JP2002131977A - Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method - Google Patents

Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method

Info

Publication number
JP2002131977A
JP2002131977A JP2000320707A JP2000320707A JP2002131977A JP 2002131977 A JP2002131977 A JP 2002131977A JP 2000320707 A JP2000320707 A JP 2000320707A JP 2000320707 A JP2000320707 A JP 2000320707A JP 2002131977 A JP2002131977 A JP 2002131977A
Authority
JP
Japan
Prior art keywords
toner
particles
image
weight
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000320707A
Other languages
Japanese (ja)
Inventor
Hideo Maehata
英雄 前畑
Yasuo Matsumura
保雄 松村
Takao Ishiyama
孝雄 石山
Yasuo Sumikura
康夫 角倉
Takeshi Shoji
毅 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2000320707A priority Critical patent/JP2002131977A/en
Publication of JP2002131977A publication Critical patent/JP2002131977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic charge image developing toner having superior electrostatic charge characteristics and environmental dependence, a sharp grain size distribution and a small particle diameter, a method for producing the toner, a developer and a method for forming a color image having high image quality and high reliability. SOLUTION: The electrostatic charge image developing toner contains a bonding resin and a colorant and has 1-10 μm number average particle diameter D50n and a number average grain size distribution index GSDn of <=1.26. The total surfactant content of the toner particles is <=1.0 wt.% and the nonionic surfactant content is <=100 ppm. The bonding resin contains a self-dispersible resin containing a hydrophilic ethylenically unsaturated monomer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真法又は静
電記録法などにおいて、静電潜像を現像するときに用い
る静電荷像現像用トナー及びその製造方法、静電荷像現
像剤、並びに画像形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic image developing toner used for developing an electrostatic latent image in an electrophotographic method or an electrostatic recording method, and a method of manufacturing the same, an electrostatic image developer, and The present invention relates to an image forming method.

【0002】[0002]

【従来の技術】電子写真法など静電荷像を経て画像情報
を可視化する方法は、現在様々な分野で利用されてい
る。この電子写真法は、帯電・露光工程で感光体上に静
電荷像を形成し、トナーを含む現像剤で静電荷像を現像
し、転写、定着工程を経て可視化するものである。ここ
で用いる現像剤には、トナーとキャリアからなる2成分
現像剤と、磁性トナー又は非磁性トナーを単独で用いる
1成分現像剤とがある。トナーは、通常熱可塑性樹脂を
顔料、帯電制御剤、及びワックス等の離型剤とともに溶
融混練し、冷却した後、微粉砕し、さらに、分級する混
練粉砕法で製造される。このトナーは、流動性やクリー
ニング性を改善するために、必要に応じて無機微粒子や
有機微粒子をトナー粒子表面に添加することもある。
2. Description of the Related Art Methods for visualizing image information via an electrostatic image, such as electrophotography, are currently used in various fields. In the electrophotography, an electrostatic image is formed on a photoreceptor in a charging / exposure process, the electrostatic image is developed with a developer containing toner, and visualized through a transfer and fixing process. The developer used here includes a two-component developer including a toner and a carrier, and a one-component developer using a magnetic toner or a non-magnetic toner alone. The toner is usually produced by a kneading and pulverizing method in which a thermoplastic resin is melt-kneaded together with a pigment, a charge controlling agent, and a release agent such as wax, cooled, finely pulverized, and further classified. In order to improve the fluidity and the cleaning property of the toner, inorganic fine particles and organic fine particles may be added to the surface of the toner particles as needed.

【0003】一方、近年、高度な情報化社会の進展にお
いて、さまざまな手法で構築された情報ドキュメント
を、より高い画質の画像で提供する要請が高まってお
り、種々の画像形成法において高画質化の研究が進めら
れている。電子写真法を用いる画像形成法においても、
この要求は例外では無く、特に電子写真法においては、
カラー画像形成における、より高精細な画像を実現する
ために、トナーの小径化とシャープな粒度分布の達成が
求められている。
On the other hand, in recent years, with the development of a highly information-oriented society, there has been an increasing demand for providing information documents constructed by various methods with images of higher image quality. Research is ongoing. In an image forming method using electrophotography,
This requirement is no exception, especially in electrophotography.
In order to realize a higher definition image in color image formation, it is required to reduce the diameter of the toner and achieve a sharp particle size distribution.

【0004】例えば、デジタルフルカラー複写機やプリ
ンターにおいては、色画像原稿をB(ブルー)、R(レ
ッド)、G(グリーン)の各フィルターで色分解した後
に、オリジナル原稿に対応した20〜70μmのドット
径からなる潜像を、Y(イエロー)、M(マゼンタ)、
C(シアン)、Bk(黒)の各現像剤を用いる減色混合
作用で現像する。この方法では、従来の白黒機に比べて
多量の現像剤を転写させる必要があり、かつ、より小径
のドットに対応させる必要があるため、帯電の環境依存
性を含む均一帯電性、均一帯電持続性、粒度分布のシャ
ープネス、トナー強度を確保することがますます重要に
なる。また、これらのマシンの高速化や省エネルギー化
などを考慮すると、一層の低温定着性が要求さなる。こ
れらのことからも、粒度分布がシャープで小粒子径のト
ナーが求められている。
For example, in a digital full-color copying machine or a printer, a color image original is separated into colors by B (blue), R (red), and G (green) filters, and then separated into 20 to 70 μm corresponding to the original original. A latent image having a dot diameter is represented by Y (yellow), M (magenta),
Development is performed by a subtractive color mixing action using each of C (cyan) and Bk (black) developers. In this method, it is necessary to transfer a larger amount of developer compared to a conventional black-and-white machine, and it is necessary to correspond to a dot having a smaller diameter. It is increasingly important to ensure the properties, sharpness of the particle size distribution, and toner strength. Further, in consideration of speeding up and energy saving of these machines, further low-temperature fixability is required. For these reasons, a toner having a sharp particle size distribution and a small particle diameter is required.

【0005】しかし、従来の混練粉砕法における粉砕・
分級操作では、小粒径化といっても経済的、性能的に現
実に提供できる個数平均粒子径D50n は約8μm程度ま
でであり、個数平均粒子径分布指標GSDn〔(D84n
/D16n 1/2 〕が1.30以上でシャープな粒度分布
を有するトナーを製造することはできない。現在、種々
の方法による小粒径トナーを製造する方法が検討されて
いるが、混練粉砕法では従来の粒度分布をそのままにし
た単なる小粒子径化であり、その粒度分布特性の改良は
困難であった。その結果、微粉側トナーの存在により、
キャリア汚染、感光体汚染、トナー飛散などが顕著とな
り、高画質と高信頼性を同時に実現することは困難であ
った。
However, in the conventional kneading and pulverizing method, the pulverization
In the classification operation, the number average particle diameter D 50n which can be provided economically and practically even in terms of reducing the particle diameter is up to about 8 μm, and the number average particle diameter distribution index GSDn [( D84n
/ D 16n ) 1/2 ] of 1.30 or more, cannot produce a toner having a sharp particle size distribution. At present, methods for producing small particle size toners by various methods are being studied, but the kneading and pulverization method is merely a small particle size keeping the conventional particle size distribution, and it is difficult to improve the particle size distribution characteristics. there were. As a result, due to the presence of the fine powder side toner,
Carrier contamination, photoreceptor contamination, toner scattering and the like became remarkable, and it was difficult to achieve high image quality and high reliability at the same time.

【0006】このために、混練粉砕法とは異なる種々の
重合法を用いたトナーの製造方法が検討されてきた。例
えば、懸濁重合法によるトナーの調製法は、特開昭62
−73276号公報、特開平5−027476号公報な
どに記載されている。しかし、この懸濁重合法で得たト
ナーは、トナーの粒度分布を制御しようとしても混練粉
砕法の域を出ることはできず、多くの場合はさらなる分
級操作を必要とした。
For this reason, a method for producing a toner using various polymerization methods different from the kneading and pulverizing method has been studied. For example, a method for preparing a toner by a suspension polymerization method is disclosed in
JP-A-73276, JP-A-5-027476 and the like. However, the toner obtained by the suspension polymerization method cannot go out of the kneading and pulverizing method even if an attempt is made to control the particle size distribution of the toner, and in many cases, a further classification operation is required.

【0007】また、乳化重合法を用いたトナーの調製法
は、特開平6−250439号公報などに記載されてい
る。この方法は、界面活性剤を用いて乳化重合させ樹脂
微粒子分散液を調製し、他方、溶媒に着色剤を分散させ
た着色剤分散液を調製し、これらの分散液を混合した
後、前記の界面活性剤と反対の電気極性を有する界面活
性剤を添加して、上記の樹脂微粒子と着色剤を所望の粒
子径になるまで凝集させ、その後、樹脂微粒子の調整に
用いたものと同じ極性を有する界面活性剤を添加し、凝
集粒子を所望の粒子径で安定化させた後、前記樹脂微粒
子のガラス転移点以上に加熱して融合させ、トナーを作
製するものである。非イオン性界面活性剤は、乳化重合
や着色剤分散液を調製するときに、微粒子の分散安定性
を確保するために添加する。
A method for preparing a toner using an emulsion polymerization method is described in JP-A-6-250439. In this method, a resin fine particle dispersion is prepared by emulsion polymerization using a surfactant, while a colorant dispersion in which a colorant is dispersed in a solvent is prepared, and after mixing these dispersions, A surfactant having the opposite electric polarity to the surfactant is added, and the resin fine particles and the colorant are aggregated until a desired particle size is obtained.After that, the same polarity as that used for the adjustment of the resin fine particles is used. After adding a surfactant to stabilize the agglomerated particles to a desired particle size, the resin particles are heated to a temperature equal to or higher than the glass transition point of the resin fine particles and fused to produce a toner. The nonionic surfactant is added to ensure dispersion stability of the fine particles when preparing emulsion polymerization or a colorant dispersion.

【0008】この方法で得たトナー粒子は、その粒度分
布が従来の懸濁重合法等に代表される重合法で得たトナ
ー粒子と比較して極めてシャープな粒度分布を示し、さ
らにその形状においてもクリーニング性の観点から不定
形状を有するトナー粒子に調整できる利点がある。しか
し、この乳化重合法で得たトナーは、トナー中に残存す
る界面活性剤がトナーの吸湿特性を著しく低下させ、そ
の結果、トナーの帯電不良や高い環境依存性、機械的強
度の低下を引き起こし、トナーとしての信頼性、耐久性
に大きな問題を生ずる。特に、非イオン性界面活性剤
は、トナーの結着樹脂に対して強い親和性を有するた
め、取り除くことが困難である。
The toner particles obtained by this method have an extremely sharp particle size distribution as compared with toner particles obtained by a polymerization method represented by a conventional suspension polymerization method. There is also an advantage that the toner particles can be adjusted to have irregular shapes from the viewpoint of cleaning properties. However, in the toner obtained by this emulsion polymerization method, the surfactant remaining in the toner significantly lowers the moisture absorption characteristics of the toner, resulting in poor charging of the toner, high environmental dependency, and a decrease in mechanical strength. This causes a serious problem in reliability and durability as a toner. In particular, since the nonionic surfactant has a strong affinity for the binder resin of the toner, it is difficult to remove it.

【0009】上記の乳化重合法で得たトナーは、残存す
る界面活性剤の80%以上が、樹脂微粒子と着色剤粒子
を凝集させる工程と、その後の加熱融合工程において凝
集粒子の再安定化のために添加されたものである。しか
し、トナー中に残存する界面活性剤量を低下させるため
に、凝集工程やその後の加熱融合工程において使用する
界面活性剤量を少なくすると、凝集性が低下して粒度分
布を悪化したり、未凝集粒子を生成させ、また、加熱融
合工程において安定性が不足すると粒度分布が悪化する
ので、単純に界面活性剤を減量することはトナーの製造
上大きな問題を生ずることになる。
In the toner obtained by the above-mentioned emulsion polymerization method, 80% or more of the remaining surfactant is used for the step of aggregating the resin fine particles and the colorant particles, and the step of re-stabilizing the aggregated particles in the heat fusing step. Is added for the purpose. However, if the amount of the surfactant used in the aggregation step or the subsequent heat fusion step is reduced in order to reduce the amount of the surfactant remaining in the toner, the aggregation property is reduced and the particle size distribution is deteriorated. If aggregates are formed and the stability is insufficient in the heat fusing step, the particle size distribution deteriorates. Therefore, simply reducing the amount of the surfactant causes a serious problem in the production of the toner.

【0010】なお、界面活性剤を使用せずに反応性乳化
剤を用いて着色剤の存在下で単量体を乳化重合して着色
樹脂微粒子分散液を調製し、硫酸マグネシウムや硫酸ア
ルミニウムなどの2価又は3価の金属塩からなる凝固剤
を添加して凝固させてトナー粒子を得る方法が提案され
ていた(特開昭63−205665号公報)。しかし、
この方法は、樹脂微粒子分散液を調製するときに着色剤
を存在させて、着色樹脂微粒子を作るため、着色剤の種
類によっては、乳化分散系内に着色剤を均一に分散させ
ること、さらにはトナー中に着色剤を均一に含有させる
ことが極めて難しい場合がある。そのような場合、カラ
ー画像の形成に必要なカラートナーは、着色剤の種類に
より異なる方法でトナーを製造する必要が生ずる。異な
る製法で得たトナーで画像を形成するときに、トラブル
が生ずると原因の究明を極めて困難にする。また、着色
剤の存在下で乳化重合を行って着色樹脂微粒子を得た
後、凝固剤を用いてトナー粒子を得るため、樹脂微粒子
分散液と着色剤分散液を混合して4価の凝集剤を添加し
融合してトナーを製造する場合と比較すると、得られる
トナーの粒度分布が広がりを持ち、シャープな粒度分布
のトナーを得ることは難しい。因みに、上記の乳化重合
法で得たトナーは、個数平均粒子径分布指標GSDn
〔(D84n /D16n 1/2 〕が1.30以上と大きな値
を示す。
A monomer dispersion is prepared by emulsion polymerization of a monomer using a reactive emulsifier without using a surfactant in the presence of a coloring agent. A method has been proposed in which a coagulant comprising a trivalent or trivalent metal salt is added and coagulated to obtain toner particles (JP-A-63-205665). But,
In this method, a colorant is present when preparing a resin fine particle dispersion to produce colored resin fine particles.Depending on the type of the colorant, the colorant is uniformly dispersed in an emulsified dispersion system. In some cases, it is extremely difficult to uniformly contain a colorant in the toner. In such a case, it is necessary to manufacture the color toner necessary for forming a color image by a different method depending on the type of the colorant. When an image is formed with toner obtained by a different manufacturing method, if a trouble occurs, it becomes extremely difficult to find the cause. In addition, after emulsion polymerization is performed in the presence of a colorant to obtain colored resin fine particles, in order to obtain toner particles using a coagulant, a resin fine particle dispersion and a colorant dispersion are mixed to form a tetravalent flocculant. Is added and fused to produce a toner, the obtained toner has a wider particle size distribution, and it is difficult to obtain a toner having a sharp particle size distribution. Incidentally, the toner obtained by the above emulsion polymerization method has a number average particle size distribution index GSDn.
Is [(D 84n / D 16n) 1/2] a larger value as 1.30 or more.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記の問題
を解消し、優れた帯電特性及び環境依存性を有し、着色
剤の物性によらず、着色剤をトナー中に均一に分散させ
ることができ、かつシャープな粒度分布を有する小粒子
径の静電荷像現像用トナー及びその製造方法、前記トナ
ーを用いた静電荷像現像剤、及び、高画質で信頼性の高
いカラー画像を形成する方法を提供しようとするもので
ある。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, has excellent charging characteristics and environmental dependency, and uniformly disperses the colorant in the toner regardless of the physical properties of the colorant. Capable of developing a small-particle-diameter electrostatic image developing toner having a sharp particle size distribution and a method for producing the same, an electrostatic image developer using the toner, and forming a high-quality and highly reliable color image To provide a way to do so.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意検討した結果、本発明では、下記の
構成を採用することにより、その解決を可能にした。 (1) 結着樹脂と着色剤を含有する静電荷像現像用トナー
において、上記トナーは個数平均粒子径D50n が1〜1
0μmで、個数平均粒度分布指標GSDnが1.26以
下であり、トナー粒子中の界面活性剤の含有量の合計が
1.0重量%以下で、かつ非イオン性界面活性剤含有量
が100ppm以下であり、上記結着樹脂が親水性エチ
レン性不飽和単量体を含有する自己分散性樹脂を含むこ
とを特徴とする静電荷像現像用トナー。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, the present invention has made it possible to adopt the following structure. (1) In a toner for developing an electrostatic image containing a binder resin and a colorant, the toner has a number average particle diameter D 50n of 1 to 1.
0 μm, the number average particle size distribution index GSDn is 1.26 or less, the total surfactant content in the toner particles is 1.0% by weight or less, and the nonionic surfactant content is 100 ppm or less. Wherein the binder resin comprises a self-dispersible resin containing a hydrophilic ethylenically unsaturated monomer.

