JPH10288857A - Magnetic toner - Google Patents

Magnetic toner

Info

Publication number
JPH10288857A
JPH10288857A JP9540597A JP9540597A JPH10288857A JP H10288857 A JPH10288857 A JP H10288857A JP 9540597 A JP9540597 A JP 9540597A JP 9540597 A JP9540597 A JP 9540597A JP H10288857 A JPH10288857 A JP H10288857A
Authority
JP
Japan
Prior art keywords
magnetite
magnetic toner
toner
magnetic
binder resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9540597A
Other languages
Japanese (ja)
Other versions
JP3417250B2 (en
Inventor
Takashi Nakamura
高士 中村
Minoru Soma
稔 相馬
Noboru Mogi
登 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP09540597A priority Critical patent/JP3417250B2/en
Publication of JPH10288857A publication Critical patent/JPH10288857A/en
Application granted granted Critical
Publication of JP3417250B2 publication Critical patent/JP3417250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the magnetic toner superior in stability against environment, reproduction performance of a highly precise image and fixability by incorporating a binder resin and a black magnetite obtained by an ion electrolytic separation method. SOLUTION: The magnetic toner contains the binder resin and the black magnetite obtained by the ion electrolytic separation method. It is preferable that the magnetite has a specific surface area of 20-40 m<2> /g. Since the magnetite obtained by this method has a grain diameter of 20-60 μm, the distance between each grain when dispersed into the binder resin is widened to enhance its electric resistance. Since the corners of the magnetite grains are round, the grains are lowered in tendency to scratch the surface of the photoreceptor. The binder resin to be used is embodied by a polystyrene, a styrene-ethyl or n-butyl acrylate copolymer, a styrene methyl methacrylate copolymer, and the like, each alone or mixed with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電記録法、電子写
真法などに使用されるトナーに関するものであり、特に
磁性粉を含有する磁性トナーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toner used in an electrostatic recording method, an electrophotographic method and the like, and more particularly to a magnetic toner containing a magnetic powder.

【0002】[0002]

【従来の技術】従来、電子写真法としては多数の方法が
知られているが、一般には光導電性物質を利用し、さま
ざまな手段により感光体上に電気的潜像を形成し、その
潜像をトナーで顕像化し、その後紙等の被転写材にトナ
ー画像を転写した後に加熱、圧力等により定着し、複写
物を得るものである。電気的潜像をトナーを用いて可視
像化する方法も多数知られており、例えば磁気ブラシ
法、カスケード現像法、パウダークラウド現像法及びフ
ァーブラシ現像法等がある。これらの現像方法のうち、
特にトナー及びキャリアを主体とするいわゆる二成分現
像剤を用いる磁気ブラシ現像法が広く実用化されてい
る。この方法は比較的安定に良好な画像が得られる優れ
た方法ではあるが、反面キャリアの劣化による画質の不
安定さや、キャリアとトナーで構成される現像剤中のト
ナー量の変動に伴い、トナー飛散による機内汚れ等が発
生しやすく、またトナー濃度を精度良くコントロールす
る為に複雑で高価な装置が必要である等の問題点を有す
る。
2. Description of the Related Art Conventionally, many methods have been known as electrophotography. In general, a photoconductive substance is used to form an electric latent image on a photoconductor by various means, and the latent image is formed. The image is visualized with toner, and then the toner image is transferred to a transfer material such as paper, and then fixed by heating, pressure, or the like to obtain a copy. Many methods for visualizing an electric latent image using toner are also known, such as a magnetic brush method, a cascade developing method, a powder cloud developing method, and a fur brush developing method. Of these development methods,
In particular, a magnetic brush developing method using a so-called two-component developer mainly composed of a toner and a carrier has been widely put to practical use. Although this method is an excellent method that can obtain a good image relatively stably, on the other hand, due to the instability of the image quality due to the deterioration of the carrier and the fluctuation of the toner amount in the developer composed of the carrier and the toner, the toner There are problems that the inside of the apparatus is liable to be scattered due to scattering, and a complicated and expensive apparatus is required to control the toner concentration with high accuracy.

