JPH10288590A - Method for inspecting defect of resin coated steel material - Google Patents

Method for inspecting defect of resin coated steel material

Info

Publication number
JPH10288590A
JPH10288590A JP9896497A JP9896497A JPH10288590A JP H10288590 A JPH10288590 A JP H10288590A JP 9896497 A JP9896497 A JP 9896497A JP 9896497 A JP9896497 A JP 9896497A JP H10288590 A JPH10288590 A JP H10288590A
Authority
JP
Japan
Prior art keywords
coated steel
coating
steel material
coated
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9896497A
Other languages
Japanese (ja)
Other versions
JP3275770B2 (en
Inventor
Hisao Kitagawa
尚男 北川
Shiro Miyata
志郎 宮田
Yoshihiro Okano
嘉宏 岡野
Toshiaki Fujita
利明 藤田
Tadashi Kawamura
正 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPH10288590A publication Critical patent/JPH10288590A/en
Application granted granted Critical
Publication of JP3275770B2 publication Critical patent/JP3275770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a defect such as air void or adhesion defective point generated in a coated steel material by pretreating and heating the coated steel material, and inspecting it in the manufacturing process of applying a coating material. SOLUTION: A coated steel material A is pretreated and then passed through a heating furnace 1 to heat the coated steel material. A, and a coating material 2 is stuck thereto and pressure-adhered by a pressure roller 3. Thereafter, the coated steel material A is forcedly cooled with a cooling water discharged from a cooler 8, the coating material 2 is heated by a heating source 4, and the surface is photographed by an infrared detector 5 to observe the surface temperature distribution of the coated steel material 2. The thermal image signal of the infrared detector 5 is inputted to an image processing device 9, and image-processed to measure the temperature distribution of the coated steel material 2. Since the part having a high temperature in the surface temperature distribution of the coating material 2 is regarded as a defective part such as air void or adhesion defective point, the position of this defective part is displayed on a display device 9a. Thus, a resin-coated steel material highly reliable to anticorrosion is manufactured through such a manufacturing process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂被覆鋼材の欠
陥検査方法に関し、詳しくは、樹脂被覆鋼材の製造工程
に、鋼矢板や樹脂被覆鋼管に被覆された塗覆装材の浮き
や膨れ等の欠陥を検査する欠陥検査方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a resin-coated steel material for defects. And a defect inspection method for inspecting a defect.

【0002】[0002]

【従来の技術】一般に、鋼矢板や塗覆装被覆鋼管には、
防食もしくは意匠性のために厚みが50μm〜10mm
程度の樹脂からなる塗覆装材が被覆されている。このよ
うな塗覆装材が被覆された樹脂被覆鋼材では、鋼材と塗
覆装材との中に浮きや膨れ(以下、エアボイドと称す
る)や塗覆装端部の剥離箇所(密着不良)が多数存在す
ると、鋼材の防食に対する信頼性が低下する。
2. Description of the Related Art In general, steel sheet piles and coated steel pipes coated with a coating are coated with:
50 μm to 10 mm thick for corrosion protection or design
A coating material made of resin is coated. In a resin-coated steel material coated with such a coating material, floating or swelling (hereinafter, referred to as an air void) between the steel material and the coating material or a peeling portion (poor adhesion) of the coating material end portion occurs. If there is a large number, the reliability of the corrosion prevention of the steel material decreases.

【0003】従来、塗覆装被覆処理の作業工程では、信
頼性を維持するために、塗覆装材が正常に被覆されてい
るか否かの検査が実施されている。その検査方法は、通
常、エアボイド等の欠陥を目視や指触する方法等によっ
て行われている。また、他の検査方法としては、塗覆装
材の一部を剥離してエアボイドや密着不良の発生の有無
を検査する方法がある。更にまた、塗覆装材の一部を剥
離してエアボイド、密着不良の発生の有無を検査する方
法がある。このような塗覆装材を剥離して、エアボイ
ド、密着不良の発生を検査する方法では、剥離した後に
その部分を修復しなければならない。
[0003] Conventionally, in the work process of the coating and covering process, an inspection is performed to determine whether or not the coating and covering material is properly covered in order to maintain reliability. The inspection method is usually performed by visually inspecting or touching a defect such as an air void. Further, as another inspection method, there is a method of peeling a part of the coating material and inspecting for the occurrence of air voids or poor adhesion. Furthermore, there is a method of inspecting the occurrence of air voids and poor adhesion by peeling a part of the coating material. In the method of inspecting the occurrence of air voids and poor adhesion by peeling such a coating material, it is necessary to repair the portion after peeling.

【0004】因みに、被覆された配管の含水部を検出す
る方法は、特開平6−118040号公報に開示されて
いる。この検査方法は、配管を熱画像撮影して、その表
面温度分布から空気層と含水部を検出しており、空気層
と含水部では熱伝達係数が大きく相違するので、その相
違によって発生する温度分布によって、含水部を検出す
るものである。ただし、この検査方法は欠陥部を浮き出
させるために配管を特別に加熱して含水部を検出する方
法ではない。
Incidentally, a method for detecting a water-containing portion of a covered pipe is disclosed in Japanese Patent Application Laid-Open No. Hei 6-118040. In this inspection method, a thermal image is taken of a pipe, and an air layer and a water-containing portion are detected from the surface temperature distribution. Since the heat transfer coefficient between the air layer and the water-containing portion is largely different, the temperature generated by the difference is large. A water-containing part is detected based on the distribution. However, this inspection method is not a method of detecting a water-containing portion by specially heating a pipe in order to raise a defective portion.

【0005】また、 特開昭61−132848号公
報、や特開昭62−198708号公報、特開平2−1
2045号公報、特開平3−188363号公報など、
塗装の剥離部検査する方法があるが、遠赤外線や誘導加
熱、加熱光により塗膜の剥離検査をする方法や強制冷却
により温度差を設ける方法が開示されている。
Further, Japanese Patent Application Laid-Open Nos. 61-132848, 62-198708, and 2-1
No. 2045, JP-A-3-188363, etc.
There is a method of inspecting the peeling portion of the coating, and a method of inspecting the peeling of the coating film by far infrared rays, induction heating, and heating light and a method of providing a temperature difference by forced cooling are disclosed.

【0006】[0006]

【発明が解決しようとする課題】従来の塗覆装被覆鋼管
や鋼矢板の塗覆装は、塗覆装材自体を加熱・溶融させて
被覆鋼材に密着させて、塗覆装被覆処理を行っている
か、あるいは加熱した鋼管や鋼矢板に塗覆装材の接着層
を密着させることで塗覆装被覆処理を行っている。この
ような塗覆装被覆処理において、塗覆装材と鋼材との間
に多数のエアボイドが発生したり、密着不良が発生する
と、塗覆装による防食に対する信頼性が薄れることにな
る。
In the conventional coating and coating of coated steel pipes and steel sheet piles, the coating and coating material itself is heated and melted and brought into close contact with the coated steel material to perform coating and coating processing. Alternatively, the coating and covering treatment is performed by bringing the adhesive layer of the coating and covering material into close contact with a heated steel pipe or steel sheet pile. In such a coating-coating process, if a large number of air voids or poor adhesion occurs between the coating material and the steel material, the reliability of the anticorrosion due to the coating decreases.