【0013】(2) 上記個数平均粒子径D50n の好ましい
範囲は3〜8μmで、個数平均粒子径分布指標GSDn
の好ましい範囲は1.25以下であり、界面活性剤の含
有量の合計の好ましい範囲が0.5重量%以下であり、
非イオン性界面活性剤含有量の好ましい範囲が10pp
m以下であることを特徴とする上記(1) 記載の静電荷像
現像用トナー。
(2) The preferred range of the number average particle diameter D 50n is 3 to 8 μm, and the number average particle diameter distribution index GSDn
Is preferably 1.25 or less, and the total preferred range of the surfactant content is 0.5% by weight or less,
The preferred range of the nonionic surfactant content is 10 pp
m. or less, wherein the toner for developing an electrostatic image according to the above (1) is not more than m.

【0014】(3) 上記親水性エチレン性不飽和単量体の
一部がイオン性解離基を有する単量体であることを特徴
とする上記(1) 又は(2) 記載の静電荷像現像用トナー。 (4) 上記単量体のイオン性解離基がカルボキシル基、ス
ルフォン酸基、水酸基、メチロールアミド基、アミノ基
であることを特徴とする上記(3) 記載の静電荷像現像用
トナー。
(3) The electrostatic image development as described in (1) or (2) above, wherein a part of the hydrophilic ethylenically unsaturated monomer is a monomer having an ionic dissociation group. For toner. (4) The toner for developing an electrostatic image as described in (3) above, wherein the ionic dissociating group of the monomer is a carboxyl group, a sulfonic group, a hydroxyl group, a methylolamide group, or an amino group.

【0015】(5) 上記イオン性解離基を有する単量体の
少なくとも一部がスチレン誘導体であることを特徴とす
る上記(3) 又は(4) 記載の静電荷像現像用トナー。 (6) 上記スチレン誘導体がスチレンスルフォン酸のナト
リウム塩又はカリウム塩であることを特徴とする上記
(5) 記載の静電荷像現像用トナー。
(5) The toner for developing an electrostatic charge image according to (3) or (4), wherein at least a part of the monomer having an ionic dissociating group is a styrene derivative. (6) the styrene derivative is a sodium or potassium salt of styrenesulfonic acid,
(5) The toner for developing an electrostatic image as described in (5).

【0016】(7) 上記イオン性解離基を有する単量体の
少なくとも一部がアクリル酸、メタクリル酸、マレイン
酸及びイタコン酸の群から選ばれた少なくとも1種類の
単量体であることを特徴とする上記(4) 〜(6) のいずれ
か1つに記載の静電荷像現像用トナー。 (8) 上記トナー粒子が離型剤樹脂を含むことを特徴とす
る上記(1) 〜(7) のいずか1つに記載の静電荷現像用ト
ナー。
(7) At least a part of the monomer having an ionic dissociating group is at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, maleic acid and itaconic acid. The toner for developing electrostatic images according to any one of the above (4) to (6). (8) The electrostatic charge developing toner as described in any one of (1) to (7) above, wherein the toner particles include a release agent resin.

【0017】(9) 親水性エチレン性不飽和単量体を含有
する自己分散性樹脂微粒子分散液と、着色剤分散液とを
混合し、2価以上、好ましくは3価以上、より好ましく
は4価の電荷を有する無機金属塩を用いて上記樹脂微粒
子と上記着色剤を凝集して凝集粒子分散液を調製した
後、前記樹脂のガラス転移点以上の温度に加熱し、前記
凝集粒子を融合してトナー粒子を形成することを特徴と
する上記(1) 〜(8) のいずか1つに記載の静電荷像現像
用トナーの製造方法。
(9) A dispersion of fine particles of a self-dispersible resin containing a hydrophilic ethylenically unsaturated monomer and a dispersion of a colorant are mixed, and the mixture is divalent or more, preferably trivalent or more, more preferably 4 or more. After preparing the agglomerated particle dispersion by aggregating the resin fine particles and the colorant using an inorganic metal salt having a valence charge, heating the resin to a temperature equal to or higher than the glass transition point of the resin to fuse the agglomerated particles. The method for producing a toner for developing an electrostatic image according to any one of the above (1) to (8), wherein the toner particles are formed by heating.

【0018】(10)親水性エチレン性不飽和単量体を、界
面活性剤を使用しない乳化重合法で重合して自己分散性
樹脂微粒子分散液を調製することを特徴とする上記(9)
記載の静電荷像現像用トナーの製造方法。 (11)トナー及びキャリアを含む静電荷像現像剤におい
て、上記(1) 〜(8) のいずか1つに記載の静電荷像現像
用トナーを用いたことを特徴とする静電荷像現像剤。
(10) The self-dispersing resin fine particle dispersion is prepared by polymerizing a hydrophilic ethylenically unsaturated monomer by an emulsion polymerization method without using a surfactant.
The method for producing a toner for developing an electrostatic image according to the above. (11) An electrostatic image developer containing a toner and a carrier, wherein the electrostatic image developing toner according to any one of the above (1) to (8) is used. Agent.

【0019】(12)静電荷担持体上に静電潜像を形成する
工程、現像剤担持体上の現像剤で上記静電潜像を現像し
てトナー画像を形成する工程、及び前記トナー画像を転
写体上に転写する工程を含む画像形成方法において、前
記現像剤として上記(11)記載の静電荷像現像剤を使用す
ることを特徴とする画像形成方法。
(12) a step of forming an electrostatic latent image on an electrostatic charge carrier, a step of developing the electrostatic latent image with a developer on a developer carrier to form a toner image, and the toner image An image forming method including a step of transferring the developer onto a transfer body, wherein the electrostatic image developer according to (11) is used as the developer.

【0020】[0020]

【発明の実施の形態】本発明者等は、優れた帯電特性及
び環境依存性を有し、かつシャープな粒度分布を有する
小粒子径の静電荷像現像用トナーを提供し、かつ、トナ
ーの飛散、かぶり等の無い高画質で信頼性の高いカラー
画像の形成を可能にする画像形成方法を提供することに
ついて鋭意検討した。その結果、トナーに残留する界面
活性剤の含有量、特に非イオン性界面活性剤の含有量が
トナーの帯電性、環境依存性悪化に大きく影響を及ぼす
ことを見出し、残留する界面活性剤の合計量を1.0重
量%以下、非イオン性界面活性剤の含有量を100pp
m以下にすることにより、安定した帯電性能、良好な環
境依存性を達成できることを見出し本発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have provided a toner for developing an electrostatic image having a small particle diameter having excellent charging characteristics and environmental dependency, and having a sharp particle size distribution. The present inventors have intensively studied to provide an image forming method capable of forming a high-quality and high-reliability color image without scattering or fogging. As a result, it was found that the content of the surfactant remaining in the toner, particularly the content of the nonionic surfactant, greatly affected the chargeability of the toner and the deterioration of environmental dependency. The content is 1.0% by weight or less, and the content of the nonionic surfactant is 100 pp.
It has been found that by setting the value to m or less, stable charging performance and good environmental dependency can be achieved, leading to the present invention.

【0021】そこで、本発明では、樹脂微粒子分散液と
着色剤分散液とを混合し、その混合液に凝集剤を添加し
て凝集体を形成した後、前記樹脂のガラス転移点以上の
温度に加熱して凝集粒子を融合してトナー粒子を形成す
る凝集融合法を採用することにより、シャープな粒度分
布を有する小粒子径のトナー粒子の製造を可能にした。
また、従来の乳化重合法で調製した樹脂微粒子分散液を
用いるときには、得られたトナー中の界面活性剤の80
%以上が樹脂微粒子分散液に由来するので、本発明で
は、親水性エチレン性不飽和単量体を用いて界面活性剤
を使用することなく樹脂微粒子分散液を調製し、上記の
凝集工程で2価以上の電荷を有する無機金属塩の凝集剤
を添加して凝集させてトナー粒子を製造することによ
り、トナー中に残留する界面活性剤量、特に非イオン性
界面活性剤量を大幅に減少させることを可能にした。
Therefore, in the present invention, a resin fine particle dispersion and a colorant dispersion are mixed, and an aggregating agent is added to the mixed liquid to form an aggregate, which is then heated to a temperature higher than the glass transition point of the resin. The adoption of the aggregation and fusion method in which the aggregated particles are fused by heating to form toner particles has enabled the production of toner particles having a small particle size and a sharp particle size distribution.
When a resin fine particle dispersion prepared by a conventional emulsion polymerization method is used, a surfactant of 80% in the obtained toner is used.
% Or more is derived from the resin fine particle dispersion, and in the present invention, a resin fine particle dispersion is prepared using a hydrophilic ethylenically unsaturated monomer without using a surfactant, By adding an aggregating agent of an inorganic metal salt having a charge of at least valence to form toner particles, the amount of surfactant remaining in the toner, particularly the amount of nonionic surfactant, is significantly reduced. Made it possible.

【0022】本発明の製造方法では、樹脂微粒子分散液
の調製工程で界面活性剤を使用しないこともあり、トナ
ー粒子中の残留界面活性剤の含有量の合計が1.0重量
%以下で、非イオン性界面活性剤の含有量が100pp
m以下のトナー粒子を得ることができ、安定した帯電性
能と、良好な環境依存性を有するトナーの提供を可能に
した。残留界面活性剤の合計量が1重量%を超えると、
吸湿特性が悪化して帯電特性に問題を生ずる。また、残
留界面活性剤の合計量が1.0重量%以下でも、その残
留物中に非イオン性界面活性剤量が100ppmを超え
ると、同様に帯電特性に悪影響を及ぼす結果となる。そ
して、残留界面活性剤の合計量の好ましい範囲は0.5
重量%以下であり、かつ非イオン性界面活性剤量の好ま
しい範囲は10ppm以下であり、特に0ppmである
ことが望ましい。
In the production method of the present invention, the surfactant may not be used in the step of preparing the fine resin particle dispersion, and the total content of the residual surfactant in the toner particles is 1.0% by weight or less. 100 pp nonionic surfactant content
m or less, and it was possible to provide a toner having stable charging performance and good environmental dependency. When the total amount of the residual surfactant exceeds 1% by weight,
The hygroscopic property deteriorates, causing a problem in the charging property. Further, even if the total amount of the residual surfactant is 1.0% by weight or less, if the amount of the nonionic surfactant in the residue exceeds 100 ppm, the charging characteristics are similarly adversely affected. The preferred range of the total amount of the residual surfactant is 0.5
% By weight and the preferred range of the amount of the nonionic surfactant is 10 ppm or less, and particularly preferably 0 ppm.

【0023】上記界面活性剤としては、硫酸エステル塩
系、スルホン酸塩系、リン酸エステル系、せっけん系等
の水中で負電荷を有するアニオン界面活性剤;アミン塩
型、4級アンモニウム塩型等の水中で正電荷を有するカ
チオン系界面活性、非イオン性界面活性剤とはポリエチ
レングリコール系、アルキルフェノールエチレンオキサ
イド付加物系、多価アルコール系等電荷を有せず主に粒
子間立体的反発効果を付与する物質をさす。
Examples of the surfactant include anionic surfactants having a negative charge in water, such as sulfates, sulfonates, phosphates, and soaps; amine salts, quaternary ammonium salts, and the like. Cationic surfactants and nonionic surfactants that have a positive charge in water are mainly polyethylene glycols, alkylphenol ethylene oxide adducts, polyhydric alcohols, etc. Refers to the substance to be applied.

【0024】本発明の静電荷像現像用トナーは、個数平
均粒子径D50n が1〜10μmで、個数平均粒度分布指
標GSDnが1.26以下であることが好ましい。GS
Dnが1.26を超えると、細線再現性などの画質特性
を維持することができない。また、個数平均粒子径D
50n 10μmを超えると、画像の解像性が低下し、個数
平均粒子径D50n 1μmを下回ると帯電性が不十分とな
る。なお、個数平均粒子径D50n のより好ましい範囲は
3〜8μmであり、GSDnのより好ましい範囲は1.
25以下である。
The electrostatic image developing toner of the present invention preferably has a number average particle diameter D 50n of 1 to 10 μm and a number average particle size distribution index GSDn of 1.26 or less. GS
If Dn exceeds 1.26, image quality characteristics such as fine line reproducibility cannot be maintained. Also, the number average particle diameter D
When the thickness exceeds 50 μm and 10 μm, the resolution of the image decreases. When the number average particle diameter D 50n falls below 1 μm, the chargeability becomes insufficient. The more preferable range of the number average particle diameter D 50n is 3 to 8 μm, and the more preferable range of GSDn is 1.
25 or less.

【0025】本発明のトナー粒子は、親水性エチレン性
不飽和単量体を用いることにより、界面活性剤を使用す
ることなく、自己分散性を有する樹脂微粒子の分散液を
調製することができ、かつ、この樹脂微粒子分散液、着
色剤分散液、必要に応じて離型剤分散液を混合して凝集
粒子分散液を調製するときにも、2価以上の無機金属塩
の凝集剤を使用して凝集させるため、凝集のための界面
活性剤の使用を回避することができる。
By using a hydrophilic ethylenically unsaturated monomer, a dispersion of resin fine particles having self-dispersibility can be prepared without using a surfactant. In addition, when preparing an aggregated particle dispersion by mixing the resin fine particle dispersion, the colorant dispersion, and the release agent dispersion as required, an aggregating agent of a divalent or higher inorganic metal salt is used. Therefore, the use of a surfactant for aggregation can be avoided.