【0003】以上のような問題点を改善するため、トナ
ーの中に磁性粉を含有する磁性一成分現像剤を用いる現
像方法が各種提案されてきた。この磁性一成分現像方法
としては、導電性磁性トナーを用いる方法と絶縁性磁性
トナーを用いる方法とが提案されている。
In order to solve the above problems, various developing methods using a magnetic one-component developer containing a magnetic powder in a toner have been proposed. As the magnetic one-component developing method, a method using a conductive magnetic toner and a method using an insulating magnetic toner have been proposed.

【0004】導電性磁性トナーを用いる現像方法は、従
来の二成分現像方法がもつ問題点を改善した方法ではあ
るが、一方トナーが導電性であるため、現像した画像を
記録体から普通紙等の被転写材へ静電的に転写すると画
像が乱れてしまう欠点を有している。
A developing method using a conductive magnetic toner is a method that solves the problems of the conventional two-component developing method. On the other hand, since the toner is conductive, a developed image can be transferred from a recording medium to plain paper or the like. However, there is a disadvantage that the image is disturbed when the image is electrostatically transferred to the transfer material.

【0005】絶縁性磁性トナーを用いる現像方法は、静
電的に転写をすることが可能であり、例えば特開昭54
−43036号公報にはスリーブ上に磁性トナーをきわ
めて薄く塗布し、これを規制ブレードとスリーブで摩擦
帯電し感光体に非接触の状態で交番電界をかけて現像す
る方法が提案されている。この方法では、高抵抗磁性ト
ナーをスリーブ上にきわめて薄く塗布させてトナーに帯
電を付与するが、該現像方法に用いられる高抵抗磁性ト
ナーは、一般的には結着樹脂を100重量部中に磁性粉
末を約50〜150重量部高濃度に分散せしめてなるも
のなので、トナー粒子の表面に磁性体の粒子の一部が露
出し易く、係る磁性粒子は鋭利な角を有するためスリー
ブ上のトナー層を薄層にするときに露出した磁性粉の鋭
利な角がスリーブを傷つけ、摩擦帯電性を不安定にした
り、また転写残りのトナーがクリーニングブレード等で
クリーニングされる時に、磁性粒子は鋭利な角を有する
ため露出した磁性粒子の角が感光体表面を傷つけ易く、
感光体の寿命を短くしたり画像劣化の原因ともなる。
A developing method using an insulating magnetic toner enables electrostatic transfer, as described in, for example,
JP-A-43036 proposes a method in which a magnetic toner is applied very thinly on a sleeve, which is frictionally charged by a regulating blade and a sleeve, and developed by applying an alternating electric field in a non-contact state with a photosensitive member. In this method, a high-resistance magnetic toner is applied very thinly on a sleeve to impart a charge to the toner, but the high-resistance magnetic toner used in the developing method generally includes a binder resin in 100 parts by weight. Since the magnetic powder is dispersed at a high concentration of about 50 to 150 parts by weight, a part of the magnetic particles is easily exposed on the surface of the toner particles. The sharp corners of the magnetic powder exposed when the layer is thinned may damage the sleeve, destabilize the triboelectrification, or cause the magnetic particles to be sharp when the transfer residual toner is cleaned with a cleaning blade. Because of the corners, the corners of the exposed magnetic particles easily damage the photoreceptor surface,
This may shorten the life of the photoconductor or cause image deterioration.