【0007】従来、エアボイドや密着不良個所等の欠陥
を目視や指触によって、検査する方法は、比較的大きい
ものであれば検出が可能である。しかし、小さい欠陥で
はその存在を確認することは非常に難しい欠点がある。
また、被覆部全体を指蝕で検査する方法は、作業者にと
って極めて煩雑で過酷な作業となる欠点があった。ま
た、エアボイドや密着不良等の欠陥の数が多い場合に
は、塗覆装の一部を剥離して検査しており、目視や指蝕
して、異常が感じられる場合には、塗覆装の一部を剥離
して検査していた。このような剥離した部分は補修する
必要があり、この補修補に時間がかかるためにコスト高
となる欠点があった。
Conventionally, a method of inspecting a defect such as an air void or a portion having poor adhesion by visual observation or finger touch can be detected if it is relatively large. However, there is a disadvantage that it is very difficult to confirm the existence of a small defect.
In addition, the method of inspecting the entire covering portion by finger eclipse has a drawback that the operation is extremely complicated and severe for the operator. If the number of defects, such as air voids and poor adhesion, is large, a part of the coating is peeled off and inspected. Was peeled off and inspected. Such a peeled portion needs to be repaired, and there is a disadvantage that the repair and repair take time, resulting in an increase in cost.

【0008】このような観点から塗覆装被覆鋼材の鋼材
と塗覆装材間に発生したエアボイドや密着不良個所等の
欠陥を検出する方法としては、非破壊検査方法で検出す
る方法が望ましい。従来の非破壊検査では、赤外線カメ
ラを用いてその表面温度分布から含水部を検出する方法
がある。しかし、断熱材で被覆された配管での含水部の
検出には、配管の外部加熱は行なわれていない。そのた
めに、非常に小さいエアボイドや密着不良箇所等の欠陥
部を検査するのは難しい欠点がある。また、遠赤外線や
誘導加熱、加熱光により塗膜の剥離検査をする方法や強
制冷却により温度差を設ける方法が開示されているが、
塗覆装被覆鋼材製造工程に新たな加熱・冷却工程を設け
ることは新たな設備投資が必要となる。
From such a viewpoint, as a method for detecting a defect such as an air void or a poor adhesion portion generated between the steel material of the coated and coated steel material and the coated material, a method of detecting by a nondestructive inspection method is desirable. In a conventional nondestructive inspection, there is a method of detecting a water-containing portion from a surface temperature distribution using an infrared camera. However, no external heating of the pipe is performed to detect the water-containing portion in the pipe covered with the heat insulating material. Therefore, there is a disadvantage that it is difficult to inspect a defective portion such as a very small air void or a poor adhesion portion. Further, far infrared or induction heating, a method of performing a peeling inspection of the coating film by heating light or a method of providing a temperature difference by forced cooling is disclosed,
Providing a new heating / cooling process in the production process of the coated steel material requires new capital investment.

【0009】本発明は、上述のような課題に鑑みなされ
たものであって、塗覆装被覆鋼材の塗覆装材と鋼管や鋼
矢板等の被覆鋼材間に発生したエアボイドや密着不良箇
所等の欠陥を検出するための樹脂塗覆装材の欠陥検査方
法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has been made in consideration of the above-described problems, such as the occurrence of air voids and poor adhesion between a coating material of a coating steel material and a coating steel material such as a steel pipe or a steel sheet pile. It is an object of the present invention to provide a method for inspecting a defect of a resin-coated material for detecting a defect.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を達
成するためになされたのもであり、請求項1の発明は、
鋼矢板や鋼管等の被覆鋼材に塗覆装材を加圧接着して被
覆する塗覆装被覆処理時に加熱して溶融・接着を行った
後に、自然冷却させてその温度降下の差によって、エア
ボイドや密着不良個所の存在を検出することを特徴とす
る樹脂被覆鋼材の欠陥検査方法である。この発明では、
被覆鋼材を前処理して加熱し、塗覆装材を被着する製造
工程に中に検査を行うことにより、新たな加熱工程を設
けることなくエアボイドや密着不良個所の存在が検出で
きる。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention of claim 1 has the following features.
The coating and covering material is coated by applying pressure to the coated steel material such as steel sheet piles and steel pipes. After coating and coating, the coating is heated and melted and bonded. And a defect inspection method for a resin-coated steel material characterized by detecting the presence of a portion having a poor adhesion. In the present invention,
By pre-treating and heating the coated steel material and performing an inspection during the manufacturing process of applying the coating and covering material, the presence of air voids and poor adhesion portions can be detected without providing a new heating process.

【0011】また、請求項2の発明では、鋼矢板や鋼管
等の被覆鋼材に塗覆装材を加圧接着して被覆する塗覆装
被覆処理時に加熱して溶融・接着を行った後に、強制冷
却させてその温度降下の差によって、エアボイドや密着
不良個所の存在を検出することを特徴とする樹脂被覆鋼
材の欠陥検査方法である。この発明では、被覆鋼材を前
処理して加熱し、塗覆装材を被着した後、冷却する製造
工程の中で検査を行うことにより、新たな冷却工程を設
けることなくエアボイドや密着不良個所の存在が検出で
きる。
Further, in the invention of claim 2, after coating and covering the coated steel material such as a steel sheet pile and a steel pipe by pressure bonding and coating, the coated steel is heated and melted and bonded. This is a defect inspection method for a resin-coated steel material, which comprises forcibly cooling and detecting the presence of an air void or a poor adhesion portion based on a difference in temperature drop. According to the present invention, the coated steel material is pre-treated, heated, coated with a coating material, and then inspected in a manufacturing process of cooling, so that air voids and poor adhesion portions can be obtained without providing a new cooling process. Can be detected.

【0012】また、請求項3の発明では、請求項1また
は2に記載の樹脂被覆鋼材の欠陥検査方法において、前
記塗覆装材から放射される赤外線を鏡で反射させて赤外
線検出手段で観測し、前記塗覆装材の温度分布を検出す
ることを特徴とする樹脂被覆鋼材の欠陥検査方法であ
る。この発明では、樹脂被覆鋼材の欠陥検査方法に鏡を
用いることで、赤外線カメラの設置個数を増やすことな
く、鋼管や平板状の鋼板の被覆鋼材を樹脂で被覆した被
検査対象全面の検査ができる。
According to a third aspect of the present invention, in the defect inspection method for a resin-coated steel material according to the first or second aspect, infrared rays emitted from the coating material are reflected by a mirror and observed by infrared detecting means. And a method for inspecting the defect of the resin-coated steel material, wherein a temperature distribution of the coating material is detected. In the present invention, by using a mirror for the defect inspection method of the resin-coated steel material, it is possible to inspect the entire inspection target in which the coated steel material of the steel pipe or the flat steel plate is coated with the resin without increasing the number of infrared cameras installed. .

【0013】また、請求項4の発明は、樹脂被覆鋼材の
欠陥検査方法において、前記塗覆装材の温度分布を時間
微分もしくは空間微分して、その温度分布からエアボイ
ドや密着不良個所等の大きさを検出することを特徴とす
る請求項1、2または3に記載の樹脂被覆鋼材の欠陥検
査方法である。この発明では、赤外線による熱熱画像信
号によって画像処理手段の演算手段を用いることで数値
的に欠陥部分が検査できる。
According to a fourth aspect of the present invention, in the method for inspecting defects of a resin-coated steel material, the temperature distribution of the coating material is temporally or spatially differentiated, and the size of an air void or a poor adhesion portion is determined from the temperature distribution. The defect inspection method for a resin-coated steel material according to claim 1, wherein the defect is detected. According to the present invention, a defective portion can be numerically inspected by using the calculating means of the image processing means based on a thermal image signal by infrared rays.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。本実施形態は、樹脂被覆
鋼材の欠陥検出方法である。
Embodiments of the present invention will be described below with reference to the drawings. The present embodiment is a method for detecting a defect in a resin-coated steel material.

