor also has a temperature characteristic. V BE = V BEO (1 + ∂V BE · dT) (4) V BEO : V BE at the reference temperature T 0 ∂V BE : V It can be approximated by the temperature derivative of BE .

【0028】したがって、(3)、(4)式より、環境
温度が変化すると(2)式で表される赤外線撮像装置の
感度は変化することになる。
Therefore, from the equations (3) and (4), when the environmental temperature changes, the sensitivity of the infrared imaging device expressed by the equation (2) changes.

【0029】そこで、温度センサ7で環境温度を検出
し、恒温化制御回路5で赤外線検知素子を温度Tに恒温
化し、また、(2)式の感度dVが基準温度T0のとき
と変化しないように制御回路6により読出回路3のトラ
ンジスタTrのベース電圧VBを制御する。
Therefore, the ambient temperature is detected by the temperature sensor 7, the temperature of the infrared detecting element is kept constant at the temperature T by the constant temperature control circuit 5, and the sensitivity dV of the equation (2) does not change from the reference temperature T 0. controls the base voltage V B of the transistor Tr of the read circuit 3 by the control circuit 6 as.

【0030】以下、制御回路6における制御方法につい
て説明する。
Hereinafter, a control method in the control circuit 6 will be described.

【0031】まず、(2)式において感度dVが環境温
度にかかわらず一定となる条件について検討すると、温
度Tにおいて赤外線検知素子に流れる上述の電流(VB
−VBE)/Rは、前記(3)、(4)式から{VB−V
BEO(1+∂VBE・dT)}/R0(1+α・dT)とし
て表せるから、感度dVが環境温度にかかわらず一定、
即ち、基準温度T0のときと変化しない条件としては、 {VB−VBEO(1+∂VBE・dT)}/R0(1+α・dT) =(VBO−VBEO)/R0 ……(5) を満たす必要がある。
First, considering the condition that the sensitivity dV is constant irrespective of the environmental temperature in the equation (2), the above-mentioned current (V B) flowing through the infrared detecting element at the temperature T is considered.
−V BE ) / R is given by ΔV B −V from the above equations (3) and (4).
Since it can be expressed as BEO (1+ {V BE · dT)} / R 0 (1 + α · dT), the sensitivity dV is constant regardless of the ambient temperature.
That is, as a condition that does not change from the case of the reference temperature T 0 , {V B −V BEO (1 + ΔV BE · dT)} / R 0 (1 + α · dT) = (V BO −V BEO ) / R 0 It is necessary to satisfy (5).

【0032】そこで、(5)式からトランジスタのベー
ス電圧VBを求めると、 VB={α(VBO−VBEO)+∂VBE・VBEO}dT+VBO ……(6) が得られる。
Then, when the base voltage V B of the transistor is obtained from the equation (5), the following equation is obtained: V B = {α (V BO −V BEO ) + ∂V BE · V BEO } dT + V BO (6) .

【0033】(6)式から分かるように、感度dVが環
境温度にかかわらず一定となるベース電圧VBの条件
は、基準となる温度T0からの温度偏差dTの一次関数
で表わされる。
[0033] (6) As can be seen from the equation, the condition of the base voltage V B of sensitivity dV is constant irrespective of the environmental temperature is represented by a linear function of the temperature deviation dT from the temperature T 0 as a reference.

【0034】したがって、例えば、予め2つの環境温度
において温度偏差dTに対する感度dVが同じになるよ
うに、バイアス回路としての制御回路6からの環境温度
Tに比例する出力電流を制御し、ベース電圧を較正する
ことで赤外線撮像装置の環境温度変化に基づく感度変化
をキャンセルすることが可能である。
Therefore, for example, the output current proportional to the environmental temperature T from the control circuit 6 as a bias circuit is controlled so that the sensitivity dV to the temperature deviation dT becomes equal at two environmental temperatures in advance, and the base voltage is reduced. By calibrating, it is possible to cancel the sensitivity change based on the environmental temperature change of the infrared imaging device.