【0006】磁性トナー中の磁性粉の分散度合いは、磁
性トナーの摩擦帯電性能を左右し、現像性、転写性、環
境安定性、スリーブや感光体の耐久性等に大きな影響を
及ぼし、また紙等の被転写材と磁性トナーとの定着強度
を弱めたりする。特開昭59−64852号公報では丸
みを帯びたマグネタイト粉が、又特公平1−40976
号公報ではマグネタイトを構成しているFeO含有量が
コントロールされたマグネタイト粉が提案されている
が、結着樹脂への分散性、環境安定性、定着性等の信頼
性の点で満足できない。
[0006] The degree of dispersion of the magnetic powder in the magnetic toner affects the triboelectric charging performance of the magnetic toner, and has a great effect on developability, transferability, environmental stability, durability of the sleeve and the photoreceptor, and paper. Or the like, to weaken the fixing strength between the transfer material and the magnetic toner. In JP-A-59-64852, a rounded magnetite powder is disclosed in Japanese Patent Publication No. 1-40976.
In Japanese Patent Application Laid-Open Publication No. H11-157, a magnetite powder having a controlled FeO content constituting magnetite is proposed, but it is not satisfactory in terms of reliability such as dispersibility in a binder resin, environmental stability, and fixability.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、環境
安定性、高精細画像の再現性、定着性に優れた磁性トナ
ーであって、感光体を深く傷つけ難い磁性トナーを提供
する事にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic toner which is excellent in environmental stability, reproducibility of a high-definition image, and fixing property, and which does not easily damage a photoreceptor deeply. is there.

【0008】[0008]

【課題を解決する為の手段】第1の発明は、結着樹脂、
及びイオン電解分離法によって得られた黒色磁性酸化鉄
を含有することを特徴とする磁性トナーである。
Means for Solving the Problems The first invention is a binder resin,
And a black magnetic iron oxide obtained by an ion electrolytic separation method.

【0009】第2の発明は、黒色磁性酸化鉄の粒径が2
0〜60nmであることを特徴とする第1の発明記載の
磁性トナーである。
According to a second aspect of the present invention, the particle diameter of the black magnetic iron oxide is 2
The magnetic toner according to the first invention, which has a thickness of 0 to 60 nm.

【0010】第3の発明は、黒色磁性酸化鉄が20〜4
0m2 /gの比表面積を有することを特徴とする第1の
発明又は第2の発明記載の磁性トナーである。
In a third aspect, the black magnetic iron oxide comprises 20 to 4 magnetic iron oxides.
The magnetic toner according to the first or second invention, having a specific surface area of 0 m 2 / g.

【0011】[0011]

【発明の実施の形態】本発明に用いる磁性粉は、従来こ
の分野で使用されている黒色酸化鉄(一般にマグネタイ
トと称されているFe3 4 )ではあるが、その製造方
法に大きな違いがある。従来のマグネタイトの製造方法
は、例えば以下の様にして製造される。すなわち、硫酸
第1鉄7水塩を蒸留水に溶解し、係る溶液を加熱し、カ
セイソーダ水溶液を入れ、中和せしめる。中和反応によ
り鉄の水酸化物を得た後、生成した沈澱物に空気を入れ
攪拌しながら酸化せしめFe3 4 の沈澱物を得る。こ
の沈澱物を洗浄し、濾過・乾燥し、解砕して磁性トナー
に使用されるマグネタイト粉を得る。この製造方法から
得られるマグネタイトは、主に立方晶であり、一次粒子
の粒径は約0.2〜1μmである
BEST MODE FOR CARRYING OUT THE INVENTION The magnetic powder used in the present invention is black iron oxide (Fe 3 O 4 , which is generally called magnetite) conventionally used in this field. is there. A conventional method for producing magnetite is produced, for example, as follows. That is, ferrous sulfate heptahydrate is dissolved in distilled water, the solution is heated, and an aqueous solution of sodium hydroxide is added to neutralize the solution. After obtaining a hydroxide of iron by a neutralization reaction, the precipitate formed is oxidized while introducing air into the precipitate and stirred to obtain a precipitate of Fe 3 O 4 . The precipitate is washed, filtered, dried, and crushed to obtain a magnetite powder used for a magnetic toner. The magnetite obtained from this production method is mainly cubic, and the primary particles have a particle size of about 0.2 to 1 μm.