【0026】上記の親水性エチレン性不飽和単量体は、
カルボキシル基、スルフォン酸基、水酸基等のイオン性
解離基を有するものが好適であり、重合体が自己分散性
を有することにより、樹脂微粒子分散液の安定性と、凝
集粒子の安定性を確保することができる。
The above hydrophilic ethylenically unsaturated monomer is
Those having an ionic dissociation group such as a carboxyl group, a sulfonic acid group, and a hydroxyl group are preferred, and the polymer has self-dispersibility, thereby ensuring the stability of the resin fine particle dispersion and the stability of the aggregated particles. be able to.

【0027】本発明のトナーの樹脂微粒子に使用する親
水性エチレン性不飽和単量体は、界面活性剤を使用せず
に、結着樹脂を重合させることができ、該結着樹脂に自
己分散性を付与できるものであれば特に制限されない。
そして、樹脂微粒子を形成した後の分散液中における樹
脂微粒子の自己分散性及び凝集粒子分散液中における分
散性、安定性を確保できればよい。
The hydrophilic ethylenically unsaturated monomer used for the resin fine particles of the toner of the present invention can polymerize a binder resin without using a surfactant, and is self-dispersed in the binder resin. There is no particular limitation as long as the property can be imparted.
Then, it is sufficient that the self-dispersibility of the resin fine particles in the dispersion liquid after the formation of the resin fine particles and the dispersibility and stability in the aggregated particle dispersion liquid can be ensured.

【0028】本発明で使用できるエチレン性不飽和単量
体成分としては、スチレン、パラクロロスチレン、α−
メチルスチレン等のスチレン類;アクリル酸メチル、ア
クリル酸エチル、アクリル酸n−プロピル、アクリル酸
ラウリル、アクリル酸2−エチルヘキシル等アクリル系
単量体;メタクリル酸メチル、メタクリル酸エチル、メ
タクリル酸n−プロピル、メタクリル酸ラウリル、メタ
クリル酸2−エチルヘキシル等のメタクリル系単量体、
アクリロニトリル、メタクリロニトリル等のビニルニト
リル類;ビニルメチルエーテル、ビニルイソブチルエー
テル等のビニルエーテル類;ビニルメチルケトン、ビニ
ルエチルケトン、ビニルイソプロペニルケトン等のビニ
ルケトン類;エチレン、プロピレン、ブタジエンなどの
オレフィン類などの単量体、イオン性の解離基を有する
ものとして アクリル酸、メタクリル酸、マレイン酸、
イタコン酸、カルボキシエチルアクリレート、スチレン
スルフォン酸、およびこれらの金属塩単量体、ヒドロキ
シエチルアクリレート、ヒドロキシエチルメタクリレー
ト、ヒドロキシプロピルメタクリレート、アリルアルコ
ール、スチレンスルフォン酸等を挙げることができる。
The ethylenically unsaturated monomer components usable in the present invention include styrene, parachlorostyrene, α-
Styrenes such as methyl styrene; acrylic monomers such as methyl acrylate, ethyl acrylate, n-propyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate , Methacrylic monomers such as lauryl methacrylate, 2-ethylhexyl methacrylate,
Vinyl nitriles such as acrylonitrile and methacrylonitrile; vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone and vinyl isopropenyl ketone; olefins such as ethylene, propylene and butadiene; Acrylic acid, methacrylic acid, maleic acid,
Examples include itaconic acid, carboxyethyl acrylate, styrene sulfonic acid, and metal salt monomers thereof, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, allyl alcohol, styrene sulfonic acid, and the like.

【0029】また、イオン性の解離基を有するエチレン
性不飽和単量体成分としては、スチレンスルホン酸及び
その金属塩、アクリル酸、メタクリル酸、マレイン酸、
イタコン酸などを挙げることができる。さらに好ましく
はイオン性解離基とベンゼン環を有するスチレンスルホ
ン酸のナトリウム塩やカリウム塩が最適である。上記の
ようにベンゼン環を有する単量体を用いると、トナーの
耐水性を上げる利点がある。本発明の親水性エチレン性
不飽和単量体の共重合の割合は、全重合体の重量中0.
05〜5.0重量%であることが好ましい。0.05重
量%を下回ると十分な安定性を付与できず、5.0重量
%を超えるとトナーの環境依存性が大きくなり好ましく
ない。
The ethylenically unsaturated monomer component having an ionic dissociating group includes styrene sulfonic acid and its metal salt, acrylic acid, methacrylic acid, maleic acid,
Itaconic acid and the like can be mentioned. More preferably, a sodium or potassium salt of styrenesulfonic acid having an ionic dissociating group and a benzene ring is most suitable. Use of a monomer having a benzene ring as described above has an advantage of increasing the water resistance of the toner. The ratio of copolymerization of the hydrophilic ethylenically unsaturated monomer of the present invention is 0.1% by weight of the whole polymer.
It is preferably from 0.05 to 5.0% by weight. If the amount is less than 0.05% by weight, sufficient stability cannot be imparted. If the amount is more than 5.0% by weight, the environmental dependency of the toner is undesirably increased.

【0030】また、本発明のトナーの製造において、凝
集工程に離型剤分散液を添加して樹脂微粒子や着色剤と
ともに凝集させ、トナー中に融合させることも可能であ
るし、樹脂微粒子と着色剤を凝集した後、離型剤分散液
を添加して凝集粒子表面に離型剤を付着させることも可
能である。ここで用いる離型剤としては、ポリエチレ
ン、ポリプロピレン、ポリブテン等の低分子量ポリオレ
フィン類;シリコーン類、オレイン酸アミド、エルカ酸
アミド、リシノール酸アミド、ステアリン酸アミド等の
ような脂肪酸アミド類;カルナウバワックス、ライスワ
ックス、キャンデリラワックス、木ロウ、ホホバ油等の
ような植物系ワックス;ミツロウのごとき動物系ワック
ス;モンタンワックス、オゾケライト、セレシン、パラ
フィンワックス、マイクロクリスタリンワックス、フィ
ッシャートロプシュワックス等のような鉱物系、石油系
のワックス、及びそれらの変性物などを挙げることがで
きる。
In the production of the toner of the present invention, it is possible to add a release agent dispersion to the coagulation step to coagulate with the resin fine particles and the colorant and to fuse them into the toner. After aggregating the agent, it is also possible to add a release agent dispersion to adhere the release agent to the surface of the aggregated particles. Examples of the releasing agent used herein include low molecular weight polyolefins such as polyethylene, polypropylene and polybutene; silicones, fatty acid amides such as oleamide, erucamide, ricinoleamide, and stearamide; carnauba wax And plant waxes such as rice wax, candelilla wax, wood wax, jojoba oil, etc .; animal waxes such as beeswax; minerals such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax, etc. And petroleum-based waxes and modified products thereof.

【0031】これらのワックス類は、水中にイオン性界
面活性剤や高分子酸や高分子塩基などの高分子電解質と
ともに分散し、融点以上に加熱するとともに、強い剪断
力を付与できるホモジナイザーや圧力吐出型分散機を用
いて微粒子化し、1μm以下の粒子の分散液を作成する
ことができる。また、これらの離型剤微粒子はその他の
樹脂微粒子成分と共に混合溶媒中に一度に添加してもよ
いし、分割して多段に添加してもよい。
These waxes are dispersed in water together with an ionic surfactant or a polymer electrolyte such as a polymer acid or a polymer base, and are heated to a melting point or higher, and can be applied with a homogenizer or a pressure discharger capable of imparting a strong shearing force. It can be made into fine particles by using a type disperser, and a dispersion liquid of particles of 1 μm or less can be prepared. Further, these release agent fine particles may be added together with the other resin fine particle components to the mixed solvent at once, or may be divided and added in multiple stages.

【0032】本発明のトナーに用いる着色剤としては、
カーボンブラック、クロムイエロー、ハンザイエロー、
ベンジジンイエロー、スレンイエロー、キノリンイエロ
ー、パーマネントオレンジGTR、ピラゾロンオレン
ジ、バルカンオレンジ、ウオッチヤングレッド、パーマ
ネントレッド、ブリリアンカーミン3B、ブリリアンカ
ーミン6B、デイポンオイルレッド、ピラゾロンレッ
ド、リソールレッド、ローダミンBレーキ、レーキレッ
ドC、ローズベンガル、アニリンブルー、ウルトラマリ
ンブルー、カルコオイルブルー、メチレンブルークロラ
イド、フタロシアニンブルー、フタロシアニングリー
ン、マラカイトグリーンオクサレレートなどの種々の顔
料や、アクリジン系、キサンテン系、アゾ系、ベンゾキ
ノン系、アジン系、アントラキノン系、チオインジコ
系、ジオキサジン系、チアジン系、アゾメチン系、イン
ジコ系、チオインジコ系、フタロシアニン系、アニリン
ブラック系、ポリメチン系、トリフェニルメタン系、ジ
フェニルメタン系、チアジン系、チアゾール系、キサン
テン系などの各種染料などを1種単独で又は2種以上を
併せて使用することができる。
As the colorant used in the toner of the present invention,
Carbon black, chrome yellow, hansa yellow,
Benzidine Yellow, Slen Yellow, Quinoline Yellow, Permanent Orange GTR, Pyrazolone Orange, Vulcan Orange, Watch Young Red, Permanent Red, Brillantamine 3B, Brillantamine 6B, Dupont Oil Red, Pyrazolone Red, Risor Red, Rhodamine B Lake, Lake Various pigments such as Red C, Rose Bengal, Aniline Blue, Ultramarine Blue, Calco Oil Blue, Methylene Blue Chloride, Phthalocyanine Blue, Phthalocyanine Green, Malachite Green Oxalate, and Acridine, Xanthene, Azo, Benzoquinone, Azine Type, anthraquinone type, thioindico type, dioxazine type, thiazine type, azomethine type, indico type, thioindico type, Taroshianin system, aniline black, polymethine, triphenylmethane dyes, diphenylmethane dyes, thiazine, thiazole-based, can be used in conjunction with various dyes and the like alone, or two or more such xanthene.

【0033】これらの分散方法としては、任意の方法、
例えば回転せん断型ホモジナイザーや、メディアを有す
るボールミル、サンドミル、ダイノミルなどの一般的な
分散方法を使用することができ、なんら制限されるもの
ではない。また、これらの着色剤微粒子は、その他の微
粒子成分と共に混合溶媒中に一度に添加してもよいし、
分割して多段回で添加してもよい。
As these dispersing methods, any method,
For example, a general shearing method such as a rotary shearing homogenizer, a ball mill, a sand mill, and a dyno mill having a medium can be used, and there is no limitation. Further, these colorant fine particles may be added together with the other fine particle components to the mixed solvent at once,
It may be divided and added in multiple stages.

【0034】また、磁性トナーとして用いる場合は磁性
粉を含有させるが、ここで使用する磁性粉としては、フ
ェライトやマグネタイト、還元鉄、コバルト、ニッケ
ル、マンガン等の金属、合金又はこれら金属を含む化合
物などを挙げることができる。さらに必要に応じて、4
級アンモニウム塩、ニグロシン系化合物やトリフェニル
メタン系顔料など、通常使用される種々の帯電制御剤を
添加してもよい。
When used as a magnetic toner, a magnetic powder is contained. Examples of the magnetic powder used here include metals such as ferrite, magnetite, reduced iron, cobalt, nickel and manganese, alloys and compounds containing these metals. And the like. 4 if necessary
Various commonly used charge control agents such as quaternary ammonium salts, nigrosine compounds and triphenylmethane pigments may be added.

【0035】さらにまた、従来のトナー外添剤をトナー
中に含有させることも可能である。具体的には、シリ
カ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネ
シウム、リン酸三カルシウムなどの無機微粒子を、イオ
ン性界面活性剤や高分子酸、高分子塩基で分散して使用
することができる。これらの磁性粉、帯電制御剤、その
他の外添剤の分散方法は、上記の着色剤と同様に添加す
ることができる。
Further, a conventional toner external additive can be contained in the toner. Specifically, inorganic fine particles such as silica, alumina, titania, calcium carbonate, magnesium carbonate, and tricalcium phosphate can be used by being dispersed with an ionic surfactant, a polymer acid, or a polymer base. The method of dispersing the magnetic powder, the charge controlling agent, and other external additives can be added in the same manner as the above-described coloring agent.

【0036】これらの樹脂微粒子分散液、着色剤分散液
などを混合し、均一な混合粒子分散液を調整した後、分
散媒体に可溶な無機金属塩を添加混合して所望の凝集粒
子を得る。その際、樹脂微粒子、着色剤、必要に応じて
上記の無機微粒子などを一度に添加してもよいし、分割
して微粒子成分を段階的に添加し、凝集粒子の構成を例
えばコアシェル構造や、粒子の半径方向に成分を傾斜さ
せた構造を付与してもよい。その場合は樹脂微粒子分散
液、着色剤粒子分散液及び離型剤微粒子分散液などを混
合分散し、一定水準の粒径になるまで凝集粒子を成長さ
せる。必要に応じて、樹脂微粒子分散液などをさらに加
えて凝集粒子表面に追加樹脂微粒子を付着させてもよ
い。追加樹脂微粒子が凝集粒子表面を覆うことにより、
着色剤、離型剤などがトナー表面に露出することを防止
することができ、これらの露出による帯電不良、不均一
帯電を抑制するのに有効である。
These resin fine particle dispersions, colorant dispersions, and the like are mixed to prepare a uniform mixed particle dispersion, and an inorganic metal salt soluble in a dispersion medium is added and mixed to obtain desired aggregated particles. . At this time, the resin fine particles, the coloring agent, if necessary, the inorganic fine particles and the like may be added at once, or the fine particle component may be divided and added stepwise, and the configuration of the aggregated particles may be, for example, a core-shell structure, A structure in which components are inclined in the radial direction of the particles may be provided. In this case, a dispersion of the resin fine particles, a dispersion of the colorant particles, and a dispersion of the release agent fine particles are mixed and dispersed, and the aggregated particles are grown until the particle diameter reaches a certain level. If necessary, additional resin fine particles may be adhered to the surface of the aggregated particles by further adding a resin fine particle dispersion or the like. By the additional resin fine particles covering the aggregated particle surface,
It is possible to prevent a colorant, a release agent and the like from being exposed on the toner surface, and it is effective to suppress poor charging and uneven charging due to the exposure.

【0037】上記の凝集工程では、凝集剤として2価以
上の無機金属塩を用いるが、3価以上、特に4価である
ことが好ましい。前記無機金属は価数が大きいほど凝集
力が強く、安定に凝集を制御することができるため、未
凝集物を生ずることが少なく、優れた粒度分布を得るこ
とができる。4価以上の無機金属塩重合体としては、ポ
リ塩化アルミニウム、ポリ水酸化アルミニウムなどを用
いることができる。
In the above coagulation step, a divalent or higher valent inorganic metal salt is used as the coagulant, but it is preferably trivalent or higher, particularly preferably tetravalent. The larger the valence of the inorganic metal, the stronger the cohesive force and the more stable the coagulation can be controlled. Therefore, non-agglomerates are less likely to occur, and an excellent particle size distribution can be obtained. As the polyvalent inorganic metal salt polymer, polyaluminum chloride, polyaluminum hydroxide and the like can be used.