【0015】図1は、樹脂被覆鋼材の製造装置の概要を
示す。同図において、1は鋼板、鋼矢板等の被覆鋼材A
を加熱する加熱炉、2はポリエチレンシート等にアスフ
ァルトとゴムの混合物に各種添加物を混入させた接着剤
層が設けられたポリエチレンシート等の樹脂性の塗覆装
材、3はポリエチレンシートを被覆鋼材2に押し付けて
強固に加圧接着するための加圧ローラ、4は塗覆装材2
を加熱するための赤外線ランプ、レーザー光、ガスバー
ナ、または電熱器等の加熱源、5は被覆鋼材2の表面温
度を検出するための赤外線カメラ等による赤外線検出
器、5aは赤外線検出器5と画像処理装置とを接続する
ケーブル、7は被覆鋼材Aを搬送するための搬送用ロー
ラ、8は加熱された被覆鋼材Aを冷却するために水等を
散布する冷却器、9はコンピュータ等による画像処理装
置、9aは画像処理装置による処理結果を表示するCT
R等の表示装置である。
FIG. 1 shows an outline of an apparatus for producing a resin-coated steel material. In the figure, reference numeral 1 denotes a coated steel material A such as a steel plate, a steel sheet pile, or the like.
2 is a resin coating material such as a polyethylene sheet provided with an adhesive layer in which various additives are mixed in a mixture of asphalt and rubber in a polyethylene sheet, etc. 3 is coated with a polyethylene sheet A pressure roller 4 for pressing against the steel material 2 to firmly pressurize and bond the steel material 2
A heating source such as an infrared lamp, a laser beam, a gas burner, or an electric heater for heating the steel plate; 5, an infrared detector by an infrared camera or the like for detecting the surface temperature of the coated steel material 2; A cable connecting the processing apparatus, 7 a transport roller for transporting the coated steel A, 8 a cooler for spraying water or the like to cool the heated coated steel A, 9 an image processing by a computer or the like Device, 9a is a CT for displaying a processing result by the image processing device
R and other display devices.

【0016】続いて、本発明の実施形態である樹脂被覆
鋼材の製造工程で行われる樹脂被覆鋼材の欠陥検出方法
について、図1を参照して説明する。先ず、鋼板等の被
覆鋼材Aに塗覆装材2として厚さが3mmのポリエチレ
ンシートを被覆する。その被覆工程に先立ち被覆鋼材A
にブラスト処理を行って、クロメート処理を行い、その
上にプライマー処理を行う。このような被覆鋼材Aに前
処理を実施した後、加熱炉1内を通過させて被覆鋼材A
を加熱する。加熱した被覆鋼材Aに塗覆装材2を貼り付
けて、加圧ローラ3によって、被覆鋼材Aと塗覆装材2
を押圧して接着させる。その後、冷却器8によって、被
覆鋼材Aの裏面に水を散水して被覆鋼材Aを冷却する。
被覆鋼材Aは、搬送用ローラ7によって、一定速度で搬
送されて、エアボイド等の発生を検査する欠陥検査工程
に進む。
Next, a method for detecting a defect in a resin-coated steel material performed in a manufacturing process of the resin-coated steel material according to an embodiment of the present invention will be described with reference to FIG. First, a coated steel material A such as a steel plate is coated with a polyethylene sheet having a thickness of 3 mm as a coating material 2. Prior to the coating process, coated steel material A
Is subjected to a blast treatment, a chromate treatment is performed, and a primer treatment is performed thereon. After performing such pretreatment on the coated steel material A, the coated steel material A is passed through the heating furnace 1 to be coated with the coated steel material A.
Heat. The coating material 2 is adhered to the heated coating steel material A, and the coated steel material A and the coating material 2
To adhere. Thereafter, the cooler 8 sprays water on the back surface of the coated steel material A to cool the coated steel material A.
The coated steel material A is transported by the transport roller 7 at a constant speed, and proceeds to a defect inspection step for inspecting the occurrence of air voids and the like.

【0017】樹脂被覆鋼材の欠陥検査工程は、被覆鋼材
Aが冷却器8から放出される冷却水等によって強制的に
冷却された後、加熱源4で塗覆装材2は加熱され、そし
て、その冷却過程の塗覆装材2の表面を赤外線検出器5
によって撮影し、被覆鋼材2の表面温度分布が観測され
る。なお、冷却器8による冷却が欠陥検査に適した温度
に設定されていれば、加熱源4による加熱は必要がな
い。赤外線検出器5による撮影後、被覆装材Aは自然冷
却するか、若しくは強制的に冷却される。一方、赤外線
検出器5からの熱画像信号は、コンピュータ等の画像処
理装置9に入力されて、画像処理を行うことによって、
被覆鋼材2の温度分布を計測する。塗覆装材2の表面温
度分布を観測して、この表面温度分布の温度が高い部分
がエアボイドや密着不良個所等の欠陥部と見なされるの
で、この欠陥部の位置を画像処理装置9の記憶装置に記
憶して表示装置9aに表示される。エアボイドや密着不
良個所等の欠陥部が存在する場合には、その大きさや個
数によって、加圧ローラ3の加圧条件、加熱炉1による
加熱温度等の製造条件の変更や部分的な欠陥の補修工程
が実施される。このようは製造工程を経て、防食に対し
て信頼性の高い樹脂被覆鋼材が製造されている。
In the defect inspection step of the resin-coated steel material, after the coated steel material A is forcibly cooled by cooling water or the like discharged from the cooler 8, the coating material 2 is heated by the heating source 4, and In the cooling process, the surface of the coating material 2 is
The surface temperature distribution of the coated steel material 2 is observed. If the cooling by the cooler 8 is set to a temperature suitable for the defect inspection, the heating by the heating source 4 is not necessary. After photographing by the infrared detector 5, the coating material A is naturally cooled or forcibly cooled. On the other hand, the thermal image signal from the infrared detector 5 is input to an image processing device 9 such as a computer and performs image processing,
The temperature distribution of the coated steel 2 is measured. The surface temperature distribution of the coating material 2 is observed, and a portion where the temperature of the surface temperature distribution is high is regarded as a defective portion such as an air void or a poor adhesion portion, and the position of the defective portion is stored in the image processing device 9. It is stored in the device and displayed on the display device 9a. If there is a defective portion such as an air void or a poor adhesion portion, the manufacturing conditions such as the pressing conditions of the pressing roller 3 and the heating temperature of the heating furnace 1 are changed, and partial defects are repaired, depending on the size and number of the defective portions. A process is performed. Through such a manufacturing process, a resin-coated steel material having high corrosion resistance is manufactured.

【0018】次に、上記実施形態の製造工程における欠
陥検査方法の有効性について、図1、図2を参照して説
明する。この実験では、被覆鋼材Aとして鋼矢板を用
い、塗覆装材2として接着剤層を設けたポリエチレン樹
脂でこの鋼矢板を被覆する。その際、人為的に直径6m
mと20mmのエアボイドを形成して、その検出率を検
証した。この欠陥検査方法では、図1で説明したよう
に、加熱した被覆鋼材Aに塗覆装材2を貼付して、加圧
ローラ3で加圧融着させた後、表面温度分布を測定し、
エアボイドの検出が行われた。
Next, the effectiveness of the defect inspection method in the manufacturing process of the above embodiment will be described with reference to FIGS. In this experiment, a steel sheet pile is used as the coated steel material A, and the steel sheet pile is coated with a polyethylene resin provided with an adhesive layer as the coating material 2. At that time, artificially 6m in diameter
Air voids of m and 20 mm were formed and the detection rate was verified. In this defect inspection method, as described with reference to FIG. 1, the coating material 2 is attached to the heated coated steel material A, and is press-fused by the pressure roller 3, and then the surface temperature distribution is measured.
Air void detection was performed.