【0012】一方、本発明に使用される黒色酸化鉄は、
イオン電界分離法で製造されたものである。イオン電界
分離法とは、硫酸鉄溶液をイオン交換膜を通じて、イオ
ン電界分離し陽極室にSO3 --イオンを回収し、陰極室
にFe++イオンを回収する方法である。陰極室のFe++
イオンを、アルカリ雰囲気の溶液中で、可溶生のFe−
(−O−OH)2-とし、これを直接脱水反応を行う事に
より、Fe3 4 の沈殿物を得、その後この沈殿物を水
洗、濾過、乾燥後解砕して一次粒子が20〜60nmで
かつ丸みを帯びた形状のマグネタイト粉を得る。
On the other hand, the black iron oxide used in the present invention is:
It is manufactured by the ion electric field separation method. The ion electric field separation method is a method in which an iron sulfate solution is subjected to ion electric field separation through an ion exchange membrane to collect SO 3 - ions in an anode chamber and Fe ++ ions in a cathode chamber. Fe ++ in the cathode compartment
The ions are dissolved in a solution of alkali-soluble Fe-
(—O—OH) 2− , which was directly subjected to a dehydration reaction to obtain a precipitate of Fe 3 O 4 , which was then washed with water, filtered, dried and then crushed to obtain primary particles of 20 to A rounded magnetite powder of 60 nm is obtained.

【0013】本発明において使用される黒色酸化鉄の比
表面積は20〜40m2 /gであることが好ましい。比
表面積が20m2 /g未満だと凝集物が増加したり、ト
ナーとして環境の影響を受け易く、特に高温高湿下にお
いて画像が劣化し易く、また粗大粒子が混入し易くなり
感光体を傷付け易くなる。一方、比表面積が40m2
gよりも大きいと黒色酸化鉄が赤味を帯びた黒色とな
り、得られる画像としても赤味を帯び好ましくなく、ま
た保持力が低くなるためトナーが飛散し易くなる。
The specific surface area of the black iron oxide used in the present invention is preferably 20 to 40 m 2 / g. If the specific surface area is less than 20 m 2 / g, aggregates increase and the toner is susceptible to the environment. Particularly, the image is easily deteriorated under high temperature and high humidity, and coarse particles are easily mixed and the photoreceptor is damaged. It will be easier. On the other hand, the specific surface area is 40 m 2 /
If the value is larger than g, the black iron oxide becomes reddish black, and the resulting image becomes reddish.

【0014】係るイオン電界分離法から得られたマグネ
タイト粉を使用したトナーは、従来製法のマグネタイト
粉を使用したトナーよりも電気抵抗が大きく、また様々
な環境下においても帯電性能が良好である。イオン電界
分離法から得られるマグネタイトは、従来製法で得られ
る約0.2〜1μmの粒子よりも細かい20〜60nm
であるため、結着樹脂へ分散させた時にマグネタイト粒
子間距離が大きくなりトナーを高抵抗にできたものと考
えられる。また、イオン電界分離法から得られるマグネ
タイトは、従来法の角の尖った立方晶形状と異なり、マ
グネタイト粒子の角が丸みを帯びているために、感光体
表面を傷つけ難くしているものと考えられる。
The toner using the magnetite powder obtained by the ion electric field separation method has higher electric resistance than the toner using the magnetite powder according to the conventional manufacturing method, and has good charging performance even under various environments. The magnetite obtained by the ion electric field separation method has a finer size of 20 to 60 nm than the particles of about 0.2 to 1 μm obtained by the conventional manufacturing method.
Therefore, it is considered that when dispersed in the binder resin, the distance between the magnetite particles was increased and the toner was able to have high resistance. Also, magnetite obtained by the ion field separation method is considered to be unlikely to damage the photoreceptor surface because the corners of the magnetite particles are rounded, unlike the cubic crystal shape with sharp corners of the conventional method. Can be

【0015】本発明に用いられる結着樹脂としては、例
えばポリスチレン,スチレン−アクリル酸メチル共重合
体,スチレン−アクリル酸エチル共重合体,スチレン−
アクリル酸nブチル共重合体,スチレン−メタクリル酸
メチル共重合体,スチレン−メタクリル酸エチル共重合
体,スチレン−メタクリル酸nブチル共重合体,スチレ
ン−アクリロニトリル共重合体,スチレン−ビニルメチ
ルエーテル共重合体,スチレン−ブタジエン共重合体,
ポリエステル,エポキシ樹脂,ポリエチレン,ポリプロ
ピレン,カルナバワックス,パラフィンワックス等が単
独または混合して使用できる。
As the binder resin used in the present invention, for example, polystyrene, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-
N-butyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-n-butyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer Coalescence, styrene-butadiene copolymer,
Polyester, epoxy resin, polyethylene, polypropylene, carnauba wax, paraffin wax and the like can be used alone or in combination.