【0038】このようにして所望の粒子径を有する凝集
粒子を得た後、樹脂のガラス転移点以上の温度に加熱す
ることにより凝集粒子を融合して所望のトナー粒子を得
ることができる。ここで、融合加熱条件の選択により、
トナー形状を不定形から球形まで制御することができ
る。高温で長時間融合させると、トナー形状は、より真
球に近くなる。
After obtaining the aggregated particles having a desired particle diameter in this manner, the aggregated particles can be fused by heating to a temperature higher than the glass transition point of the resin to obtain desired toner particles. Here, by selecting the fusion heating conditions,
The toner shape can be controlled from an irregular shape to a spherical shape. When fusing at a high temperature for a long time, the toner shape becomes closer to a true sphere.

【0039】なお、高温で融合したり、高濃度で融合す
るときには、凝集粒子の粒子間融着を防ぎ、シャープな
粒度分布を維持するために、任意な安定化処理策、例え
ば凝集粒子を構成する樹脂微粒子等と同電荷の界面活性
剤、高分子保護コロイドなどを添加する方法を採用する
ことができるが、ここで用いる安定化用界面活性剤等は
凝集粒子の表面に吸着され、残留界面活性剤の原因とな
る。それ故、これらの界面活性剤を添加せずに、樹脂バ
インダー中に含有されるイオン性解離基による安定化、
即ち系のpH調整を行うことが好ましい。
When fusing at a high temperature or fusing at a high concentration, any stabilizing treatment, for example, agglomerated particles may be used to prevent fusion of the agglomerated particles and maintain a sharp particle size distribution. A method of adding a surfactant, a polymer protective colloid, or the like having the same charge as the resin fine particles to be used can be employed, but the stabilizing surfactant used here is adsorbed on the surface of the aggregated particles, and the residual interface Causes activator. Therefore, without adding these surfactants, stabilization by ionic dissociation groups contained in the resin binder,
That is, it is preferable to adjust the pH of the system.

【0040】よって、本発明における最も好ましい態様
とは、凝集工程における溶媒として水を使用する場合、
例えば乳化重合法で得られた樹脂微粒子と着色剤を水に
分散して凝集粒子を形成して融合する場合、分散系のp
Hを2.0から14の間で調整して微粒子の電気的引力
と反発力を制御することにより、凝集の進行を停止して
分散系を安定化させることができる。この場合、一般的
には、表面電位がカチオンタイプならばより低いpH
で、アニオンタイプならばより高いpHで安定化するこ
とができるが、pHが上記の範囲を外れると、樹脂微粒
子等の加水分解等の化学的な分解安定性の観点、さらに
過渡の安定性は凝集粒子自体の破壊につながる観点から
問題となる。
Therefore, the most preferred embodiment of the present invention is that when water is used as the solvent in the aggregation step,
For example, when resin fine particles obtained by an emulsion polymerization method and a colorant are dispersed in water to form aggregated particles and fused,
By controlling H between 2.0 and 14 to control the electric attraction and repulsion of the fine particles, the progress of aggregation can be stopped and the dispersion system can be stabilized. In this case, generally, if the surface potential is of the cationic type, the lower pH
In the case of an anionic type, it can be stabilized at a higher pH.However, when the pH is out of the above range, the viewpoint of chemical decomposition stability such as hydrolysis of resin fine particles and the like, and the transient stability are further improved. This is a problem from the viewpoint of destruction of the aggregated particles themselves.

【0041】融合して得た融合粒子は、ろ過などの固液
分離工程や、必要に応じて洗浄工程、乾燥工程を経てト
ナー粒子を得る。この場合、トナーとして帯電特性、信
頼性を確保するために、洗浄を十分に施すことが好まし
く、特に、乳化重合法で得た樹脂微粒子等を使用し、溶
媒を水とするときには、洗浄水のpHを7以上のアルカ
リ水で洗浄した後、さらにpH6以下の酸性の洗浄水で
洗浄することが好ましい。
The fused particles obtained by the fusion are subjected to a solid-liquid separation step such as filtration, and if necessary, a washing step and a drying step to obtain toner particles. In this case, it is preferable to sufficiently wash the toner in order to secure charging characteristics and reliability. In particular, when resin particles and the like obtained by an emulsion polymerization method are used and the solvent is water, the washing water is preferably used. After washing with alkaline water having a pH of 7 or more, it is preferable to further wash with acidic washing water having a pH of 6 or less.

【0042】乾燥工程では、通常の振動型流動乾燥法、
スプレードライ法、凍結乾燥法、フラッシュジェット法
など、任意の方法を採用することができる。トナー粒子
は、乾燥後の含水分率を1.0%以下、好ましくは0.
5%以下に調整することが望ましい。
In the drying step, an ordinary vibration-type fluidized drying method,
Any method such as a spray drying method, a freeze drying method, and a flash jet method can be employed. The toner particles have a moisture content after drying of 1.0% or less, preferably 0.1% or less.
It is desirable to adjust it to 5% or less.

【0043】また、トナーの帯電量の絶対値は、10〜
40μC/gの範囲、好ましくは15〜35μC/gの
範囲が適当である。帯電量が10μC/gを下回ると、
背景汚れ(かぶり)が発生しやすくなり、40μC/g
を超えると画像濃度が低下しやすくなる。また、静電荷
像現像用トナーの夏場(高温高湿:28℃、85%R
H)における帯電量と、冬場(低温低湿:10℃、30
%RH)における帯電量の比(高温高湿帯電量)/(低
温低湿帯電量)の環境依存指数は0.2〜1.3の範
囲、好ましくは0.7〜1.0の範囲が適当である。こ
の比率が上記の範囲を外れると、高温高湿下での帯電安
定性、信頼性を損なう要因となる。
The absolute value of the charge amount of the toner is 10 to
A range of 40 μC / g, preferably a range of 15 to 35 μC / g, is suitable. When the charge amount falls below 10 μC / g,
Background stain (fog) is likely to occur, and 40 μC / g
If it exceeds, the image density tends to decrease. Further, in the summer of the electrostatic image developing toner (high temperature and high humidity: 28 ° C., 85% R)
H) and the amount of charge in winter (low temperature and low humidity: 10 ° C., 30)
% (High-temperature high-humidity charge amount) / (low-temperature low-humidity charge amount) environment-dependent index is in the range of 0.2 to 1.3, preferably in the range of 0.7 to 1.0. It is. If this ratio is out of the above range, it becomes a factor that impairs charging stability and reliability under high temperature and high humidity.

【0044】さらに、本発明のトナーは、従来の混練粉
砕型トナーと同様に種々の外添剤などを配合して現像剤
として用いることができる。外添剤としてのシリカ、ア
ルミナ、チタニア、炭酸カルシウム、炭酸マグネシウ
ム、リン酸三カルシウムなどの無機微粒子、流動性助剤
やクリーニング助剤としてのシリカ、アルミナ、チタニ
ア、炭酸カルシウムなどの無機粒子、ビニル系樹脂、ポ
リエステル、シリコーンなどの樹脂微粒子を乾燥状態で
剪断力を加えてトナー粒子表面に添加することも可能で
ある。
Further, the toner of the present invention can be used as a developer by blending various external additives in the same manner as in the conventional kneading and pulverizing type toner. Inorganic fine particles such as silica, alumina, titania, calcium carbonate, magnesium carbonate and tricalcium phosphate as external additives, silica, alumina, titania, inorganic particles such as calcium carbonate and silica as fluidity aids and cleaning aids, vinyl Fine resin particles such as resin, polyester, and silicone can be added to the surface of the toner particles by applying a shearing force in a dry state.

【0045】[0045]

【実施例】以下、本発明を具体的な実施例で詳細に説明
するが、これらにより本発明が制限されることはない。樹脂微粒子分散液(1) の調製 スチレン 370重量部 nブチルアクリレート 30重量部 スチレンスルフォン酸ナトリウム 3重量部 ドデカンチオール 5重量部 四臭化炭素 4重量部 上記成分を混合した単量体溶液25gとイオン交換水5
50gをフラスコ中に入れて分散、10分間ゆっくりと
攪拌・混合しながら、過硫酸アンモニウム4gを溶解し
たイオン交換水50gを投入した。その後、フラスコ内
を窒素で充分に置換してから攪拌しながら、オイルバス
で系内が70℃になるまで加熱し、30分そのまま乳化
重合を行った後残りの単量体溶液を3時間かけて徐々に
滴下、その滴下終了後さらに70℃で重合を継続し、3
時間後に重合を終了させた。
EXAMPLES The present invention will be described in detail with reference to specific examples, but the present invention is not limited by these examples. Preparation of resin fine particle dispersion liquid (1) Styrene 370 parts by weight n-butyl acrylate 30 parts by weight Sodium styrene sulfonate 3 parts by weight Dodecanethiol 5 parts by weight Carbon tetrabromide 4 parts by weight 25 g of a monomer solution obtained by mixing the above components and ions Exchange water 5
50 g of ion-exchanged water in which 4 g of ammonium persulfate was dissolved was added to 50 g of the flask while dispersing and slowly stirring and mixing for 10 minutes. Thereafter, the inside of the flask is sufficiently replaced with nitrogen, and the system is heated to 70 ° C. in an oil bath while stirring, and emulsion polymerization is performed for 30 minutes. The polymerization was continued at 70 ° C.
After an hour, the polymerization was terminated.

【0046】得られた樹脂微粒子は、レーザー回折式粒
度分布測定装置(堀場製作所製、LA−700)で樹脂
微粒子の個数平均粒子径D50n を測定したところ350
nmであり、示差走査熱量計(島津制作所社製、DSC
−50)を用いて昇温速度10℃/minで樹脂のガラ
ス転移点を測定したところ59℃であり、分子量測定器
(東ソー社製、HLC−8020)を用い、THFを溶
媒として重量平均分子量(ポリスチレン換算)を測定し
たところ13000であった。
The number average particle diameter D 50n of the obtained resin fine particles was measured using a laser diffraction particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.).
nm and a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC
The glass transition point of the resin was measured at a heating rate of 10 ° C./min using -50) and found to be 59 ° C., using a molecular weight measuring device (manufactured by Tosoh Corporation, HLC-8020) and using THF as a solvent and weight average molecular weight. When measured (in terms of polystyrene), it was 13,000.

【0047】樹脂微粒子分散液(2) の調製 スチレン 280重量部 nブチルアクリレート 120重量部 スチレンスルフォン酸ナトリウム 3重量部 上記成分を混合した単量体溶液25gとイオン交換水5
50gをフラスコ中に入れて分散、10分間ゆっくりと
攪拌・混合しながら、過硫酸アンモニウム4gを溶解し
たイオン交換水50gを投入した。その後、フラスコ内
を窒素で充分に置換してから攪拌しながらオイルバスで
系内が70℃になるまで加熱し、30分そのまま乳化重
合を行った後、残りの単量体溶液を3時間かけて徐々に
滴下、その滴下終了後さらに70Cで重合を継続し、3
時間後に重合を終了させた。得られた樹脂微粒子分散液
(2) を樹脂微粒子分散液(1) と同様にして諸特性を測定
したところ、樹脂微粒子の個数平均粒子径D50n が29
0nm、ガラス転移点が53℃、重量平均分子量が55
万であった。
Preparation of Resin Particle Dispersion (2) 280 parts by weight of styrene 120 parts by weight of n-butyl acrylate 3 parts by weight of sodium styrene sulfonate 25 g of a monomer solution containing the above components and 5 parts of ion-exchanged water
50 g of ion-exchanged water in which 4 g of ammonium persulfate was dissolved was added to 50 g of the flask while dispersing and slowly stirring and mixing for 10 minutes. After that, the inside of the flask is sufficiently replaced with nitrogen, and the system is heated to 70 ° C. in an oil bath with stirring, and emulsion polymerization is performed for 30 minutes. The polymerization was continued at 70C after the completion of the dropwise addition.
After an hour, the polymerization was terminated. Resin fine particle dispersion obtained
When (2) was measured for various properties in the same manner as in the resin fine particle dispersion (1), the number average particle diameter D 50n of the resin fine particles was 29.
0 nm, glass transition point 53 ° C., weight average molecular weight 55
It was 10,000.

【0048】樹脂微粒子分散液(3) の調製 スチレン 370重量部 nブチルアクリレート 30重量部 スチレンスルフォン酸ナトリウム 3重量部 ドデカンチオール 5重量部 四臭化炭素 4重量部 上記成分を混合した溶液412gと、非イオン性界面活
性剤(三洋化成社製、ノニポール400)6g、及びア
ニオン性界面活性剤(第一製薬社製、ネオゲンR)10
gをイオン交換水550gに溶解した溶液をフラスコ中
に入れて分散、乳化し、10分間ゆっくりと攪拌・混合
しながら、過硫酸アンモニウム4gを溶解したイオン交
換水50gを投入した。その後、フラスコ内を窒素で充
分に置換してから攪拌しながらオイルバスで系内が70
℃になるまで加熱し、5時間そのまま乳化重合を継続し
た。得られた樹脂微粒子分散液(3) は、脂微粒子分散液
(1) と同様にして諸特性を測定したところ、樹脂微粒子
の個数平均粒子径D50n が162nm、ガラス転移点が
59℃、重量平均分子量が13.5万であった。
Preparation of Resin Fine Particle Dispersion (3) Styrene 370 parts by weight n-butyl acrylate 30 parts by weight Sodium styrene sulfonate 3 parts by weight Dodecanethiol 5 parts by weight Carbon tetrabromide 4 parts by weight 412 g of a solution obtained by mixing the above components, 6 g of a nonionic surfactant (Nonipol 400, manufactured by Sanyo Kasei Co., Ltd.) and 10 anionic surfactant (Neogen R, manufactured by Daiichi Pharmaceutical Co., Ltd.)
g was dissolved in 550 g of ion-exchanged water in a flask, dispersed and emulsified, and 50 g of ion-exchanged water in which 4 g of ammonium persulfate was dissolved was added while slowly stirring and mixing for 10 minutes. After that, the inside of the system was thoroughly purged with nitrogen, and then stirred to 70% in an oil bath.
C. and the emulsion polymerization was continued for 5 hours. The resulting resin fine particle dispersion (3) is a fat fine particle dispersion.
When various properties were measured in the same manner as in (1), the number average particle diameter D 50n of the resin fine particles was 162 nm, the glass transition point was 59 ° C., and the weight average molecular weight was 135,000 .