【0035】以上説明した実施例においては、読出回路
3を、スイッチ、コンデンサ及びバイポーラ型トランジ
スタで構成した回路により説明したが、電子スイッチや
ユニポーラ型トランジスタを使用できることは明かであ
る。また、赤外線検知素子の抵抗値の検出手段として、
コンデンサの充電電荷を赤外線検知素子を介して放電し
て低下電圧を検出する原理の検出手段を採用する例によ
り説明したが、赤外線検知素子の抵抗値変化を他の方法
により直接測定、検出するように構成してもよいことは
いうまでもない。
In the embodiment described above, the read circuit 3 has been described as a circuit composed of a switch, a capacitor and a bipolar transistor. However, it is obvious that an electronic switch or a unipolar transistor can be used. Further, as a means for detecting the resistance value of the infrared detecting element,
Although the description has been given of the example in which the detection means based on the principle of detecting the voltage drop by discharging the charge of the capacitor via the infrared detection element is used, the change in the resistance value of the infrared detection element is directly measured and detected by another method. Needless to say, the configuration may be made as follows.

【0036】[0036]

【発明の効果】本発明の赤外線撮像装置は、赤外線検知
素子を環境温度近傍の温度に恒温化するものであるか
ら、恒温化装置及び温度制御回路の規模が小さくてす
み、また、低消費電力化が図れるから、小型・軽量・低
消費電力の赤外線撮像装置を構成することが可能であ
る。
According to the infrared imaging apparatus of the present invention, since the temperature of the infrared detecting element is kept constant near the ambient temperature, the size of the temperature keeping device and the temperature control circuit can be small, and the power consumption is low. Therefore, it is possible to configure a small, lightweight, and low power consumption infrared imaging device.

【0037】更に、赤外線撮像装置の感度は環境温度に
より変化しないので、広い環境温度範囲にわたって使用
できる高性能な赤外線撮像装置を構成することができ
る。
Furthermore, since the sensitivity of the infrared imaging device does not change with the environmental temperature, a high-performance infrared imaging device that can be used over a wide environmental temperature range can be constructed.

【0038】[0038]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の基本構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a basic configuration of an embodiment of the present invention.

【図2】本発明の一実施例を示す図である。FIG. 2 is a diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光学系 2 赤外線検知素子 3 読出回路 4 画像化信号処理回路 5 恒温化制御回路 6 制御回路 7 温度センサ Reference Signs List 1 optical system 2 infrared detecting element 3 readout circuit 4 imaging signal processing circuit 5 constant temperature control circuit 6 control circuit 7 temperature sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 赤外線検知素子の抵抗変化を検出して撮
像する撮像装置において、前記赤外線検知素子を環境温
度近傍の温度に恒温化する恒温化手段と、赤外線検知素
子の抵抗変化を電圧又は電流を印加することにより読み
取る抵抗検出手段と、環境温度又は恒温温度に応じて赤
外線検知素子に印加する前記電圧又は電流を補正する制
御手段とを有し、赤外線検知素子の感度を環境温度に対
し一定化することを特徴とする赤外線撮像装置。
1. An imaging apparatus for detecting a change in resistance of an infrared detection element and imaging the same, wherein the thermostat means keeps the temperature of the infrared detection element at a temperature near an environmental temperature, and detects a change in resistance of the infrared detection element by voltage or current. And a control means for correcting the voltage or current applied to the infrared detecting element in accordance with the environmental temperature or the constant temperature, so that the sensitivity of the infrared detecting element is constant with respect to the environmental temperature. An infrared imaging device characterized in that:
【請求項2】 前記抵抗検出手段は蓄積電荷を前記赤外
線検知素子を介して放電する容量手段の放電結果により
抵抗変化を検出するものであり、前記容量手段の電荷の
放電路には定電流手段を備え、前記定電流手段の電流を
前記制御手段により補正することを特徴とする請求項1
記載の赤外線撮像装置。
2. The resistance detection means detects a change in resistance according to a discharge result of a capacitance means for discharging stored electric charge via the infrared detecting element. A constant current means is provided in a discharge path of the electric charge of the capacitance means. Wherein the control means corrects the current of the constant current means.
An infrared imaging device as described in the above.
【請求項3】 前記定電流手段としてトランジスタを用
い、当該トランジスタの制御電極のバイアスを前記制御
手段により補正することを特徴とする請求項2記載の赤
外線撮像装置。
3. The infrared imaging apparatus according to claim 2, wherein a transistor is used as said constant current means, and a bias of a control electrode of said transistor is corrected by said control means.
【請求項4】 赤外線検知素子と、前記赤外線検知素子
を環境温度に恒温化する恒温化回路と、コンデンサと該
コンデンサに一定電荷を充電するスイッチと該コンデン
サの充電電荷を赤外線検知素子に一定時間放電するトラ
ンジスタとを備え前記コンデンサの電荷放電後の電圧を
出力する読出回路と、前記トランジスタのベース電圧を
環境温度又は恒温温度に応じて補正する制御回路とを有
することを特徴とする赤外線撮像装置。
4. An infrared detecting element, a thermostat circuit for keeping the infrared detecting element at an ambient temperature, a capacitor, a switch for charging the capacitor with a constant charge, and charging the capacitor with the charge for a predetermined time. An infrared imaging apparatus comprising: a readout circuit that includes a discharging transistor and outputs a voltage after discharging the charge of the capacitor; and a control circuit that corrects a base voltage of the transistor according to an environmental temperature or a constant temperature. .
JP11506497A 1997-04-18 1997-04-18 Infrared imaging device Expired - Lifetime JP3237822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11506497A JP3237822B2 (en) 1997-04-18 1997-04-18 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11506497A JP3237822B2 (en) 1997-04-18 1997-04-18 Infrared imaging device