【0016】さらにまた、本発明の磁性トナー中には必
要に応じて、電荷制御剤、着色剤、流動性改良剤を使う
事ができる。電荷制御剤としては、含金属染料,ニグロ
シン,四級アンモニウム塩等があり、着色剤としては従
来より知られている染料,顔料,カーボン等が適時使用
でき、流動性改良剤としてはコロイダルシリカ、酸化チ
タン等がある。
Further, in the magnetic toner of the present invention, a charge controlling agent, a coloring agent, and a fluidity improving agent can be used, if necessary. Examples of the charge control agent include metal-containing dyes, nigrosine, and quaternary ammonium salts, and conventionally known dyes, pigments, and carbon can be used as appropriate as colorants. Colloidal silica can be used as a fluidity improver. There is titanium oxide and the like.

【0017】[0017]

【実施例】以下実施例により本発明を具体的に説明す
る。
The present invention will be described in detail with reference to the following examples.

【実施例1】硫酸鉄溶液をイオン交換膜を通じ、イオン
電気分解し、得られた陰極室のFe ++イオンを、カセイ
ソーダ溶液で中和しながら、脱水反応を行いFeO・F
23 を析出させた。これを十分水で洗浄したのち、
濾過・乾燥し、ジェットミル粉砕機で解砕し、マグネタ
イトAを得た。このマグネタイトAの形態を電子顕微鏡
を用いて観察したところ、添付写真(図1)に示すよう
に、角が取れ丸みを帯びた形状を呈し、粒径は約10〜
100nmであり、比表面積は33m2 /gであった。
Example 1 An iron sulfate solution was passed through an ion exchange membrane
Electrolyzed and obtained Fe in the cathode chamber ++Ion, case
While neutralizing with a soda solution, a dehydration reaction is performed and FeO.F
eTwoOThreeWas precipitated. After thoroughly washing this with water,
Filtration, drying, crushing with a jet mill crusher,
I got A. Electron microscope
Observation using a camera as shown in the attached photo (Fig. 1)
It has a rounded shape with sharp corners and a particle size of about 10
100 nm, specific surface area 33 mTwo/ G.

【0018】 スチレン・ブチルアクリレート(MW=370000,MW/Mn=33) 71重量% マグネタイトA 25重量% ニグロシンベースEX(オリエント化学工業) 2重量% 低分子量ポリプロピレンワックス 2重量% の上記材料を用い、スーパーミキサーにて充分攪拌混合
した後、2軸押し出し機で熱溶融混練した。得られた混
練物をハンマーミルにて2mm以下に粗砕し、その後ジ
ェットミルで微粉砕を行い、さらに気流分級機で平均粒
径7μmの磁性トナー母粒子(1)を得た。
Styrene / butyl acrylate (MW = 370,000, MW / Mn = 33) 71% by weight Magnetite A 25% by weight Nigrosine base EX (Orient Chemical Industry) 2% by weight Low molecular weight polypropylene wax Using the above material of 2% by weight, After sufficiently stirring and mixing with a super mixer, the mixture was hot melt kneaded with a twin screw extruder. The obtained kneaded material was coarsely crushed to 2 mm or less by a hammer mill, then finely crushed by a jet mill, and further obtained by a gas flow classifier to obtain magnetic toner base particles (1) having an average particle diameter of 7 μm.

【0019】この磁性トナー母粒子(1)を0.8g取
り23℃50%RH環境に24時間放置する。その後、
錠剤成形器にて400kg/cm2 の圧力を加え直径2
0mm、厚さ約1mmの錠剤サンプルとする。この試料
を4194インピーダンス/ゲイン・フェイズアナライ
ザー(横川・ヒューレットパッカード社)にて抵抗率と
誘電損失角を測定した。一般的に、同一材料・組成の場
合抵抗は高いほど、誘電損失角は小さいほどトナー個々
の粒子の均質性が良い事が知られている。これらの値を
表1に示す。
0.8 g of the magnetic toner base particles (1) are taken and left in a 23 ° C., 50% RH environment for 24 hours. afterwards,
A pressure of 400 kg / cm 2 was applied by a tableting machine to apply a diameter of 2
A tablet sample of 0 mm and a thickness of about 1 mm is used. The resistivity and the dielectric loss angle of this sample were measured with a 4194 impedance / gain phase analyzer (Yokogawa / Hewlett-Packard). It is generally known that, for the same material and composition, the higher the resistance and the smaller the dielectric loss angle, the better the homogeneity of the individual particles of the toner. These values are shown in Table 1.