【0049】樹脂微粒子分散液(4) の調製 スチレン 280重量部 nブチルアクリレート 120重量部 スチレンスルフォン酸ナトリウム 3重量部 上記成分を混合した溶液403gと、非イオン性界面活
性剤(三洋化成社製、ノニポール400)6g、及びア
ニオン性界面活性剤(第一製薬社製、ネオゲンR)10
gをイオン交換水550gに溶解した溶液をフラスコ中
に入れて分散、乳化し、10分間ゆっくりと攪拌・混合
しながら、過硫酸アンモニウム4gを溶解したイオン交
換水50gを投入した。その後、フラスコ内を窒素で充
分に置換してから攪拌しながらオイルバスで系内が70
℃になるまで加熱し、5時間そのまま乳化重合を継続し
た。得られた樹脂微粒子分散液(4) は、樹脂微粒子分散
液(1) と同様にして諸特性を測定したところ、樹脂微粒
子の個数平均粒子径D50n が120nm、ガラス転移点
が60℃、重量平均分子量が62万であった。
Preparation of Resin Fine Particle Dispersion (4) 280 parts by weight of styrene 120 parts by weight of n-butyl acrylate 3 parts by weight of sodium styrene sulfonate 403 g of a solution obtained by mixing the above components and a nonionic surfactant (manufactured by Sanyo Chemical Co., Ltd.) 6 g of Nonipol 400) and an anionic surfactant (Neogen R, manufactured by Daiichi Pharmaceutical Co., Ltd.) 10
g was dissolved in 550 g of ion-exchanged water in a flask, dispersed and emulsified, and 50 g of ion-exchanged water in which 4 g of ammonium persulfate was dissolved was added while slowly stirring and mixing for 10 minutes. After that, the inside of the system was thoroughly purged with nitrogen, and then stirred to 70% in an oil bath.
C. and the emulsion polymerization was continued for 5 hours. The obtained resin fine particle dispersion (4) was measured for various properties in the same manner as for the resin fine particle dispersion (1). The resin fine particles had a number average particle diameter D 50n of 120 nm, a glass transition point of 60 ° C, and a weight. The average molecular weight was 620,000.

【0050】樹脂微粒子分散液(5) の調製 樹脂微粒子分散液(1) の調製において、スチレンスルフ
ォン酸ナトリウムをアクリル酸に変更した以外は、樹脂
微粒子分散液(1) の調製法にしたがって重合を行った。
得られた樹脂微粒子分散液(5) は、樹脂微粒子分散液
(1) と同様にして諸特性を測定したところ、樹脂微粒子
の個数平均粒子径D50n が310nm、ガラス転移点が
60℃、重量平均分子量が15000であった。
Preparation of Resin Fine Particle Dispersion (5) Polymerization was carried out according to the method of preparing resin fine particle dispersion (1) except that sodium styrene sulfonate was changed to acrylic acid in the preparation of resin fine particle dispersion (1). went.
The obtained resin fine particle dispersion (5) is a resin fine particle dispersion.
When various properties were measured in the same manner as in (1), the number average particle diameter D 50n of the resin fine particles was 310 nm, the glass transition point was 60 ° C., and the weight average molecular weight was 15,000.

【0051】樹脂微粒子分散液(6) の調製 樹脂微粒子分散液(1) の調製において、スチレンスルフ
ォン酸ナトリウムをメタクリル酸に変更した以外は、樹
脂微粒子分散液(1) の調製法にしたがって重合を行っ
た。得られた樹脂微粒子分散液(6) は、樹脂微粒子分散
液(1) と同様にして諸特性を測定したところ、樹脂微粒
子の個数平均粒子径D50n が315nm、ガラス転移点
が59℃、重量平均分子量が13500であった。
Preparation of Resin Fine Particle Dispersion (6) Polymerization was carried out according to the method of preparing resin fine particle dispersion (1) except that sodium styrene sulfonate was changed to methacrylic acid in the preparation of resin fine particle dispersion (1). went. When the obtained resin fine particle dispersion (6) was measured for various properties in the same manner as the resin fine particle dispersion (1), the number average particle diameter D 50n of the resin fine particles was 315 nm, the glass transition point was 59 ° C, and the weight was 50%. The average molecular weight was 13,500.

【0052】着色剤分散液(1) の調製 カーボンブラック(キャボット社製、モーガルL) 50重量部 アニオン性界面活性剤(第一工業製薬社製、ネオゲンR) 5重量部 イオン交換水 200重量部 上記成分をホモジナイザー(LKA社製、ウルトラタラ
ックスT50)で10分間分散し、個数平均粒子径D
50n が250nmの黒色の着色剤分散液(1) を得た。
Preparation of Colorant Dispersion (1) 50 parts by weight of carbon black (manufactured by Cabot, Mogal L) 5 parts by weight of anionic surfactant (Neogen R, manufactured by Daiichi Kogyo Seiyaku) 200 parts by weight of ion-exchanged water The above components were dispersed with a homogenizer (trade name: Ultra Turrax T50, manufactured by LKA) for 10 minutes.
A colorant dispersion liquid (1) having a black color of 50 nm and a thickness of 250 nm was obtained.

【0053】着色剤分散液(2) の調製 フタロシアニン顔料 (バスフ社製、PB FAST BLUE9) 50重量部 アニオン性界面活性剤(第一工業製薬社製、ネオゲンR) 5重量部 イオン交換水 200重量部 上記成分をホモジナイザー(LKA社製、ウルトラタラ
ックスT50)で10分間分散し、さらに超音波照射器
(日本精機製作所製、RUS−600)で分散し、数平
均粒子径D50n が150nmの青色の着色剤分散液(2)
を得た。
Preparation of Colorant Dispersion (2) 50 parts by weight of phthalocyanine pigment (PB FAST BLUE9, manufactured by BASF Corp.) 5 parts by weight of anionic surfactant (Neogen R, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 200 parts by weight of ion-exchanged water Part The above components were dispersed with a homogenizer (manufactured by LKA, Ultra Turrax T50) for 10 minutes, and further dispersed with an ultrasonic irradiator (RUS-600, manufactured by Nippon Seiki Seisakusho), and the number average particle diameter D 50n was 150 nm blue. Colorant dispersion (2)
I got

【0054】着色剤分散液(3) の調製 黄色顔料(ヘキスト社製、Yellow80) 50重量部 アニオン性界面活性剤(第一工業製薬社製、ネオゲンR) 5重量部 イオン交換水 200重量部 上記成分をホモジナイザー(LKA社製、ウルトラタラ
ックスT50)で10分間分散し、さらに超音波照射器
(日本精機製作所製、RUS−600)で分散し、個数
平均粒子径D50n が150nmの黄色の着色剤分散液
(3) を得た。
Preparation of Colorant Dispersion (3) 50 parts by weight of yellow pigment (Yellow 80, manufactured by Hoechst) 5 parts by weight of anionic surfactant (Neogen R, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 200 parts by weight of ion-exchanged water The components were dispersed with a homogenizer (Ultra Turrax T50, manufactured by LKA) for 10 minutes, and further dispersed with an ultrasonic irradiator (RUS-600, manufactured by Nippon Seiki Seisakusho), and yellow colored with a number average particle diameter D 50n of 150 nm. Agent dispersion
(3) was obtained.

【0055】着色剤分散液(4) の調製 赤色顔料(大日精化社製、PR122) 50重量部 アニオン性界面活性剤(第一工業製薬社製、ネオゲンR) 5重量部 イオン交換水 200重量部 上記成分をホモジナイザー(LKA社製、ウルトラタラ
ックスT50)で10分間分散し、さらに超音波照射器
(日本精機製作所製、RUS−600)で分散し、個数
平均粒子径D50n が250nmの赤色の着色剤分散液
(4) を得た。
Preparation of Colorant Dispersion (4) 50 parts by weight of red pigment (PR122, manufactured by Dainichi Seika) 5 parts by weight of anionic surfactant (Neogen R, manufactured by Daiichi Kogyo Seiyaku) 200 parts by weight of ion-exchanged water Part The above components are dispersed for 10 minutes with a homogenizer (Ultra Turrax T50, manufactured by LKA), and further dispersed with an ultrasonic irradiator (RUS-600, manufactured by Nippon Seiki Seisakusho), and a red having a number average particle diameter D 50n of 250 nm. Colorant dispersion
(4) was obtained.

【0056】離型剤微粒子分散液(1) の調製 パラフィンワックス (日本精蝋社製、HNP0190、融点85℃) 50重量部 カチオン性界面活性剤(花王社製、サニゾールB50) 5重量部 イオン交換水 200重量部 上記成分をホモジナイザー(LKA社製、ウルトラタラ
ックスT50)で95℃に加熱しながら十分に分散した
後、超音波照射器(日本精機製作所製、RUS−60
0)で分散処理を行い、離型剤微粒子の個数平均粒子径
50n が550nmの離型剤微粒子分散液(1) を得た。
Preparation of release agent fine particle dispersion liquid (1) 50 parts by weight of paraffin wax (HNP0190, manufactured by Nippon Seiro, melting point 85 ° C.) 5 parts by weight of cationic surfactant (Sanisol B50, manufactured by Kao Corporation) Ion exchange 200 parts by weight of water The above components were sufficiently dispersed while heating to 95 ° C. with a homogenizer (manufactured by LKA, Ultra Turrax T50), and then an ultrasonic irradiator (RUS-60, manufactured by Nippon Seiki Seisaku-sho, Ltd.)
The dispersion treatment was performed in 0) to obtain a release agent fine particle dispersion liquid (1) having a number average particle diameter D 50n of the release agent fine particles of 550 nm.

【0057】 〔比較例1〕 樹脂微粒子分散液(3) 120重量部 樹脂微粒子分散液(4) 80重量部 着色剤分散液(1) 30重量部 離型剤分散液(1) 40重量部 カチオン性界面活性剤(花王社製、サニゾールB50) 1.5重量部 上記成分を丸型ステンレス製フラスコ中に入れてホモジ
ナイザー(LKA社製、ウルトラタラックスT50)で
十分に混合・分散した後、加熱用オイルバスでフラスコ
を攪拌しながら48℃まで加熱し、その温度で30分間
保持した後、さらに加熱用オイルバスの温度を50℃ま
で上げてその温度で1時間保持して凝集粒子を得た。
Comparative Example 1 Resin Fine Particle Dispersion (3) 120 parts by weight Resin Fine Particle Dispersion (4) 80 parts by weight Colorant Dispersion (1) 30 parts by weight Release Agent Dispersion (1) 40 parts by weight Cation 1.5 parts by weight of a surfactant (Sanisol B50, manufactured by Kao Corporation) The above components were placed in a round stainless steel flask, mixed and dispersed sufficiently with a homogenizer (manufactured by LKA, Ultra Turrax T50), and then heated. After heating the flask to 48 ° C. while stirring it in an oil bath for heating and holding at that temperature for 30 minutes, the temperature of the oil bath for heating was further raised to 50 ° C. and held at that temperature for 1 hour to obtain aggregated particles. .

【0058】この凝集粒子の個数平均粒子径D50n をコ
ールターカウンター(日科機社製、TAII)を用いて測
定したところ5.5μmであり、個数平均粒度分布指標
GSDnは1.27であった。ここで、個数平均粒子径
50n 及び個数平均粒度分布指標GSDnは、測定され
る粒度分布を分割された粒度範囲(チャネル)に対し、
小粒子径から累積分布を描き、個数累積16%となる粒
径を個数平均粒子径D 16n 、個数累積50%となる粒径
を個数平均粒径D50n 、個数累積84%となる粒径を個
数平均粒径D84n とし、この個数平均粒径の比(D84n
/D16n 1/2を個数平均粒度分布係数GSDnとし
た。
The number average particle diameter D of the aggregated particles50nThe
Measurement using a counter (TAII, manufactured by Nikkaki Co., Ltd.)
It was 5.5 μm when determined, and the number average particle size distribution index
GSDn was 1.27. Where the number average particle diameter
D50nAnd the number average particle size distribution index GSDn are measured
The particle size distribution is divided into
Particles whose cumulative distribution is drawn from small particle diameters and whose number is 16%
The diameter is the number average particle diameter D 16n, The particle size at which the number accumulation becomes 50%
Is the number average particle size D50n, The particle size with a cumulative number of 84%
Number average particle size D84nAnd the ratio of the number average particle diameter (D84n
/ D16n)1/2Is the number average particle size distribution coefficient GSDn.
Was.

【0059】この凝集粒子分散液にアニオン性界面活性
剤(第一製薬社製、ネオゲンR)3重量部を添加し、粒
子の凝集を止め、凝集粒子を安定化した後、ステンレス
製フラスコを密閉し、磁力シールを用いて攪拌を継続し
ながら97℃まで加熱し、3時間保持して凝集粒子を融
合させた。融合粒子の個数平均粒子径D50n をコールタ
ーカウンター(日科機社製、TAII)を用いて測定した
ところ5.5μmであり、個数平均粒度分布指標GSD
nは1.27であった。
After adding 3 parts by weight of an anionic surfactant (Neogen R, manufactured by Daiichi Pharmaceutical Co., Ltd.) to the aggregated particle dispersion to stop the aggregation of the particles and stabilize the aggregated particles, the stainless steel flask is sealed. Then, the mixture was heated to 97 ° C. while continuing stirring using a magnetic seal, and kept for 3 hours to fuse the aggregated particles. When the number average particle diameter D 50n of the fused particles was measured using a Coulter counter (TAII manufactured by Nikkaki Co., Ltd.), it was 5.5 μm, and the number average particle size distribution index GSD was found.
n was 1.27.

【0060】この融合粒子を冷却した後、ろ過し、pH
6.5のイオン交換水で充分洗浄し、凍結乾燥機で乾燥
し、得られたトナー粒子の含水率を水分率計(サルトリ
ウス社製、MA30)で測定したところ0.55%であ
った。また、トナー粒子の個数平均粒子径D50n をコー
ルターカウンター(日科機社製、TAII)を用いて測定
したところ5.5μmであり、個数平均粒度分布指標G
SDnは1.27であった。
After cooling the fused particles, the particles were filtered,
After sufficiently washing with 6.5 ion-exchanged water and drying with a freeze dryer, the water content of the obtained toner particles was measured by a water content meter (MA30, manufactured by Sartorius) and found to be 0.55%. When the number average particle diameter D 50n of the toner particles was measured using a Coulter counter (TAII, manufactured by Nikkaki Co., Ltd.), it was 5.5 μm.
SDn was 1.27.

【0061】また、電子顕微鏡でトナー粒子の表面状態
を観察すると、粒子表面に樹脂微粒子が融着した連続層
が確認された。また、透過型電子顕微鏡でトナー断面を
観察すると、表層への顔料の露出はほとんど認められな
かった。さらに、ルーゼックス画像解析装置(ニコレ社
製、LUZEXIII )を用い、100個のトナーの周囲
長(ML)及び投影面積(A)を測定し、(ML2
A)×(1/4π)×100を計算し、形状係数SF1
の平均値を求めたところ125であった。
When the surface state of the toner particles was observed with an electron microscope, a continuous layer in which resin fine particles were fused to the particle surface was confirmed. When the cross section of the toner was observed with a transmission electron microscope, almost no exposure of the pigment to the surface layer was observed. Further, the circumference length (ML) and the projected area (A) of 100 toners were measured using a Luzex image analyzer (LUZEXIII, manufactured by Nicolet), and (ML 2 /
A) × (1 / 4π) × 100 is calculated and the shape factor SF1
Was 125 when the average value was determined.