【0019】図2に示す実験結果が得られた。図中の横
軸は初期表面温度(室温)からの加熱温度を示し、縦軸
は欠陥判定個数を示している。図中の破線(イ)は直径
が6mmのエアボイドの各表面温度に対する検出個数を
示し、実線(ロ)は直径が20mmのエアボイドの各表
面温度に対する検出個数を示している。同図から明らか
なように、約3℃から35℃の範囲では、破線(イ)と
実線(ロ)のエアボイドが何れも100%(10個/1
0個)が検出され、破線(イ)の場合では、加熱温度が
約1℃の場合であっても70%(7個/10個)が検出
されている。また、破線(イ)の場合、約35℃から1
30℃までの範囲で80%(8個/10個)のエアボイ
ドが検出され、130℃から200℃の範囲では段階的
に検出率が低下している。一方、実線(ロ)の場合では
約1℃の範囲では80%(8個/10個)が検出され、
約35℃から160℃までの範囲では90%(9個/1
0個)のエアボイドが検出され、160℃から200℃
の範囲では加熱により表面が変質するために段階的に検
出率が低下している。
The experimental results shown in FIG. 2 were obtained. The horizontal axis in the figure indicates the heating temperature from the initial surface temperature (room temperature), and the vertical axis indicates the number of defect determinations. The broken line (a) in the figure indicates the number of detected air voids having a diameter of 6 mm for each surface temperature, and the solid line (b) indicates the detected number of air voids having a diameter of 20 mm for each surface temperature. As is clear from the figure, in the range of about 3 ° C. to 35 ° C., the air voids indicated by the broken line (a) and the solid line (b) are both 100% (10 pieces / l).
0), and in the case of the broken line (a), 70% (7/10) is detected even when the heating temperature is about 1 ° C. In the case of the broken line (a), the temperature is about 35 ° C. to 1
80% (8/10) air voids are detected in the range up to 30 ° C., and the detection rate decreases stepwise in the range from 130 ° C. to 200 ° C. On the other hand, in the case of the solid line (b), 80% (8/10) is detected in the range of about 1 ° C.
90% in the range from about 35 ° C to 160 ° C (9 pieces / 1
0) air voids are detected, and 160 ° C to 200 ° C
In the range, the detection rate gradually decreases because the surface is deteriorated by heating.

【0020】この結果から明らかなように、エアボイド
を検出するのに、最も適した温度範囲は、初期表面温度
より3〜35℃高い温度である。しかし、検出率を50
%に落とせば、エアボイドの直径にも依存するが、直径
が20mmの場合、表面温度が1〜180℃高い温度ま
で検出が可能である。一方、直径の太いエアボイドであ
れば、200℃まで検出することができることを示して
いる。このように欠陥検出率はエアボイドの直径に依存
するが、概ね塗覆装材の表面温度が1℃以上200℃以
下の範囲でエアボイドの検出が可能である。また、この
検出率は、塗覆装材の厚さにも依存することは明らかで
ある。なお、塗覆装材の加熱温度を1℃にすると検出率
が下がるのは、健全部分と欠陥部分との間の温度差が小
さくなるためである。なお、図1の実施形態では、冷却
器8で冷却した後、加熱源4で塗覆装材2を加熱してい
る。しかし、冷却器8で被覆鋼材Aを、例えば150℃
程度まで冷却して、所定時間経過した後に、塗覆装材2
の表面温度を観測することで、加熱源4による加熱工程
を行うことなく、樹脂被覆鋼材の塗覆装材と被覆鋼材間
に発生したエアボイド等の欠陥を検出することができ
る。このような場合、加熱源4は補助的な温度補正用の
加熱源として用いることができる。
As apparent from the results, the most suitable temperature range for detecting air voids is a temperature that is higher by 3 to 35 ° C. than the initial surface temperature. However, a detection rate of 50
%, It depends on the diameter of the air void, but when the diameter is 20 mm, it is possible to detect the surface temperature up to 1 to 180 ° C. higher. On the other hand, it shows that an air void having a large diameter can be detected up to 200 ° C. As described above, the defect detection rate depends on the diameter of the air void. However, the detection of the air void can be generally performed when the surface temperature of the coating material is in the range of 1 ° C. or more and 200 ° C. or less. It is clear that the detection rate also depends on the thickness of the coating material. When the heating temperature of the coating material is set to 1 ° C., the detection rate decreases because the temperature difference between the healthy part and the defective part becomes small. In the embodiment shown in FIG. 1, the coating material 2 is heated by the heating source 4 after being cooled by the cooler 8. However, the coated steel material A is cooled by the cooler 8 to, for example, 150 ° C.
After cooling to a predetermined degree and a predetermined time has elapsed, the coating material 2
By observing the surface temperature, defects such as air voids generated between the coating material of the resin-coated steel material and the coated steel material can be detected without performing the heating step by the heating source 4. In such a case, the heating source 4 can be used as a heating source for auxiliary temperature correction.

【0021】次に、本実施形態の欠陥検出率について、
表1〜表3を参照して説明する。表1〜表3の従来例は
目視や指触等による欠陥検査方法であり、実施例は本実
施形態によるものであり、比較例は本実施形態に類似す
る欠陥検査方法によるものである。表1の実施例は、塗
覆装材を鋼板に融着した後、水冷して室温まで冷却さ
せ、その後塗覆装材の加熱温度を、初期表面温度より2
0℃高い温度に設定して欠陥部の検査を行っている。表
2の比較例は、塗覆装被覆処理時に加熱して塗覆装材を
融着した後、自然冷却させて検出を行った結果を示して
いる。表3の比較例は、塗覆装被覆材を室温まで冷却し
た後、塗覆装材の加熱温度を、その初期表面温度より2
0℃高い温度に設定して欠陥部の検出を行った結果であ
り、従来例は、特開平6−118040号公報に開示さ
れた欠陥検出方法であり、この欠陥検出方法は塗覆装被
覆材を欠陥検出のために加熱することなく欠陥の検出を
行った結果を示している。
Next, regarding the defect detection rate of the present embodiment,
This will be described with reference to Tables 1 to 3. The conventional examples in Tables 1 to 3 are defect inspection methods based on visual inspection, finger touch, and the like. Examples are according to the present embodiment. Comparative examples are defect inspection methods similar to the present embodiment. In Examples of Table 1, after the coating material was fused to a steel plate, the coating material was cooled with water and cooled to room temperature, and then the heating temperature of the coating material was set at 2 from the initial surface temperature.
The defect is inspected by setting the temperature to 0 ° C. higher. The comparative examples in Table 2 show the results of detection by heating and fusing the coating material during the coating and coating process, and then allowing the coating material to cool naturally. In the comparative example of Table 3, after the coating and covering material was cooled to room temperature, the heating temperature of the coating and covering material was set at 2 times the initial surface temperature.
This is a result of detecting a defective portion by setting the temperature to 0 ° C. higher. The conventional example is a defect detecting method disclosed in Japanese Patent Application Laid-Open No. HEI 6-118040. The figure shows the result of detecting a defect without heating for detecting the defect.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】従来例の目視や指触による検出方法は、表
1の実験結果では、直径が6mmのエアボイドを検出で
きなかったが、実施例1では、100%の検出ができ
た。また、直径が10mmのエアボイドの場合、従来の
検出方法では、20%(2個/10個)の検出率であっ
たが、実施例1では、100%の検出ができた。また、
表2に示した実験結果では、エアボイドの直径が10m
mと20mmの場合の検出率を目視や指触による検出方
法と実施例による方法とで比較した。
In the conventional detection method by visual observation or finger touch, in the experimental results in Table 1, an air void having a diameter of 6 mm could not be detected, but in Example 1, 100% detection was possible. In the case of an air void having a diameter of 10 mm, the detection rate of the conventional detection method was 20% (2/10), but in Example 1, 100% was detected. Also,
According to the experimental results shown in Table 2, the diameter of the air void was 10 m.
The detection rates at m and 20 mm were compared between the detection method by visual observation and finger touch and the method according to the example.