Publications (2)

Publication Number Publication Date
JPH10293067A true JPH10293067A (en) 1998-11-04
JP3237822B2 JP3237822B2 (en) 2001-12-10

Family

ID=14653291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11506497A Expired - Lifetime JP3237822B2 (en) 1997-04-18 1997-04-18 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP3237822B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033366A1 (en) * 2000-10-16 2002-04-25 Mitsubishi Denki Kabushiki Kaisha Infrared camera
JP2011510274A (en) * 2008-01-19 2011-03-31 テスト アクチエンゲゼルシャフト Thermal camera
CN113138025A (en) * 2021-03-18 2021-07-20 深圳市科陆精密仪器有限公司 Automatic calibration method and device for infrared temperature measurement equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033366A1 (en) * 2000-10-16 2002-04-25 Mitsubishi Denki Kabushiki Kaisha Infrared camera
US6894280B2 (en) 2000-10-16 2005-05-17 Mitsubishi Denki Kabushiki Kaisha Infrared camera
JP2011510274A (en) * 2008-01-19 2011-03-31 テスト アクチエンゲゼルシャフト Thermal camera
CN113138025A (en) * 2021-03-18 2021-07-20 深圳市科陆精密仪器有限公司 Automatic calibration method and device for infrared temperature measurement equipment

Also Published As

Publication number Publication date
JP3237822B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US6730909B2 (en) Methods and apparatus for compensating a radiation sensor for temperature variations of the sensor
US6953932B2 (en) Microbolometer focal plane array with temperature compensated bias
US8398304B2 (en) Multiple sensor thermal management for electronic devices
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US8080793B2 (en) Device for detecting infrared radiation comprising a resistive imaging bolometer, a system comprising an array of such bolometers and a method for reading an imaging bolometer integrated into such a system
US6267501B1 (en) Ambient temperature micro-bolometer control, calibration, and operation
EP3413023A2 (en) Real time radiation sensor calibration
US20090008556A1 (en) Device for detecting electromagnetic radiation, especially infrared radiation
KR20120061039A (en) System and method for detecting infrared radiation
JPH08184576A (en) Humidity sensor
JP3237822B2 (en) Infrared imaging device
JP3974902B2 (en) Thermal infrared detector
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
JPH08136356A (en) Device and method for detecting temperature and adjusting system of temperature of semiconductor using the method
US6894280B2 (en) Infrared camera
KR100337622B1 (en) Heat sensitive flow meter
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JPS6221024A (en) Signal correction circuit for infrared camera
JP2964988B2 (en) Infrared sensor readout circuit
JP3363983B2 (en) Heat wire type acceleration detector
JP2000165748A (en) Infrared image pickup device
CN114174788B (en) Snapshot infrared sensor
JPH0915043A (en) Infrared detector
JPH0571890B2 (en)
JPH066595A (en) Image reader

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11