【0062】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−1.0μC/g、低温
低湿環境の帯電量は−12.0μC/gといずれも低い
帯電特性を示し、かつその環境依存指数(28℃、85
%RHでのQ/M)/(10℃、30%RHでのQ/
M)は0.08と低い値を示し、環境依存性に問題があ
ることが分かった。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high-temperature and high-humidity environment was -1.0 μC / g, and the charge amount in a low-temperature and low-humidity environment was -12.0 μC / g. It shows low charging characteristics and its environment-dependent index (28 ° C., 85
Q / M at% RH) / (Q / M at 10 ° C, 30% RH)
M) was as low as 0.08, indicating a problem with the environment.

【0063】さらに、このトナー粒子の残留界面活性剤
量を次の方法で求め、その合計量を残留界面活性剤量と
した。また、下記に示すテトラチオシアノコバルト酸法
での定量値を残留非イオン性界面活性剤量とした。ま
ず、トナー粒子1gを6gのアセトン中に投入し、トナ
ー粒子の結着樹脂成分をいったん溶解し、トナー表面及
び内部の界面活性剤をアセトン中に抽出した後、このア
セトン溶液50gにイオン交換水を添加して再び結着樹
脂を析出せしめ、結着樹脂成分、顔料粒子等の不溶物を
ろ過して取り除き、アセトン/イオン交換水ろ液からエ
バポレーターでアセトンを除去した後、エタノールを加
え95%エタノール溶液を作製した。
Further, the residual surfactant amount of the toner particles was determined by the following method, and the total amount was defined as the residual surfactant amount. In addition, the quantitative value by the tetrathiocyanocobaltic acid method shown below was defined as the residual nonionic surfactant amount. First, 1 g of toner particles is put into 6 g of acetone, a binder resin component of the toner particles is once dissolved, and a surfactant on the toner surface and inside is extracted into acetone. Was added to precipitate a binder resin again. Insoluble matters such as a binder resin component and pigment particles were removed by filtration, and acetone was removed from the acetone / ion-exchanged water filtrate by an evaporator. An ethanol solution was prepared.

【0064】その後、このエタノール溶液を陽イオン交
換体、陰イオン交換体を順次トラップさせ、それぞれの
イオン交換体を2NのHCl溶液で洗い流した後、陰イ
オンはブロモクレゾールグリーンキニーネ法で呈色さ
せ、610nmの吸光度により、陽イオンはエチルバイ
オレット法で呈色させ、611nmの吸光度にて定量し
た。さらに、上記イオン交換体を順次通過した95%エ
タノール溶液をテトラチオシアノコバルト酸法で呈色さ
せ、322nmの吸光度でノニオン界面活性剤を定量し
た(定量限界は10ppm)。以上の方法で得られたア
ニオン、カチオン及びノニオン界面活性剤の合計量は
1.5重量%であった。また、このうち、非イオン性の
界面活性剤量は10000ppmであった。
Thereafter, the cation exchanger and the anion exchanger were sequentially trapped in the ethanol solution, and each ion exchanger was washed away with a 2N HCl solution, and then the anions were colored by the bromocresol green quinine method. The cations were colored by the ethyl violet method based on the absorbance at 610 nm and quantified by the absorbance at 611 nm. Further, the 95% ethanol solution which had passed through the above ion exchanger was colored by the tetrathiocyanocobaltic acid method, and the nonionic surfactant was quantified by the absorbance at 322 nm (quantification limit was 10 ppm). The total amount of the anion, cation and nonionic surfactant obtained by the above method was 1.5% by weight. The amount of the nonionic surfactant was 10,000 ppm.

【0065】さらに、このトナー粒子100gに対し、
疎水性シリカ(キャボット社製、TS720)を0.4
3g添加してサンプルミルで混合して添加した。そし
て、メタアクリレート(総研化学社製)を1%コートし
た平均粒径50μmのフェライトキャリアに対し、トナ
ー濃度が5%になるように上記の外添トナーを秤量し、
ボールミルで5分間攪拌・混合して現像剤を調整した。
この現像剤を高温高湿環境(28℃、85%RH)及び
低温低湿環境(10℃、30%RH)の下で富士ゼロッ
クス社製V500改造複写機でそれぞれ10000枚の
複写試験を行い、画質評価を行った。その結果、両環境
とも著しいかぶりが発生し、トナーの飛散が観察され、
かつ著しい画質の低下が認められた。
Further, with respect to 100 g of the toner particles,
Hydrophobic silica (TS720, manufactured by Cabot Corporation)
3 g was added and mixed by a sample mill and added. Then, the externally added toner was weighed to a ferrite carrier having an average particle size of 50 μm coated with 1% of methacrylate (manufactured by Soken Chemical Co., Ltd.) so that the toner concentration was 5%.
The mixture was stirred and mixed with a ball mill for 5 minutes to prepare a developer.
This developer was subjected to a copying test of 10,000 sheets each in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature, low-humidity environment (10 ° C., 30% RH) using a Fuji Xerox V500 modified copier. An evaluation was performed. As a result, remarkable fogging occurs in both environments, scattering of toner is observed,
In addition, a remarkable decrease in image quality was observed.

【0066】 〔実施例1〕 樹脂微粒子分散液(1) 120重量部 樹脂微粒子分散液(2) 80重量部 着色剤分散液(1) 30重量部 離型剤分散液(1) 40重量部 ポリ塩化アルミニウム(浅田化学社製、PAC100W) 0.4重量部 上記成分を丸型ステンレス製フラスコ中に入れてホモジ
ナイザー(LKA社製、ウルトラタラックスT50)で
十分に混合・分散した後、加熱用オイルバスでフラスコ
を攪拌しながら48℃まで加熱し、その温度で30分間
保持した後、加熱用オイルバスの温度を上げて50℃で
1時間保持して凝集粒子を得た。
[Example 1] Resin fine particle dispersion (1) 120 parts by weight Resin fine particle dispersion (2) 80 parts by weight Colorant dispersion (1) 30 parts by weight Release agent dispersion (1) 40 parts by weight Poly 0.4 parts by weight of aluminum chloride (PAC100W, manufactured by Asada Chemical Co., Ltd.) The above components were placed in a round stainless steel flask, thoroughly mixed and dispersed with a homogenizer (manufactured by LKA, Ultra Turrax T50), and then heated. The flask was heated to 48 ° C. with stirring in a bath, kept at that temperature for 30 minutes, and then the temperature of the heating oil bath was raised and kept at 50 ° C. for 1 hour to obtain aggregated particles.

【0067】この凝集粒子の個数平均粒子径D50n をコ
ールターカウンター(日科機社製、TAII)を用いてを
測定すると5.5μmであり、個数平均粒度分布指標G
SDnは1.25であった。この凝集粒子分散液にアニ
オン性界面活性剤(第一製薬社製、ネオゲンR)を3重
量部添加し、粒子の凝集を止めて凝集粒子を安定化させ
た後、ステンレス製フラスコを密閉し、磁力シールを用
いて攪拌を継続しながら97℃まで昇温して3時間保持
し、凝集粒子を加熱融合した。融合粒子の個数平均粒子
径D50n を上記のコールターカウンターで測定したとこ
ろ5.5μmであり、個数平均粒度分布指標GSDnは
1.25であった。
When the number average particle diameter D 50n of the aggregated particles was measured using a Coulter counter (TAII, manufactured by Nikkaki Co., Ltd.), it was 5.5 μm.
SDn was 1.25. After adding 3 parts by weight of an anionic surfactant (manufactured by Daiichi Pharmaceutical Co., Ltd., Neogen R) to the aggregated particle dispersion to stabilize the aggregated particles by stopping the aggregation of the particles, the stainless steel flask was sealed, The temperature was raised to 97 ° C. and maintained for 3 hours while stirring was continued using a magnetic seal, and the aggregated particles were fused by heating. The number average particle diameter D 50n of the fused particles was measured by the above-mentioned Coulter counter, and was 5.5 μm, and the number average particle size distribution index GSDn was 1.25.

【0068】この融合粒子をpH6.5のイオン交換水
で十分洗浄した後、凍結乾燥を行いトナー粒子を得た。
その含水率を測定すると0.50%であった。電子顕微
鏡でトナー粒子の表面状態を観察すると、樹脂微粒子、
着色剤及び離型剤からなるコア粒子表面に樹脂微粒子が
融着して連続層を形成していることが確認された。ま
た、透過型電子顕微鏡でトナー断面を観察すると、トナ
ー表層への顔料の露出はほとんど認められなかった。さ
らに、上記のルーゼックス画像解析装置を用い、比較例
1と同様にして形状係数SF1を測定したところ125
であった。
After the fused particles were sufficiently washed with ion-exchanged water having a pH of 6.5, they were freeze-dried to obtain toner particles.
The measured water content was 0.50%. When observing the surface state of the toner particles with an electron microscope, resin fine particles,
It was confirmed that the resin fine particles were fused to the surface of the core particles composed of the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, the shape factor SF1 was measured in the same manner as in Comparative Example 1 using the above-mentioned Luzex image analysis apparatus.
Met.

【0069】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−18.0μC/g、低
温低湿環境の帯電量は−24.0μC/gと良好な帯電
特性を示し、かつ、その環境依存指数は0.75と高い
値を示し、環境依存性に優れていることが分かった。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high-temperature and high-humidity environment was −18.0 μC / g, and the charge amount in a low-temperature and low-humidity environment was −24.0 μC / g. It shows charging characteristics and its environment-dependent index is as high as 0.75, indicating that it has excellent environment-dependency.

【0070】また、比較例1と同様の方法でトナー粒子
中に残存する界面活性剤の定量を行ったところ、界面活
性剤の合計量は0.5重量%であり、非イオン性の界面
活性剤量は測定限界の10ppm以下であった。さら
に、このトナー粒子を比較例1と同様に疎水性シリカを
配合し、サンプルミルで混合して添加した。そして、比
較例1と同じコートキャリアを用いて同様に現像剤を調
整した。この現像剤を高温高湿環境(28℃、85%R
H)及び低温低湿環境(10℃、30%RH)の下で富
士ゼロックス社製V500改造複写機でそれぞれ100
00枚の複写試験を行い、画質評価を行った。その結
果、両環境ともかぶりの発生や、トナーの飛散はほとん
ど観察されず、ほぼ良好な画像特性が認められた。
When the amount of the surfactant remaining in the toner particles was determined in the same manner as in Comparative Example 1, the total amount of the surfactant was 0.5% by weight. The amount of the agent was below the measurement limit of 10 ppm. The toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1 and mixed with a sample mill and added. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% R
H) and a low-temperature, low-humidity environment (10 ° C., 30% RH), 100
A copy test of 00 sheets was performed to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0071】 〔実施例2〕 樹脂微粒子分散液(1) 120重量部 樹脂微粒子分散液(2) 80重量部 着色剤分散液(2) 30重量部 離型剤分散液(1) 40重量部 ポリ塩化アルミニウム(浅田化学社製、PAC100W) 0.4重量部 上記成分を丸型ステンレス製フラスコ中に入れてホモジ
ナイザー(LKA社製、ウルトラタラックスT50)で
十分に混合・分散した後、加熱用オイルバスでフラスコ
を攪拌しながら50℃まで加熱し、その温度で1時間凝
集させた後、50℃における凝集粒子分散液のpHを測
定したところ3.5であった。この分散液に1NのNa
OH水溶液を添加して50℃におけるpHを10に調製
した後、この凝集粒子分散液270重量部にアニオン性
界面活性剤(第一製薬社製、ネオゲンR)3重量部を添
加し、粒子の凝集を止め、凝集粒子を安定化した後、ス
テンレス製フラスコを密閉し、磁力シールを用いて攪拌
を継続しながら97℃まで加熱し、6時間保持して凝集
粒子を融合させた。融合粒子の個数平均粒径D50nを測
定したところ5.3μmであり、個数平均粒度分布係数
指標GSDnは1.22であった。
Example 2 Resin Fine Particle Dispersion (1) 120 parts by weight Resin Fine Particle Dispersion (2) 80 parts by weight Colorant Dispersion (2) 30 parts by weight Release Agent Dispersion (1) 40 parts by weight Poly 0.4 parts by weight of aluminum chloride (PAC100W, manufactured by Asada Chemical Co., Ltd.) The above components were placed in a round stainless steel flask, thoroughly mixed and dispersed with a homogenizer (manufactured by LKA, Ultra Turrax T50), and then heated. The flask was heated to 50 ° C. while stirring in a bath, and coagulated at that temperature for 1 hour. The pH of the aggregated particle dispersion at 50 ° C. was measured to be 3.5. 1N Na
After adjusting the pH at 50 ° C. to 10 by adding an OH aqueous solution, 3 parts by weight of an anionic surfactant (Neogen R, manufactured by Daiichi Pharmaceutical Co., Ltd.) was added to 270 parts by weight of the aggregated particle dispersion, After stopping the aggregation and stabilizing the aggregated particles, the stainless steel flask was sealed and heated to 97 ° C. while stirring with a magnetic seal, and held for 6 hours to fuse the aggregated particles. When the number average particle diameter D 50n of the fused particles was measured, it was 5.3 μm, and the number average particle size distribution coefficient index GSDn was 1.22.

【0072】この融合粒子をpH10のNaOHアルカ
リ水で十分洗浄し、さらにpH3の硝酸酸性水で洗浄
し、最後にpH6.5のイオン水で十分に洗浄した後、
凍結乾燥を行いトナー粒子を得た。その含水率を測定す
ると0.49%であった。電子顕微鏡でトナー粒子の表
面状態を観察すると、樹脂微粒子、着色剤及び離型剤か
らなるコア粒子表面に樹脂微粒子が融着して連続層を形
成していることが確認された。また、透過型電子顕微鏡
でトナー断面を観察すると、トナー表層への顔料の露出
はほとんど認められなかった。さらに上記のルーゼック
ス画像解析装置を用い、比較例1と同様にして形状係数
SF1を測定したところ120であった。さらに、実施
例1と同様にして求めた残留界面活性剤合計量は0.1
重量%であり、非イオン性界面活性剤量は10ppm以
下であった。
The fused particles were sufficiently washed with an alkaline aqueous solution of NaOH at a pH of 10, further washed with an acidified aqueous solution of nitric acid at a pH of 3 and finally washed with ionic water at a pH of 6.5.
Lyophilization was performed to obtain toner particles. The measured water content was 0.49%. Observation of the surface state of the toner particles with an electron microscope confirmed that the resin fine particles were fused to the surface of the core particle composed of the resin fine particles, the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, when the shape factor SF1 was measured in the same manner as in Comparative Example 1 using the above-mentioned Luzex image analyzer, it was 120. Further, the total amount of residual surfactant obtained in the same manner as in Example 1 was 0.1
% By weight, and the amount of the nonionic surfactant was 10 ppm or less.

【0073】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−25.0μC/g、低
温低湿環境の帯電量は−27.0μC/gといずれも良
好な帯電特性を示し、かつその環境依存指数は0.93
と高い値を示し、環境依存性に優れていることが分かっ
た。
Using the above-mentioned toner particles, each was left for 12 hours in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) without adding external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high-temperature and high-humidity environment was −25.0 μC / g, and the charge amount in a low-temperature and low-humidity environment was −27.0 μC / g. Shows good charging characteristics and has an environment-dependent index of 0.93.
And a high value, which proved to be excellent in environmental dependency.