【0026】表2の実験結果では、エアボイドの直径が
10mmの場合、従来の方法による検出率は0%であっ
たが、比較例の方法では、90%(9個/10個)の検
出率であった。また、エアボイドの直径が20mmの場
合、従来の方法では、20%(2個/10個)の検出率
であった。なお、エアボイドの位置の確認は剥離検査で
確認した。
According to the experimental results in Table 2, when the diameter of the air void was 10 mm, the detection rate by the conventional method was 0%, but in the method of the comparative example, the detection rate was 90% (9/10). Met. When the diameter of the air void is 20 mm, the detection rate of the conventional method is 20% (2/10). The position of the air void was confirmed by a peeling test.

【0027】表3の実験結果では、従来例の加熱を行わ
ずに欠陥検査を行う方法では、6mmと10mmのエア
ボイドの検出は不可能であった。しかし、本実施形態に
よる実施例では、100%の検出ができた。
According to the experimental results shown in Table 3, it was impossible to detect air voids of 6 mm and 10 mm by the conventional method of performing a defect inspection without heating. However, in the example according to the present embodiment, 100% detection was possible.

【0028】次に、図3を参照して、エアボイド等の欠
陥検出を実施する測定条件について説明する。なお、同
図の縦軸が塗覆装材の表面温度、横軸が冷却時間を示
し、点線aは塗覆装材の初期表面温度を示し、bは加熱
後の測定温度範囲を示している。図中、(イ)は健全に
接着されている部分の温度冷却曲線、(ロ)はエアボイ
ド等の密着不良個所の温度冷却曲線である。
Next, measurement conditions for detecting a defect such as an air void will be described with reference to FIG. In the figure, the vertical axis indicates the surface temperature of the coating material, the horizontal axis indicates the cooling time, the dotted line a indicates the initial surface temperature of the coating material, and b indicates the measured temperature range after heating. . In the figure, (a) is a temperature cooling curve of a portion which is soundly adhered, and (b) is a temperature cooling curve of a portion having poor adhesion such as an air void.

【0029】図3は、欠陥検査のために鋼矢板を覆う塗
覆装材の表面温度を初期表面温度aより10℃〜20℃
高い温度に加熱する。その後、自然冷却して所定経過時
間毎の温度を測定して得た温度冷却曲線である。測定温
度は健全部の表面温度から5℃〜15℃低下した際に測
定する。これは、塗覆装材中を伝わった熱がエアボイド
に達して十分に加熱するまでの時間が必要なためであ
る。なお、図3に示した温度冷却曲線(イ),(ロ)
は、その塗覆装材の材質や厚さ等に影響するために、材
質の比熱や厚さや加熱温度によって変化する。本実施形
態は、図3の温度冷却曲線(イ),(ロ)に示したよう
に、エアボイドや密着不良個所内の空気の冷却速度が遅
いことに着目して、温度分布を検査することで、エアボ
イド等の欠陥部分を検出するものである。
FIG. 3 shows that the surface temperature of the coating material covering the steel sheet pile for the defect inspection is 10 ° C. to 20 ° C. from the initial surface temperature a.
Heat to high temperature. After that, it is a temperature cooling curve obtained by measuring the temperature every predetermined elapsed time after natural cooling. The measurement temperature is measured when the surface temperature of the healthy part is lowered by 5 ° C. to 15 ° C. This is because it takes time for the heat transmitted through the coating material to reach the air void and sufficiently heat it. The temperature cooling curves (a) and (b) shown in FIG.
Varies with the specific heat, thickness, and heating temperature of the material in order to affect the material and thickness of the coating material. In the present embodiment, as shown in the temperature cooling curves (a) and (b) of FIG. 3, the temperature distribution is inspected by paying attention to the fact that the cooling speed of the air in the air voids and the places of poor adhesion is low. And a defective portion such as an air void.

【0030】次に、本発明の他の実施形態について、図
4を参照して説明する。同図は、ポリエチレンシート等
にアスファルトとゴムの混合物に各種添加物を混入した
接着層を設けた塗覆装材2を塗覆装被覆鋼管の一種であ
るポリエチレンライニング鋼管に被覆する製造工程を示
し、この製造工程の一環としてに樹脂被覆鋼材の欠陥検
査が実施されている。同図では、上記実施形態の被覆装
材に鋼矢板を被覆工程と同様に、被覆鋼管Bをブラスト
処理、クロメート処理、その上にプライマー処理を行っ
た後、被覆鋼管Bを加熱炉1で加熱して、塗覆装材3を
融着させることにより、被覆処理がなされている。融着
させた塗覆装材2の温度を冷却器8によって水冷により
冷却した後、赤外線ヒータ(または、パネルヒータ)等
の加熱源4を用いて塗覆装材を加熱する。その後、自然
冷却(強制冷却でもよい)させて、冷却曲線から求めら
れる所定時間経過後に、赤外線カメラの赤外線検出器
5,6によって塗覆装材2が被覆された塗覆装被覆鋼管
の被覆検出し、これらの熱画像信号をケーブルを通して
コンピュータ等の画像処理装置9〜12にそれぞれ入力
して、画像処理を行って、エアボイドや密着不良個所等
の欠陥部の検出を行う。また、15は塗覆装材2を引き
出すためのTダイであり、16はその押し出し機であ
る。また、赤外線検出器5,6は、塗覆装被覆鋼管の外
周全面を熱撮影できる位置に配置される。なお、この樹
脂被覆鋼材の製造装置による塗覆装被覆鋼材の場合もエ
アボイドや密着不良個所等の欠陥部の検出率は先に説明
した通りである。また、加熱源4は使用しない場合があ
ることは上記で説明した通りである。
Next, another embodiment of the present invention will be described with reference to FIG. The figure shows a manufacturing process in which a polyethylene-lined steel pipe, which is a kind of coated steel pipe, is coated with a coating material 2 provided with an adhesive layer in which various additives are mixed into a mixture of asphalt and rubber on a polyethylene sheet or the like. As a part of this manufacturing process, a defect inspection of a resin-coated steel material is performed. In the same figure, the coated steel pipe B is blasted, chromate-treated, and then subjected to a primer treatment in the same manner as the steel sheet pile is coated on the coated material of the above embodiment, and then the coated steel pipe B is heated in the heating furnace 1. The coating process is performed by fusing the coating material 3. After the temperature of the fused coating material 2 is cooled by water cooling by a cooler 8, the coating material is heated using a heating source 4 such as an infrared heater (or a panel heater). After that, the coated steel pipe covered with the coated material 2 is detected by the infrared detectors 5 and 6 of the infrared camera after a predetermined time obtained from the cooling curve after natural cooling (or forced cooling). Then, these thermal image signals are input to image processing devices 9 to 12 such as a computer through cables, and image processing is performed to detect a defective portion such as an air void or a poor adhesion portion. Reference numeral 15 denotes a T die for pulling out the coating material 2, and 16 denotes an extruder. The infrared detectors 5 and 6 are arranged at positions where the entire outer periphery of the coated steel pipe can be thermally imaged. In addition, in the case of the coating-coated steel material by the resin-coated steel material manufacturing apparatus, the detection rate of a defective portion such as an air void or a poor adhesion portion is as described above. As described above, the heating source 4 may not be used.