【0020】次いで、得られた磁性トナー母粒子(1)
100重量%に対し、シリカRA200HS(日本アエ
ロジル社製)を0.5重量%添加し、スーパーミキサー
にて混合し磁性トナー(2)を得、有機感光体を使用し
た市販の複写機(キャノン社製NP2120)を用い、
15℃,20%RH環境下と30℃85%RH環境下の
両環境で各3000枚の実写テストを行い、得られた画
像の濃度をマクベスRD918(マクベス社濃度測定
器)で求めたところ画像濃度は1.3であった。また非
画像部カブリについては、フォトボルトモデル577
(フォトボルト社カブリ測定器)にて測定したところ各
環境下で常に0.7%以下と安定していた。また感光体
の傷も無く均質な画像が得られた。
Next, the obtained magnetic toner base particles (1)
0.5% by weight of silica RA200HS (manufactured by Nippon Aerosil Co., Ltd.) was added to 100% by weight, and mixed with a super mixer to obtain a magnetic toner (2). A commercially available copying machine using an organic photoreceptor (Canon Inc.) NP2120)
An actual image test was performed on each of 3000 sheets in both an environment of 15 ° C. and 20% RH and an environment of 30 ° C. and 85% RH, and the density of the obtained image was determined by Macbeth RD918 (Macbeth Densitometer). The concentration was 1.3. For the non-image area fog, see Photobolt Model 577
(Fogging tester manufactured by Photobolt Co., Ltd.), it was always stable at 0.7% or less under each environment. In addition, a uniform image was obtained without any damage on the photoreceptor.

【0021】[0021]

【比較例1】実施例1のマグネタイトAのかわりに、従
来製法で得られた粒径0.4μm、比表面積6.2m2
/gの立方晶のマグネタイトを用い、それ以外は実施例
1と同様にしてトナー母粒子(3)を得た。得られた磁
性トナー母粒子(3)の抵抗率と誘電損失角を実施例1
と同様の方法で求めた。結果を表1に示す。また実施例
1と同様の複写テストを行ったところ、15℃,20%
RH環境下で画像濃度1.3を得たが、非画像部に1.
3%のカブリを生じ、30℃85%RH環境下では逆に
カブリは0.5%と良好だが画像濃度は1.05となり
貧弱な画像しか得ることができなかった。
Comparative Example 1 In place of magnetite A of Example 1, the particle size was 0.4 μm and the specific surface area was 6.2 m 2 obtained by a conventional method.
/ G of cubic magnetite was used, and toner mother particles (3) were obtained in the same manner as in Example 1 except for the above. The resistivity and dielectric loss angle of the obtained magnetic toner base particles (3) were determined in Example 1.
Was determined in the same manner as in. Table 1 shows the results. When a copying test similar to that in Example 1 was performed, the temperature was 15 ° C., 20%
An image density of 1.3 was obtained under the RH environment, but the density of the non-image area was 1.3.
On the other hand, under the environment of 30 ° C. and 85% RH, fog was as good as 0.5% but the image density was 1.05 and only a poor image could be obtained.