【0074】さらに、このトナー粒子を比較例1と同様
に疎水性シリカを配合し、サンプルミルで混合して添加
した。そして、比較例1と同じコートキャリアを用いて
同様に現像剤を調整した。この現像剤を高温高湿環境
(28℃、85%RH)及び低温低湿環境(10℃、3
0%RH)の下で富士ゼロックス社製V500改造複写
機でそれぞれ10000枚の複写試験を行い、画質評価
を行った。その結果、両環境ともかぶりの発生や、トナ
ーの飛散はほとんど観察されず、ほぼ良好な画像特性が
認められた。
Further, the toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1, and mixed and added by a sample mill. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 3
(0% RH), a copy test of 10,000 sheets was performed on each of the modified copy machines manufactured by Fuji Xerox Co., Ltd. to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0075】 〔実施例3〕 樹脂微粒子分散液(1) 120重量部 樹脂微粒子分散液(2) 80重量部 着色剤分散液(3) 30重量部 離型剤分散液(1) 40重量部 ポリ塩化アルミニウム(浅田化学社製、PAC100W) 0.4重量部 上記成分を丸型ステンレス製フラスコ中に入れてホモジ
ナイザー(LKA社製、ウルトラタラックス製T50)
で充分に混合・分散し、50℃で1時間凝集を行った。
そのときの50℃における凝集粒子分散液のpHを測定
したところ3.5であった。この凝集粒子分散液に1N
のNaOH水溶液を添加して50℃におけるpHを10
に調整した後、実施例1と同様に97℃まで加熱し、加
熱時間を6時間から8時間に変更して融合粒子を得た。
融合粒子の個数平均粒子径D50nは上記のコールターカ
ウンターで測定したところ5.2μmであり、個数平均
粒度分布指標GSDnは1.24であった。
Example 3 Resin Fine Particle Dispersion (1) 120 parts by weight Resin Fine Particle Dispersion (2) 80 parts by weight Colorant Dispersion (3) 30 parts by weight Release Agent Dispersion (1) 40 parts by weight Poly 0.4 parts by weight of aluminum chloride (PAC100W, manufactured by Asada Chemical Co., Ltd.) The above components are placed in a round stainless steel flask and homogenized (L50, manufactured by LKA, T50 manufactured by Ultra Turrax).
And sufficiently coagulated at 50 ° C. for 1 hour.
At that time, the pH of the aggregated particle dispersion at 50 ° C. was measured, and it was 3.5. 1N is added to this aggregated particle dispersion.
NaOH aqueous solution was added to adjust the pH at 50 ° C to 10
Then, the mixture was heated to 97 ° C. as in Example 1, and the heating time was changed from 6 hours to 8 hours to obtain fused particles.
The number average particle diameter D 50n of the fused particles was 5.2 μm as measured by the above Coulter counter, and the number average particle size distribution index GSDn was 1.24.

【0076】この融合粒子をpH10のNaOHアルカ
リ水で十分洗浄し、さらにpH3の硝酸酸性水で洗浄
し、最後にpH6.5のイオン水で十分に洗浄した後、
凍結乾燥を行いトナー粒子を得た。その含水率を測定す
ると0.50%であった。電子顕微鏡でトナー粒子の表
面状態を観察すると、樹脂微粒子、着色剤及び離型剤か
らなるコア粒子表面に樹脂微粒子が融着して連続層を形
成していることが確認された。また、透過型電子顕微鏡
でトナー断面を観察すると、トナー表層への顔料の露出
はほとんど認められなかった。さらに、上記のルーゼッ
クス画像解析装置を用い、比較例1と同様にして形状係
数SF1を測定したところ115であった。さらに、実
施例1と同様にして求めた残留界面活性剤合計量は0.
2重量%であり、非イオン性界面活性剤量は測定限界の
10ppm以下であった。
After washing the fused particles sufficiently with NaOH alkaline water at pH 10, further washing with acidic nitric acid at pH 3, and finally with ionic water at pH 6.5,
Lyophilization was performed to obtain toner particles. The measured water content was 0.50%. Observation of the surface state of the toner particles with an electron microscope confirmed that the resin fine particles were fused to the surface of the core particle composed of the resin fine particles, the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, the shape factor SF1 was measured using the above-mentioned Luzex image analyzer in the same manner as in Comparative Example 1, and it was 115. Further, the total amount of the residual surfactant obtained in the same manner as in Example 1 was 0.1.
It was 2% by weight, and the amount of the nonionic surfactant was 10 ppm or less, which was the measurement limit.

【0077】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−24.0μC/g、低
温低湿環境の帯電量は−26.0μC/gといずれも良
好な帯電特性を示し、かつその環境依存指数は0.92
と高い値を示し、環境依存性に優れていることが分かっ
た。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high-temperature and high-humidity environment was −24.0 μC / g, and the charge amount in a low-temperature and low-humidity environment was −26.0 μC / g. Exhibits good charging characteristics and has an environment-dependent index of 0.92
And a high value, which proved to be excellent in environmental dependency.

【0078】さらに、このトナー粒子を比較例1と同様
に疎水性シリカを配合し、サンプルミルで混合して添加
した。そして、比較例1と同じコートキャリアを用いて
同様に現像剤を調整した。この現像剤を高温高湿環境
(28℃、85%RH)及び低温低湿環境(10℃、3
0%RH)の下で富士ゼロックス社製V500改造複写
機でそれぞれ10000枚の複写試験を行い、画質評価
を行った。その結果、両環境ともかぶりの発生や、トナ
ーの飛散はほとんど観察されず、ほぼ良好な画像特性が
認められた。
Further, the toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1, and mixed and added by a sample mill. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 3
(0% RH), a copy test of 10,000 sheets was performed on each of the modified copy machines manufactured by Fuji Xerox Co., Ltd. to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0079】 〔実施例4〕 樹脂微粒子分散液(1) 120重量部 樹脂微粒子分散液(2) 80重量部 着色剤分散液(4) 30重量部 離型剤分散液(1) 40重量部 ポリ塩化アルミニウム(浅田化学社製、PAC100W) 0.4重量部 上記成分を丸型ステンレス製フラスコ中に入れてホモジ
ナイザー(LKA社製、ウルトラタラックス製T50)
で充分に混合・分散し、50℃で1時間凝集を行った。
そのときの50℃における凝集粒子分散液のpHを測定
したところ3.5であった。この凝集粒子分散液に1N
のNaOH水溶液を添加して50℃におけるpHを10
に調整した後、95℃まで加熱し、加熱時間を6時間に
して融合粒子を得た。融合粒子の個数平均粒子径D50n
は上記のコールターカウンターで測定したところ5.5
μmであり、個数平均粒度分布指標GSDnは1.23
であった。
Example 4 Resin Fine Particle Dispersion (1) 120 parts by weight Resin Fine Particle Dispersion (2) 80 parts by weight Colorant Dispersion (4) 30 parts by weight Release Agent Dispersion (1) 40 parts by weight Poly 0.4 parts by weight of aluminum chloride (PAC100W, manufactured by Asada Chemical Co., Ltd.) The above components are placed in a round stainless steel flask and homogenized (L50, manufactured by LKA, T50 manufactured by Ultra Turrax).
And sufficiently coagulated at 50 ° C. for 1 hour.
At that time, the pH of the aggregated particle dispersion at 50 ° C. was measured, and it was 3.5. 1N is added to this aggregated particle dispersion.
NaOH aqueous solution was added to adjust the pH at 50 ° C to 10
Then, the mixture was heated to 95 ° C., and the heating time was set to 6 hours to obtain fused particles. Number average particle diameter D 50n of fused particles
Was 5.5 as measured by the above Coulter counter.
μm, and the number average particle size distribution index GSDn is 1.23.
Met.

【0080】この融合粒子をpH10のNaOHアルカ
リ水で十分洗浄し、さらにpH3の硝酸酸性水で洗浄
し、最後にpH6.5のイオン水で十分に洗浄した後、
凍結乾燥を行いトナー粒子を得た。その含水率を測定す
ると0.49%であった。電子顕微鏡でトナー粒子の表
面状態を観察すると、樹脂微粒子、着色剤及び離型剤か
らなるコア粒子表面に樹脂微粒子が融着して連続層を形
成していることが確認された。また、透過型電子顕微鏡
でトナー断面を観察すると、トナー表層への顔料の露出
はほとんど認められなかった。さらに、上記のルーゼッ
クス画像解析装置を用い、比較例1と同様にして形状係
数SF1を測定したところ135であった。さらに、実
施例1と同様にして求めた残留界面活性剤量の合計量は
0.1重量%であり、非イオン性界面活性剤量は測定限
界の10ppm以下であった。
The fused particles were sufficiently washed with an alkaline aqueous solution of NaOH at a pH of 10, further washed with an acidified aqueous solution of nitric acid at a pH of 3 and finally washed with ionic water at a pH of 6.5.
Lyophilization was performed to obtain toner particles. The measured water content was 0.49%. Observation of the surface state of the toner particles with an electron microscope confirmed that the resin fine particles were fused to the surface of the core particle composed of the resin fine particles, the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, the shape factor SF1 was measured using the above-described Luzex image analyzer in the same manner as in Comparative Example 1, and was 135. Furthermore, the total amount of the residual surfactant determined in the same manner as in Example 1 was 0.1% by weight, and the amount of the nonionic surfactant was 10 ppm or less, which is the measurement limit.

【0081】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−27.0μC/g、低
温低湿環境の帯電量は−30.0μC/gといずれも良
好な帯電特性を示し、かつその環境依存指数は0.90
と高い値を示し、環境依存性に優れていることが分かっ
た。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high-temperature and high-humidity environment was −27.0 μC / g, and the charge amount in a low-temperature and low-humidity environment was −30.0 μC / g. It shows good charging characteristics and has an environment-dependent index of 0.90.
And a high value, which proved to be excellent in environmental dependency.

【0082】さらに、このトナー粒子を比較例1と同様
に疎水性シリカを配合し、サンプルミルで混合して添加
した。そして、比較例1と同じコートキャリアを用いて
同様に現像剤を調整した。この現像剤を高温高湿環境
(28℃、85%RH)及び低温低湿環境(10℃、3
0%RH)の下で富士ゼロックス社製V500改造複写
機でそれぞれ10000枚の複写試験を行い、画質評価
を行った。その結果、両環境ともかぶりの発生や、トナ
ーの飛散はほとんど観察されず、ほぼ良好な画像特性が
認められた。
Further, the toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1, and mixed and added by a sample mill. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 3
(0% RH), a copy test of 10,000 sheets was performed on each of the modified copy machines manufactured by Fuji Xerox Co., Ltd. to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0083】〔実施例5〕実施例1において使用した樹
脂微粒子分散液(1) を樹脂微粒子分散液(5) に変更した
以外は、実施例1と同様にして凝集し融合粒子を得た。
この融合粒子の個数平均粒子径D50n を上記のコールタ
ーカウンターで測定したところ5.1μmであり、個数
平均粒度分布指標GSDnは1.23であった。
Example 5 Coagulated particles were obtained in the same manner as in Example 1 except that the resin fine particle dispersion (1) used in Example 1 was changed to the resin fine particle dispersion (5).
The number average particle diameter D 50n of the fused particles was 5.1 μm as measured by the Coulter counter, and the number average particle size distribution index GSDn was 1.23.

【0084】この融合粒子をpH10のNaOHアルカ
リ水で十分洗浄し、さらにpH3の硝酸酸性水で洗浄
し、最後にpH6.5のイオン水で十分に洗浄した後、
凍結乾燥を行いトナー粒子を得た。その含水率を測定す
ると0.48%であった。電子顕微鏡でトナー粒子の表
面状態を観察すると、樹脂微粒子、着色剤及び離型剤か
らなるコア粒子表面に樹脂微粒子が融着して連続層を形
成していることが確認された。また、透過型電子顕微鏡
でトナー断面を観察すると、トナー表層への顔料の露出
はほとんど認められなかった。さらに上記のルーゼック
ス画像解析装置を用い、比較例1と同様にして形状係数
SF1を測定したところ120であった。さらに、実施
例1と同様にして求めた残留界面活性剤合計量は0.5
重量%であり、非イオン性界面活性剤量は10ppm以
下であった。
The fused particles were sufficiently washed with an alkaline aqueous solution of NaOH at a pH of 10, further washed with an acidified aqueous solution of nitric acid at a pH of 3 and finally washed with ionic water at a pH of 6.5.
Lyophilization was performed to obtain toner particles. The measured water content was 0.48%. Observation of the surface state of the toner particles with an electron microscope confirmed that the resin fine particles were fused to the surface of the core particle composed of the resin fine particles, the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, when the shape factor SF1 was measured in the same manner as in Comparative Example 1 using the above-mentioned Luzex image analyzer, it was 120. Further, the total amount of the residual surfactant obtained in the same manner as in Example 1 was 0.5
% By weight, and the amount of the nonionic surfactant was 10 ppm or less.

【0085】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−25.0μC/g、低
温低湿環境の帯電量は−28.0μC/gといずれも良
好な帯電特性を示し、かつその環境依存指数は0.89
と高い値を示し、環境依存性に優れていることが分かっ
た。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high temperature and high humidity environment was −25.0 μC / g, and the charge amount in a low temperature and low humidity environment was −28.0 μC / g. Exhibits good charging characteristics and has an environment-dependent index of 0.89
And a high value, which proved to be excellent in environmental dependency.

【0086】さらに、このトナー粒子を比較例1と同様
に疎水性シリカを配合し、サンプルミルで混合して添加
した。そして、比較例1と同じコートキャリアを用いて
同様に現像剤を調整した。この現像剤を高温高湿環境
(28℃、85%RH)及び低温低湿環境(10℃、3
0%RH)の下で富士ゼロックス社製V500改造複写
機でそれぞれ10000枚の複写試験を行い、画質評価
を行った。その結果、両環境ともかぶりの発生や、トナ
ーの飛散はほとんど観察されず、ほぼ良好な画像特性が
認められた。
Further, the toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1, and mixed and added by a sample mill. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 3
(0% RH), a copy test of 10,000 sheets was performed on each of the modified copy machines manufactured by Fuji Xerox Co., Ltd. to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0087】〔実施例6〕実施例1において使用した樹
脂微粒子分散液(1) を樹脂微粒子分散液(6) に変更した
以外は、実施例1と同様にして凝集し融合粒子を得た。
この融合粒子の個数平均粒子径D50n を上記のコールタ
ーカウンターで測定したところ5.2μmであり、個数
平均粒度分布指標GSDnは1.23であった。
Example 6 Coagulated particles were obtained in the same manner as in Example 1 except that the resin fine particle dispersion (1) used in Example 1 was changed to the resin fine particle dispersion (6).
The number average particle size D 50n of the fused particles was measured by the above-mentioned Coulter counter, and was 5.2 μm, and the number average particle size distribution index GSDn was 1.23.