【0031】次に、図5を参照して、本発明の他の実施
形態について説明する。同図は、塗覆装被覆鋼管の一種
であるポリエチレンライニング鋼管の塗覆装材の欠陥検
査方法の説明のための図である。同図では、赤外線検出
装置とその画像処理装置を除き図4の実施形態と同様の
構成によって実施されており、加熱した塗覆装被覆鋼管
である被覆鋼管Bに融着させて塗覆装被覆処理を行う。
続いて、塗覆装被覆鋼管を冷却器8で一旦冷却した後、
再び加熱源4で塗覆装材2を加熱し、赤外線カメラ等の
赤外線検出器6でその表面部分の温度分布を直接撮影
し、裏面側は鏡13,14を通して反射赤外線を撮影し
て全周の表面温度分布を検出する。このようにカメラの
視野に入らない部分の温度分布の測定は、鏡13,14
を通して撮影することで、赤外線検出器6の設置個数、
狭部であっても観測することができる。また、被覆鋼管
Bの中心軸を基準として、赤外線検出装置6を周方向に
回動させて撮影してもよい。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining a defect inspection method for a coating material of a polyethylene-lined steel pipe, which is a kind of a coating-coated steel pipe. In the same figure, the present embodiment is implemented by the same configuration as that of the embodiment of FIG. 4 except for the infrared detection device and its image processing device, and is fused to a coated steel pipe B which is a heated coated steel pipe, and coated and coated. Perform processing.
Subsequently, the coated and coated steel pipe is once cooled by the cooler 8,
The coating material 2 is heated again by the heating source 4, the temperature distribution of the surface portion is directly photographed by an infrared detector 6 such as an infrared camera, and the reflected infrared rays are photographed through the mirrors 13 and 14 on the back side to cover the entire circumference. The surface temperature distribution of is detected. The measurement of the temperature distribution of the portion not in the field of view of the camera in this way is performed by mirrors 13 and 14.
Through the camera, the number of infrared detectors 6 installed,
It can be observed even in a narrow part. Alternatively, the image may be taken by rotating the infrared detection device 6 in the circumferential direction with reference to the center axis of the coated steel pipe B.

【0032】続いて、図4、図5による実施形態の欠陥
検出率について、それぞれの実施例と従来例とを比較し
て説明する。表4は図4の実施例と従来例との比較結果
を示したものであり、表5は図5の実施例と従来例との
比較を示したものである。
Next, the defect detection rate of the embodiment shown in FIGS. 4 and 5 will be described by comparing each example with the conventional example. Table 4 shows a comparison result between the embodiment of FIG. 4 and the conventional example, and Table 5 shows a comparison between the embodiment of FIG. 5 and the conventional example.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】表4は、人為的にエアボイドを10個を形
成して実施例と従来例による方法で検査した結果を示し
ている。従来の目視や指触による欠陥検査と比較した場
合、エアボイドの直径が6mmでは検出が不可能であっ
たが、図4の実施形態によれば、90%の検出が可能で
あった。また、その直径が20mmの場合、従来の検査
方法では、20%であったのに対して、図4の実施形態
の検査方法では、100%が検出された。
Table 4 shows the results obtained by artificially forming ten air voids and inspecting them by the method according to the embodiment and the conventional example. Compared with the conventional visual inspection or finger touch defect inspection, detection was not possible when the diameter of the air void was 6 mm, but according to the embodiment of FIG. 4, 90% detection was possible. In the case where the diameter is 20 mm, 100% is detected by the inspection method of the embodiment of FIG. 4, whereas 20% is detected by the conventional inspection method.

【0036】一方、表5は、図5による実施形態と従来
例との比較結果である。従来例は直接目視や指触等で欠
陥検出方法である。図5の実施形態では、鏡13,14
で赤外線を反射させて検出する方法は、直接防食塗覆装
材の表面温度を検出する場合と比較して、多少欠陥部分
の検出率が低下している。しかし、欠陥部の検出に当た
り、鏡を用いることによって、測定が困難な狭隘部であ
っても検査が容易となり、カメラの台数を減らすことが
できる。
On the other hand, Table 5 shows a comparison result between the embodiment shown in FIG. 5 and a conventional example. The conventional example is a defect detection method based on direct visual observation or finger touch. In the embodiment of FIG.
In the method of detecting by reflecting infrared rays, the detection rate of a defective portion is slightly lower than that in the case of directly detecting the surface temperature of the anticorrosion coating covering material. However, by using a mirror to detect a defective portion, inspection is easy even in a narrow portion where measurement is difficult, and the number of cameras can be reduced.

【0037】次に、本発明に係る塗覆装材の欠陥検査方
法の他の実施形態について説明する。なお、本実施形態
では、被検査物と測定器等の配置は、図1、図4、図5
で説明した同じ装置を用いている。これらの樹脂被覆鋼
材の製造装置では、その欠陥検出が製造工程で行われて
おり、樹脂被覆装鋼管の塗覆装を加熱して冷却し、塗覆
装材の温度を赤外線検出器で検出し、その熱画像信号を
画像処置装置に入力して信号処理し、エアボイドや浮き
を検出している。この画像処理では、赤外線検出器から
の熱画像信号を、時間微分して得られる熱画像信号に基
づいて、塗覆装材の温度分布を作成し、温度が低い部分
からエアボイド等の欠陥部を検出するものである。
Next, another embodiment of the method for inspecting a coating covering material for defects according to the present invention will be described. Note that, in the present embodiment, the arrangement of the inspection object, the measuring device, and the like are shown in FIGS.
The same device as described in the above is used. In these resin-coated steel manufacturing equipment, the defect detection is performed in the manufacturing process.The coating of the resin-coated steel pipe is heated and cooled, and the temperature of the coated material is detected by an infrared detector. The thermal image signal is input to an image processing apparatus and subjected to signal processing to detect air voids and floating. In this image processing, a temperature distribution of the coating material is created based on a thermal image signal obtained by time-differentiating a thermal image signal from the infrared detector, and a defective portion such as an air void is formed from a low temperature portion. It is to detect.

【0038】上記実施形態に示したように、防食塗覆装
材に人為的に直径が10mm,20mmのエアボイドを
形成した後に、塗覆装材を加熱して、その冷却過程から
得られる熱画像信号を時間微分して欠陥部を検出する。
時間微分して得られる画像は欠陥部の輪郭が一層明確な
熱画像とし、エアボイドの大きさが明らかになる。従っ
て、鏡を用いて防食塗覆装材の温度分布を検出した後、
時間微分することによって、多少検出効率が低下したと
しても、より境界部が明確になるので検出効率を高める
ことができる。また、熱画像信号を時間微分処理するこ
とによって、上記に示した検出結果より、更に、良好な
検出結果を得ることができる。図1の実施形態におい
て、時間微分処理を行った場合を実施例とし、行わなか
った場合を比較例として、それらの測定誤差の比較を表
6に示した。
As shown in the above embodiment, after an air void having a diameter of 10 mm or 20 mm is artificially formed in the anticorrosion coating material, the coating material is heated and a thermal image obtained from the cooling process is obtained. Defects are detected by time differentiating the signal.
The image obtained by time differentiation is a thermal image in which the outline of the defective portion is more clear, and the size of the air void becomes clear. Therefore, after detecting the temperature distribution of the anticorrosion coating covering material using a mirror,
Even if the detection efficiency is slightly reduced by performing the time differentiation, the detection efficiency can be increased because the boundary portion becomes clearer. Further, by performing the time differentiation processing on the thermal image signal, a better detection result can be obtained than the above detection result. In the embodiment of FIG. 1, a case where the time differentiation processing is performed is set as an example, and a case where the time differentiation processing is not performed is set as a comparative example.

【0039】また、熱画像信号を画像処理装置で空間微
分処理することによっても同様に、欠陥部の輪郭が一層
明確な熱画像とすることができる。エアボイドの大きさ
を明確にすることができる。図1の実施形態において、
空間微分処理を行った場合を実施例とし、比較例を行わ
なかった場合を比較例として、その測定誤差を表7に示
した。
Similarly, the thermal image signal can be spatially differentiated by an image processing device to similarly provide a thermal image in which the outline of the defective portion is clearer. The size of the air void can be clarified. In the embodiment of FIG.
Table 7 shows the measurement error of the case where the spatial differentiation processing was performed as an example, and the case where the comparative example was not performed as a comparative example.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】この結果から明らかなように、図1,図
4,図5の実施形態において、熱画像信号を時間微分ま
たは空間微分する画像処理によって、欠陥部の検出精度
が高くなることを示している。従って、熱画像信号を時
間微分または空間微分することによって、測定条件が緩
和され、一層検出率を高めることができる。また、欠陥
部の輪郭が明確になり、位置の特定が容易であるので、
欠陥部の補修が短時間になし得る。
As is apparent from the results, it has been shown that the image processing for temporally or spatially differentiating the thermal image signal in the embodiment of FIGS. I have. Therefore, by performing time differentiation or spatial differentiation of the thermal image signal, measurement conditions are relaxed, and the detection rate can be further increased. In addition, since the outline of the defective portion is clear and the position can be easily specified,
Repair of defective parts can be done in a short time.

【0043】更に、図4,図5の実施形態では、鋼材を
加熱して塗覆装材を捲いて被覆し、冷却後、再び加熱し
その後、欠陥部を検出しているが、被覆鋼材を加熱する
ことなく、塗覆装材を加熱して捲回して被覆し、その
後、塗覆装材を自然冷却または均一に強制冷却して、そ
の温度分布を観測することでエアボイド等の欠陥を検出
することも可能である。
Further, in the embodiment shown in FIGS. 4 and 5, the steel material is heated to coat and cover the coating material, and after cooling, the material is heated again, and then the defect is detected. Without heating, the coating material is heated and wound and coated, and then the coating material is cooled naturally or uniformly forcibly, and the temperature distribution is observed to detect defects such as air voids. It is also possible.

【0044】なお、上記実施形態において、平板状の鋼
矢板等では赤外線検出器を塗覆装材幅方向に移動させて
撮影してエアボイド等の欠陥を検出してもよい。また、
鋼管の場合は鋼管の軸を中心として、赤外線検出器を周
方向に回動させて計測してもよい。
In the above embodiment, a flat steel sheet pile or the like may be used to detect defects such as air voids by moving the infrared detector in the width direction of the coating material and photographing. Also,
In the case of a steel pipe, the measurement may be performed by rotating the infrared detector in the circumferential direction about the axis of the steel pipe.

【0045】[0045]

【発明の効果】上述のように、本発明によれば、エアボ
イド等の欠陥の存在および位置を容易に検出することが
可能であり、従来の目視や指触による検出では防食に対
する信頼性の欠けたが、本発明の検査方法によれば、小
さいエアボイド等の欠陥をほぼ100%検出することが
可能であり、而も、その位置の特定が容易であるので、
その補修に時間を要することなく、欠陥部の補修が容易
にできる利点があり、鋼矢板や塗覆装被覆鋼管の防食に
対する信頼性が一層高められる利点がある。
As described above, according to the present invention, it is possible to easily detect the presence and location of a defect such as an air void, and the conventional visual or finger detection lacks reliability for anticorrosion. However, according to the inspection method of the present invention, almost 100% of defects such as small air voids can be detected, and the position can be easily specified.
There is an advantage that the defective portion can be easily repaired without requiring any time for the repair, and there is an advantage that the reliability of the steel sheet pile and the coated and coated steel pipe for corrosion prevention is further enhanced.

【0046】また、本発明の樹脂被覆鋼材の欠陥検査方
法において、鏡を用いてその反射赤外線を赤外線検出器
で検出して、塗覆装材表面の温度分布を観測することに
より、欠陥部の検出の困難な部分であっても容易に検出
することができる利点がある。また、製造工程でエアボ
イド等の欠陥が多発する場合は、直ちに原因を追求して
製造条件の変更が可能であり、品質が安定した防食を施
した製品を製造することができる利点がある。
Further, in the defect inspection method for a resin-coated steel material of the present invention, the reflected infrared rays are detected by an infrared detector using a mirror, and the temperature distribution on the surface of the coating material is observed, so that the defect of the defective portion is detected. There is an advantage that a portion that is difficult to detect can be easily detected. Further, in the case where defects such as air voids occur frequently in the manufacturing process, it is possible to change the manufacturing conditions in pursuit of the cause immediately, and there is an advantage that it is possible to manufacture a corrosion-resistant product with stable quality.

【0047】また、本発明によれば、画像処理装置で熱
画像信号を時間微分処理もしくは空間微分することによ
り、一層検出率を高めることができる利点がある。
Further, according to the present invention, there is an advantage that the detection rate can be further increased by performing time differentiation processing or spatial differentiation of the thermal image signal by the image processing apparatus.

【0048】また、本発明によれば、塗覆装被覆処理の
作業工程には加熱・融着工程があるため、この加熱処理
工程の後に、塗覆装材を自然冷却もしくは強制冷却して
その温度分布を計測することによって、検査のための加
熱工程を新たに加える必要がない。このため、新たな加
熱工程を設けるためのコストが不必要である。また、エ
アボイドや密着不良が検出された場合、再び加熱して塗
覆装を融着させる必要があるが、エアボイドや密着不良
を検出した時点で鋼材の温度が高いため、再加熱に必要
なエネルギーが少なくて済む効果を有する。
Further, according to the present invention, since the work process of the coating and covering process includes a heating and fusing process, after the heating process, the coating and covering material is naturally cooled or forcibly cooled. By measuring the temperature distribution, it is not necessary to add a new heating step for inspection. For this reason, the cost for providing a new heating step is unnecessary. When an air void or poor adhesion is detected, it is necessary to heat again to fuse the coating, but when the air void or poor adhesion is detected, the temperature of the steel material is high, and the energy required for reheating is high. Has the effect of requiring less.

【0049】また、塗覆装被覆処理の作業工程にはライ
ンを短くする目的で水冷や空冷等の冷却工程が加わるこ
とがある。この工程で検査を行う場合、新たな強制冷却
工程を設けるためのコストが不必要である。
In addition, a cooling process such as water cooling or air cooling may be added to the work process of the coating and covering process in order to shorten the line. When the inspection is performed in this step, the cost for providing a new forced cooling step is unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る樹脂被覆鋼材の欠陥検査方法の一
実施形態を説明するための樹脂被覆鋼材の製造装置の概
略図である。
FIG. 1 is a schematic view of an apparatus for manufacturing a resin-coated steel material for explaining an embodiment of a defect inspection method for a resin-coated steel material according to the present invention.

【図2】樹脂被覆鋼材の欠陥検査における加熱温度に対
する欠陥検出率を示す図である。
FIG. 2 is a diagram showing a defect detection rate with respect to a heating temperature in a defect inspection of a resin-coated steel material.

【図3】健全部と欠陥部の塗覆装材の温度冷却曲線を示
す図である。
FIG. 3 is a diagram showing a temperature cooling curve of a coating material of a healthy part and a defective part.

【図4】本発明に係る樹脂被覆鋼材の欠陥検査方法の他
の実施形態を説明するための樹脂被覆鋼材の製造装置の
概略図である。
FIG. 4 is a schematic view of an apparatus for manufacturing a resin-coated steel material for explaining another embodiment of the defect inspection method for the resin-coated steel material according to the present invention.

【図5】本発明に係る樹脂被覆鋼材の欠陥検査方法の他
の実施形態を説明するための樹脂被覆鋼材の製造装置の
概略図である。
FIG. 5 is a schematic view of an apparatus for manufacturing a resin-coated steel material for explaining another embodiment of the defect inspection method for the resin-coated steel material according to the present invention.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 塗覆装材 3 加圧ローラ 4 加熱源 5,6 赤外線検出器 5a ケーブル 7 搬送用ローラ 8 冷却器 9 画像処理装置 9a 表示装置 10〜12 画像処理装置 13,14 鏡 15 Tダイ 16 押し出し機 A,B 被覆鋼材 DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Coating covering material 3 Pressure roller 4 Heat source 5, 6 Infrared detector 5a Cable 7 Transport roller 8 Cooler 9 Image processing device 9a Display device 10-12 Image processing device 13, 14 Mirror 15 T die 16 Extruder A, B Coated steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 利明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 川村 正 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Fujita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Inventor Tadashi Kawamura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Honko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼矢板や鋼管等の被覆鋼材に塗覆装材を
加圧接着して被覆する塗覆装被覆処理時に加熱して溶融
・接着を行った後に、自然冷却させてその温度降下の差
によって、エアボイドや密着不良個所の存在を検出する
ことを特徴とする樹脂被覆鋼材の欠陥検査方法。
1. A coating and covering material, such as a steel sheet pile or a steel pipe, is heated and melted and bonded at the time of a coating and coating process for coating by applying a pressure to a coated steel material such as a steel sheet pile or a steel pipe, and then naturally cooled to lower its temperature. A defect inspection method for a resin-coated steel material, wherein the presence of an air void or a poor adhesion portion is detected based on the difference between the two.
【請求項2】 鋼矢板や鋼管等の被覆鋼材に塗覆装材を
加圧接着して被覆する塗覆装被覆処理時に加熱して溶融
・接着を行った後に、強制冷却させてその温度降下の差
によって、エアボイドや密着不良個所の存在を検出する
ことを特徴とする樹脂被覆鋼材の欠陥検査方法。
2. A coating and covering material, such as a steel sheet pile or a steel pipe, which is heated and melted and bonded at the time of a coating and covering process for coating by applying a pressure to a coated steel material such as a steel sheet pile or a steel pipe, and then forcedly cooled to lower its temperature. A defect inspection method for a resin-coated steel material, wherein the presence of an air void or a poor adhesion portion is detected based on the difference between the two.
【請求項3】 前記塗覆装材から放射される赤外線を鏡
で反射させて赤外線検出手段で観測し、前記塗覆装材の
温度分布を検出することを特徴とする請求項1または2
に記載の樹脂被覆鋼材の欠陥検査方法。
3. The temperature distribution of the coating material is detected by reflecting infrared light emitted from the coating material with a mirror and observing the infrared light with an infrared detecting means.
3. The method for inspecting a resin-coated steel material according to claim 1.
【請求項4】 前記塗覆装材の温度分布を時間微分もし
くは空間微分してその分布からエアボイドや密着不良個
所等の大きさを検出することを特徴とする請求項1、2
または3に記載の樹脂被覆鋼材の欠陥検査方法。
4. The method according to claim 1, wherein the temperature distribution of the coating material is time-differentiated or space-differentiated, and the size of an air void or a portion having poor adhesion is detected from the distribution.
Or the defect inspection method of the resin-coated steel material according to 3.
JP9896497A 1997-04-16 1997-04-16 Defect inspection method for resin-coated steel Expired - Fee Related JP3275770B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP82365697 1997-04-16

Publications (2)

Publication Number Publication Date
JPH10288590A true JPH10288590A (en) 1998-10-27
JP3275770B2 JP3275770B2 (en) 2002-04-22

Family

ID=14233760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9896497A Expired - Fee Related JP3275770B2 (en) 1997-04-16 1997-04-16 Defect inspection method for resin-coated steel

Country Status (1)

Country Link
JP (1) JP3275770B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457777A1 (en) * 2003-03-13 2004-09-15 Powitec Intelligent Technologies GmbH Method and apparatus for manufacturing a casting piece with a defined surface
KR100574403B1 (en) * 2001-12-27 2006-04-27 주식회사 포스코 A method for evaluating surface pop-up defect on a galvanized steel sheet
WO2015011791A1 (en) * 2013-07-24 2015-01-29 株式会社日立製作所 Abnormality detection evaluation system
JP2016138770A (en) * 2015-01-26 2016-08-04 Jfeスチール株式会社 Adhesive force inspection method and inspection system for inner surface polyvinyl chloride-lining steel pipes
KR20200048974A (en) * 2018-10-31 2020-05-08 대원강업주식회사 Thermoplastic powder coating method for spring of vehicle
US11631170B2 (en) 2019-10-09 2023-04-18 Kyoto Seisakusho Co., Ltd. Determination device, sealing system, estimation model, generation device, determination method, sealing method, and generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973965B2 (en) * 2013-06-28 2016-08-23 株式会社豊田中央研究所 Bondability evaluation apparatus and bondability evaluation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574403B1 (en) * 2001-12-27 2006-04-27 주식회사 포스코 A method for evaluating surface pop-up defect on a galvanized steel sheet
EP1457777A1 (en) * 2003-03-13 2004-09-15 Powitec Intelligent Technologies GmbH Method and apparatus for manufacturing a casting piece with a defined surface
WO2015011791A1 (en) * 2013-07-24 2015-01-29 株式会社日立製作所 Abnormality detection evaluation system
JP2016138770A (en) * 2015-01-26 2016-08-04 Jfeスチール株式会社 Adhesive force inspection method and inspection system for inner surface polyvinyl chloride-lining steel pipes
KR20200048974A (en) * 2018-10-31 2020-05-08 대원강업주식회사 Thermoplastic powder coating method for spring of vehicle
US11631170B2 (en) 2019-10-09 2023-04-18 Kyoto Seisakusho Co., Ltd. Determination device, sealing system, estimation model, generation device, determination method, sealing method, and generation method

Also Published As

Publication number Publication date
JP3275770B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
US4983836A (en) Method for detecting thinned out portion on inner surface or outer surface of pipe
US7220966B2 (en) Systems and methods for inspecting coatings, surfaces and interfaces
US20070051891A1 (en) Systems and methods for inspecting coatings
US5709469A (en) Process for testing integrity of bonds between epoxy patches and aircraft structural materials
US20200230899A1 (en) In-situ monitoring of thermoformable composites
JP3275770B2 (en) Defect inspection method for resin-coated steel
JP3079920B2 (en) Defect inspection method for painted covering materials
JP3275796B2 (en) Manufacturing equipment for resin-coated steel
CN113441959A (en) Full-automatic spiral steel pipe anticorrosion integrated production line and production process
JP4463855B2 (en) System and method for inspecting coatings, surfaces and interfaces
Schliekelmann Non-destructive testing of adhesive bonded metal-to-metal joints 1
EP0567078B1 (en) Method of detecting moisture in honeycomb panel
JP5781822B2 (en) Adhesive application state inspection method
CN117347488A (en) Ultrasonic detection method for lead lining layer joint surface
JPS59151046A (en) Inside defect detecting method
JP3099649B2 (en) Self-propelled defect detection system for tubular coating
JPS61132848A (en) Non-contact painting inspecting device
Fouquet et al. Acceptance criteria for the ITER divertor vertical target
JPH0356847A (en) Nondestructive detecting method for interfacial defect of coating member
JPS62198707A (en) Noncontact paint inspecting device
JP5103690B2 (en) Method for inspecting bonding state of solder ball to semiconductor product substrate and inspection system thereof
RU2568044C1 (en) Electrothermal method for detecting and identifying defects in walls of structural members
JP2017161518A (en) Inspection method and inspection system for adhesive strength of resin coating steel tube and manufacturing method of resin coating steel tube using inspection method
JPS6352048A (en) Nondestructive inspection method for material
US20230341342A1 (en) In-situ monitoring of thermoformable composites

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

LAPS Cancellation because of no payment of annual fees