【0022】[0022]

【実施例2】 ポリエステル樹脂 (MW=50000 ,MW/Mn=12.5) 58重量% マグネタイトA 38重量% ボントロンS−34 (オリエント化学工業) 2重量% 低分子量ポリプロピレンワックス 2重量% 上記材料を用い実施例1と同様な方法で平均粒径7μm
の磁性トナー母粒子(4)を得、得られた磁性トナー母
粒子(4)の抵抗率と誘電損失角を実施例1と同様に求
め、その結果を表1に示す。
Example 2 Polyester resin (MW = 50000, MW / Mn = 12.5) 58% by weight Magnetite A 38% by weight Bontron S-34 (Orient Chemical Industries) 2% by weight Low molecular weight polypropylene wax 2% by weight The above materials were used. Average particle size 7 μm in the same manner as in Example 1.
And the resistivity and dielectric loss angle of the obtained magnetic toner base particles (4) were determined in the same manner as in Example 1. The results are shown in Table 1.

【0023】次いで磁性トナー母粒子(4)100重量
%に対し、疎水製シリカHDK−H3004(ヘキスト
社製)を0.7重量%添加し、スーパーミキサーにて混
合し磁性トナー(5)を得、市販の複写機(キヤノン社
製GP55)を使用して15℃20%RH環境下と30
℃85%RH環境下の両環境で各5000枚の実写テス
トを行った。各環境下で安定した画像が得られ画像濃度
は1.3以上で、カブリは0.5%以下であった。また
感光体の傷も無く、滑らかな画像が得られた。
Next, 0.7% by weight of hydrophobic silica HDK-H3004 (manufactured by Hoechst) is added to 100% by weight of the magnetic toner base particles (4) and mixed with a super mixer to obtain a magnetic toner (5). Using a commercially available copier (GP55, manufactured by Canon Inc.), the temperature was adjusted to 30 ° C. and 15% C.
A real-photo test was performed on each of 5,000 sheets under both environments of 85 ° C. and 85% RH. A stable image was obtained under each environment, the image density was 1.3 or more, and the fog was 0.5% or less. In addition, a smooth image was obtained without any damage to the photoreceptor.

【0024】[0024]

【比較例2】実施例2のマグネタイトAのかわりに、従
来製法で得られた平均粒径0.7μm、比表面積2.8
2 /gのマグネタイトを用い、それ以外は実施例1と
同様にして磁性トナー母粒子(6)を得た。得られた磁
性トナー母粒子(6)の抵抗率と誘電損失角を実施例1
と同様に求め、その結果を表1に示す。また実施例2と
同様の複写テストを行ったところ、15℃20%RH環
境下で画像濃度1.35を得たが非画像部に1.1%の
カブリを生じ、30℃85%RH環境下では逆にカブリ
は0.7%と良好だが画像濃度は0.93となり貧弱な
画像しか得ることができなかった。また、30℃85%
RH環境下で実写テストをしているときに、枚数を重ね
るにつれ画像黒ベタ部に白点が増加した。感光体を観察
したところ、画像の白点に対応してトナーの融着が確認
された。この融着物を除去したところ、感光体表面に小
さな穴が開いていた。この現象は、トナーより脱落した
分散不良の磁性粉がクリーニングブレードで感光体に押
しつけられて傷をつけ、その後転写残りのトナーが穴に
入りクリーニングブレードとの摩擦熱で融着したものと
推測される。
Comparative Example 2 Instead of magnetite A of Example 2, the average particle size obtained by a conventional method was 0.7 μm, and the specific surface area was 2.8.
Magnetic toner mother particles (6) were obtained in the same manner as in Example 1 except that m 2 / g of magnetite was used. The resistivity and dielectric loss angle of the obtained magnetic toner base particles (6) were determined in Example 1.
And the results are shown in Table 1. When a copying test similar to that in Example 2 was performed, an image density of 1.35 was obtained in a 15 ° C. and 20% RH environment. On the other hand, the fog was conversely as good as 0.7%, but the image density was 0.93, and only a poor image could be obtained. Also, 30 ° C 85%
During the actual shooting test under the RH environment, white spots increased in the solid black portion of the image as the number of images increased. Observation of the photoreceptor confirmed that the toner was fused to the white spots of the image. When the fused material was removed, a small hole was formed on the surface of the photoreceptor. This phenomenon is presumed to be due to the fact that the poorly dispersed magnetic powder dropped from the toner was pressed against the photoreceptor by the cleaning blade to cause damage, and then the remaining transfer toner entered the hole and fused by frictional heat with the cleaning blade. You.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】イオン電解分離法により得られた黒色磁
性酸化鉄を使用することで、磁性粉が良く分散した高抵
抗磁性トナーを得ることができ、色々な環境下において
も安定した画像を形成でき、定着性に優れかつ感光体を
傷つけることのない磁性トナーを提供できるようになっ
た。
By using the black magnetic iron oxide obtained by the ion electrolytic separation method, a high-resistance magnetic toner in which magnetic powder is well dispersed can be obtained, and a stable image can be formed even in various environments. Thus, it is possible to provide a magnetic toner which has excellent fixability and does not damage the photoreceptor.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得たマグネタイトAの透過型電子
顕微鏡写真
FIG. 1 is a transmission electron micrograph of magnetite A obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結着樹脂、及びイオン電解分離法によっ
て得られた黒色磁性酸化鉄を含有することを特徴とする
磁性トナー。
1. A magnetic toner comprising a binder resin and a black magnetic iron oxide obtained by an ion electrolytic separation method.
【請求項2】 黒色磁性酸化鉄の粒径が20〜60nm
であることを特徴とする請求項1記載の磁性トナー。
2. The black magnetic iron oxide has a particle size of 20 to 60 nm.
The magnetic toner according to claim 1, wherein
【請求項3】 黒色磁性酸化鉄が20〜40m2 /gの
比表面積を有することを特徴とする請求項1または2記
載の磁性トナー。
3. The magnetic toner according to claim 1, wherein the black magnetic iron oxide has a specific surface area of 20 to 40 m 2 / g.
JP09540597A 1997-04-14 1997-04-14 Magnetic toner Expired - Fee Related JP3417250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09540597A JP3417250B2 (en) 1997-04-14 1997-04-14 Magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09540597A JP3417250B2 (en) 1997-04-14 1997-04-14 Magnetic toner