【0088】この融合粒子をpH10のNaOHアルカ
リ水で十分洗浄し、さらにpH3の硝酸酸性水で洗浄
し、最後にpH6.5のイオン水で十分に洗浄した後、
凍結乾燥を行いトナー粒子を得た。その含水率を測定す
ると0.47%であった。電子顕微鏡でトナー粒子の表
面状態を観察すると、樹脂微粒子、着色剤及び離型剤か
らなるコア粒子表面に樹脂微粒子が融着して連続層を形
成していることが確認された。また、透過型電子顕微鏡
でトナー断面を観察すると、トナー表層への顔料の露出
はほとんど認められなかった。さらに上記のルーゼック
ス画像解析装置を用い、比較例1と同様にして形状係数
SF1を測定したところ120であった。さらに、実施
例1と同様にして求めた残留界面活性剤合計量は0.5
重量%であり、非イオン性界面活性剤量は10ppm以
下であった。
After washing the fused particles sufficiently with NaOH alkaline water at pH 10, further washing with acidic nitric acid at pH 3, and finally with ionic water at pH 6.5,
Lyophilization was performed to obtain toner particles. The measured water content was 0.47%. Observation of the surface state of the toner particles with an electron microscope confirmed that the resin fine particles were fused to the surface of the core particle composed of the resin fine particles, the colorant and the release agent to form a continuous layer. When the cross section of the toner was observed with a transmission electron microscope, the exposure of the pigment to the toner surface layer was hardly observed. Further, when the shape factor SF1 was measured in the same manner as in Comparative Example 1 using the above-mentioned Luzex image analyzer, it was 120. Further, the total amount of the residual surfactant obtained in the same manner as in Example 1 was 0.5
% By weight, and the amount of the nonionic surfactant was 10 ppm or less.

【0089】上記のトナー粒子を用い、外添剤を添加せ
ずに高温高湿環境(28℃、85%RH)、及び、低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−25.0μC/g、低
温低湿環境の帯電量は−29.0μC/gといずれも良
好な帯電特性を示し、かつその環境依存指数は0.86
と高い値を示し、環境依存性に優れていることが分かっ
た。
Using the above toner particles, each was left for 12 hours in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 30% RH) without adding any external additives. Thereafter, when the charge amount (μC / g) was measured, the charge amount (Q / M) in a high temperature and high humidity environment was −25.0 μC / g, and the charge amount in a low temperature and low humidity environment was −29.0 μC / g. Exhibits good charging characteristics and has an environment-dependent index of 0.86
And a high value, which proved to be excellent in environmental dependency.

【0090】さらに、このトナー粒子を比較例1と同様
に疎水性シリカを配合し、サンプルミルで混合して添加
した。そして、比較例1と同じコートキャリアを用いて
同様に現像剤を調整した。この現像剤を高温高湿環境
(28℃、85%RH)及び低温低湿環境(10℃、3
0%RH)の下で富士ゼロックス社製V500改造複写
機でそれぞれ10000枚の複写試験を行い、画質評価
を行った。その結果、両環境ともかぶりの発生や、トナ
ーの飛散はほとんど観察されず、ほぼ良好な画像特性が
認められた。
Further, the toner particles were mixed with hydrophobic silica in the same manner as in Comparative Example 1, and mixed and added by a sample mill. Then, the developer was similarly adjusted using the same coat carrier as in Comparative Example 1. This developer is used in a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C., 3
(0% RH), a copy test of 10,000 copies was performed with a V500 modified copier manufactured by Fuji Xerox Co., Ltd. to evaluate the image quality. As a result, fogging and toner scattering were hardly observed in both environments, and almost excellent image characteristics were recognized.

【0091】[0091]

【表1】 [Table 1]

【0092】表1の比較例と実施例を対比すると明らか
なように、実施例では、乳化重合凝集法におけるトナー
中に残留する界面活性剤の合計量を1.0重量%以下に
抑制し、かつ特に非イオン性界面活性剤量を100pp
m以下に抑制することができ、かつ、個数平均粒度分布
指標GSDnを1.26以下のシャープな粒度分布を確
保でき、その結果、優れた帯電性、環境依存性、優れた
粒度分布と帯電特性のバランスを有し、優れた画質特性
を有する静電荷像現像用トナーを提供できることが確認
された。
As is clear from comparison between the comparative example and the example in Table 1, in the example, the total amount of the surfactant remaining in the toner in the emulsion polymerization aggregation method was suppressed to 1.0% by weight or less. And especially the amount of nonionic surfactant is 100 pp
m or less, and a sharp particle size distribution with a number average particle size distribution index GSDn of 1.26 or less can be ensured. As a result, excellent chargeability, environmental dependency, excellent particle size distribution and excellent charge characteristics It has been confirmed that a toner for developing an electrostatic image having excellent image quality characteristics can be provided.

【0093】[0093]

【発明の効果】本発明は、上記の構成を採用し、特に、
界面活性剤を用いずに調製された樹脂微粒子分散液を4
価の無機金属塩を用いて凝集粒子を調製した後、融合し
てトナー粒子を形成することにより、従来の界面活性剤
を用いた凝集融合法や、懸濁重合法、混練粉砕法では到
底獲得することができない、小粒子径で、シャープな粒
度分布、優れた帯電特性、及び、耐環境特性をバランス
よく備えた静電荷像現像用トナーを得ることができるよ
うになった。さらに、これらのトナーを用いた静電荷像
現像剤により優れた画質特性を有する画像の形成が可能
になった。
According to the present invention, the above configuration is adopted.
Resin fine particle dispersion prepared without using surfactant
Agglomeration particles are prepared using a multivalent inorganic metal salt and then fused to form toner particles, which can be achieved by conventional aggregation-fusion methods using surfactants, suspension polymerization methods, and kneading and pulverization methods. It has become possible to obtain a toner for developing an electrostatic image, which cannot be obtained and has a small particle size, a sharp particle size distribution, excellent charging characteristics and environmental resistance characteristics in a well-balanced manner. Furthermore, an image having excellent image quality characteristics can be formed by an electrostatic image developer using these toners.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 孝雄 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 (72)発明者 角倉 康夫 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 (72)発明者 庄子 毅 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 Fターム(参考) 2H005 AA01 AA06 AA21 AB03 CA04 CA14 CA21 CA23 CB08 CB18 EA03 EA05 EA07 FA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takao Ishiyama 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Inside Fuji Xerox Co., Ltd. (72) Inventor Yasuo Kadokura 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Fuji Xerox Co., Ltd. (72) Inventor Tsuyoshi Shoko 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture F-Xerox Co., Ltd. F-term (reference) 2H005 AA01 AA06 AA21 AB03 CA04 CA14 CA21 CA23 CB08 CB18 EA03 EA05 EA07 FA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結着樹脂と着色剤を含有する静電荷像現
像用トナーにおいて、上記トナーは個数平均粒子径D
50n が1〜10μmで、個数平均粒度分布指標GSDn
が1.26以下であり、トナー粒子中の界面活性剤の含
有量の合計が1.0重量%以下で、かつ非イオン性界面
活性剤含有量が100ppm以下であり、上記結着樹脂
が親水性エチレン性不飽和単量体を含有する自己分散性
樹脂を含むことを特徴とする静電荷像現像用トナー。
1. An electrostatic image developing toner containing a binder resin and a colorant, wherein the toner has a number average particle diameter D.
50n is 1 to 10 μm , and the number average particle size distribution index GSDn
Is not more than 1.26, the total surfactant content in the toner particles is not more than 1.0% by weight, the nonionic surfactant content is not more than 100 ppm, and the binder resin is hydrophilic. A toner for developing an electrostatic image, comprising a self-dispersing resin containing a neutral ethylenically unsaturated monomer.
【請求項2】 親水性エチレン性不飽和単量体を含有す
る自己分散性樹脂微粒子分散液と、着色剤分散液とを混
合し、2価以上の電荷を有する無機金属塩を用いて上記
樹脂微粒子と上記着色剤を凝集して凝集粒子分散液を調
製した後、前記樹脂のガラス転移点以上の温度に加熱
し、前記凝集粒子を融合してトナー粒子を形成すること
を特徴とする請求項1記載の静電荷像現像用トナーの製
造方法。
2. A dispersion of fine particles of a self-dispersible resin containing a hydrophilic ethylenically unsaturated monomer and a dispersion of a colorant, and the resin is mixed with an inorganic metal salt having a charge of at least two valences. After preparing the aggregated particle dispersion by aggregating the fine particles and the colorant, heating the resin to a temperature equal to or higher than the glass transition point of the resin to fuse the aggregated particles to form toner particles. 2. The method for producing a toner for developing an electrostatic image according to item 1.
【請求項3】 トナー及びキャリアを含む静電荷像現像
剤において、請求項1〜7のいずか1項に記載の静電荷
像現像用トナーを用いたことを特徴とする静電荷像現像
剤。
3. An electrostatic image developer containing a toner and a carrier, wherein the electrostatic image developing toner according to any one of claims 1 to 7 is used. .
【請求項4】 静電荷担持体上に静電潜像を形成する工
程、現像剤担持体上の現像剤で上記静電潜像を現像して
トナー画像を形成する工程、及び前記トナー画像を転写
体上に転写する工程を含む画像形成方法において、前記
現像剤として請求項3記載の静電荷像現像剤を使用する
ことを特徴とする画像形成方法。
4. A step of forming an electrostatic latent image on an electrostatic charge carrier, a step of developing the electrostatic latent image with a developer on a developer carrier to form a toner image, and 4. An image forming method including a step of transferring onto a transfer body, wherein the electrostatic charge image developer according to claim 3 is used as the developer.
JP2000320707A 2000-10-20 2000-10-20 Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method Pending JP2002131977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320707A JP2002131977A (en) 2000-10-20 2000-10-20 Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320707A JP2002131977A (en) 2000-10-20 2000-10-20 Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method

Publications (1)

Publication Number Publication Date
JP2002131977A true JP2002131977A (en) 2002-05-09

Family

ID=18798947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320707A Pending JP2002131977A (en) 2000-10-20 2000-10-20 Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method

Country Status (1)

Country Link
JP (1) JP2002131977A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266561A (en) * 2004-03-19 2005-09-29 Fuji Xerox Co Ltd Image forming method and toner
JP2007127729A (en) * 2005-11-01 2007-05-24 Mitsubishi Chemicals Corp Method for manufacturing electrostatic charge image developing toner
JP2008286944A (en) * 2007-05-16 2008-11-27 Brother Ind Ltd Toner and its manufacturing method
US7741001B2 (en) 2005-04-04 2010-06-22 Sharp Kabushiki Kaisha Toner for electrostatic image development and process for preparing the same
US7811733B2 (en) 2006-02-20 2010-10-12 Fuji Xerox Co., Ltd. Electrostatic latent image toner, and manufacture thereof, and electrostatic image developer, and image forming method
WO2011142482A1 (en) 2010-05-12 2011-11-17 Canon Kabushiki Kaisha Toner
US8343704B2 (en) 2005-06-17 2013-01-01 Brother Kogyo Kabushiki Kaisha Method of producing toner, and toner
US8685613B2 (en) 2005-11-24 2014-04-01 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, method of producing electrostatic latent image developing toner, and electrostatic latent image developer
JP2015003947A (en) * 2013-06-19 2015-01-08 藤倉化成株式会社 Resin fine particle and production method of the same, and toner for negative charge development

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266561A (en) * 2004-03-19 2005-09-29 Fuji Xerox Co Ltd Image forming method and toner
US7741001B2 (en) 2005-04-04 2010-06-22 Sharp Kabushiki Kaisha Toner for electrostatic image development and process for preparing the same
US8343704B2 (en) 2005-06-17 2013-01-01 Brother Kogyo Kabushiki Kaisha Method of producing toner, and toner
JP2007127729A (en) * 2005-11-01 2007-05-24 Mitsubishi Chemicals Corp Method for manufacturing electrostatic charge image developing toner
US8685613B2 (en) 2005-11-24 2014-04-01 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, method of producing electrostatic latent image developing toner, and electrostatic latent image developer
US7811733B2 (en) 2006-02-20 2010-10-12 Fuji Xerox Co., Ltd. Electrostatic latent image toner, and manufacture thereof, and electrostatic image developer, and image forming method
JP2008286944A (en) * 2007-05-16 2008-11-27 Brother Ind Ltd Toner and its manufacturing method
WO2011142482A1 (en) 2010-05-12 2011-11-17 Canon Kabushiki Kaisha Toner
KR101402507B1 (en) 2010-05-12 2014-06-03 캐논 가부시끼가이샤 Toner
US8778581B2 (en) 2010-05-12 2014-07-15 Canon Kabushiki Kaisha Toner
JP2015003947A (en) * 2013-06-19 2015-01-08 藤倉化成株式会社 Resin fine particle and production method of the same, and toner for negative charge development

Similar Documents

Publication Publication Date Title
JP3107062B2 (en) Electrostatic image developing toner, method of manufacturing the same, electrostatic image developer, and image forming method
JP3141783B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JP3241003B2 (en) Toner for electrostatic charge development, method for producing the same, developer, and image forming method
JP3871766B2 (en) Toner for developing electrostatic image, method for producing toner for developing electrostatic image, developer for developing electrostatic image, and image forming method
JP3661544B2 (en) Toner for developing electrostatic image, method for producing the same, developer, and image forming method
JP3090140B1 (en) Electrostatic image developing toner, method of manufacturing the same, electrostatic image developer, and image forming method
JPH10198070A (en) Production of electrostatic charge image developing toner, electrostatic charge image developing toner, electrostatic charge image developer and image forming method
JP2958416B2 (en) Method of manufacturing toner for developing electrostatic image, toner for developing electrostatic image, and image forming method
JP3141795B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JP4179074B2 (en) Magenta toner for developing electrostatic image, method for producing the same, developer and image forming method
JPH10319624A (en) Electrostatic charge image developing toner, its production, electrostatic charge image developer and image forming method
JP3633417B2 (en) Yellow toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP3428364B2 (en) Colorant dispersion, method for producing toner for developing electrostatic image, toner for developing electrostatic image, developer for electrostatic image, and image forming method
JP4007005B2 (en) Toner for developing electrostatic image, developer for developing electrostatic image, and image forming method
JP2003330220A (en) Electrostatic charge image developing toner, method for manufacturing electrostatic charge image developing toner, electrostatic charge image developing developer and method for forming image
JP2002131977A (en) Electrostatic charge image developing toner, method for producing the same, electrostatic charge image developer, and image forming method
JP4717671B2 (en) toner
JP3067761B1 (en) Toner for developing electrostatic image, method of manufacturing the same, developer for developing electrostatic image, and image forming method
JP3752877B2 (en) Toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP2001083730A (en) Electrostatic charge image developing toner, its manufacturing method, developer, and image forming method
JP3941389B2 (en) Toner for developing electrostatic image and manufacturing method, developer for developing electrostatic image, and image forming method
JP3849371B2 (en) Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method
JP3800955B2 (en) Black toner for developing electrostatic image, manufacturing method, and image forming method
JP2001305789A (en) Electrostatic charge image developing toner, method for manufacturing the same, electrostatic charge image developer and method for forming image
JP2001125315A (en) Method for image forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031