Publications (2)

Publication Number Publication Date
JPH10288857A true JPH10288857A (en) 1998-10-27
JP3417250B2 JP3417250B2 (en) 2003-06-16

Family

ID=14136773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09540597A Expired - Fee Related JP3417250B2 (en) 1997-04-14 1997-04-14 Magnetic toner

Country Status (1)

Country Link
JP (1) JP3417250B2 (en)

Also Published As

Publication number Publication date
JP3417250B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JPH11311877A (en) Electrostatic charge image developing toner, its production, electrostatic charge developer and image forming method
US7087355B2 (en) Electrophotographic toner containing polyalkylene wax or high crystallinity wax
JP2000267334A (en) Electrostatic charge image developing toner and its manufacture, this image developing developer and image forming method
JP2958416B2 (en) Method of manufacturing toner for developing electrostatic image, toner for developing electrostatic image, and image forming method
JPH07175262A (en) Magnetic, toner, process cartridge and image forming method
JP2002131977A (en) Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method
JP3535561B2 (en) Magnetic toner
JPH07160037A (en) Toner for electrophotography
JPS59102252A (en) Toner for electrostatic charged image development
JP3131753B2 (en) Magnetic toner and image forming method
JP3417250B2 (en) Magnetic toner
JPH0656508B2 (en) Positive friction charging toner for electrostatic image development
JP2001305789A (en) Electrostatic charge image developing toner, method for manufacturing the same, electrostatic charge image developer and method for forming image
JP2002189313A (en) Electrostatic charge image developing toner, method of producing the same, electrostatic charge image developing developer, and image forming method
JP3485861B2 (en) Magnetic one-component developer and developing method thereof
JPH0566607A (en) Toner
JP2728954B2 (en) Magnetic toner for developing electrostatic latent images
JPH09329910A (en) Electrostatic charge image developing toner and image forming method
JPS59187347A (en) Magnetic toner
JPH0943905A (en) Electrostatic charge image developing toner and its manufacture
JP3558972B2 (en) Electrostatic image developing toner and image forming method
JP2694543B2 (en) Toner for developing electrostatic images
JPH0625874B2 (en) Triboelectric toner for developing electrostatic image
JP2704008B2 (en) Magnetic toner for developing electrostatic images
JP2001109185A (en) Electrostatic charge image developing toner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees