JPH10288277A - Extremely high vacuum environmental device and extremely high vacuum environment forming method - Google Patents

Extremely high vacuum environmental device and extremely high vacuum environment forming method

Info

Publication number
JPH10288277A
JPH10288277A JP9762197A JP9762197A JPH10288277A JP H10288277 A JPH10288277 A JP H10288277A JP 9762197 A JP9762197 A JP 9762197A JP 9762197 A JP9762197 A JP 9762197A JP H10288277 A JPH10288277 A JP H10288277A
Authority
JP
Japan
Prior art keywords
vacuum
gate valve
high vacuum
exhaust
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9762197A
Other languages
Japanese (ja)
Other versions
JP4434327B2 (en
Inventor
Takeshi Soma
岳 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP09762197A priority Critical patent/JP4434327B2/en
Publication of JPH10288277A publication Critical patent/JPH10288277A/en
Application granted granted Critical
Publication of JP4434327B2 publication Critical patent/JP4434327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extremely high vacuum environmental device and an extremely high vacuum environment forming method by which an efficient exhaust operation of a vacuum container can be performed and leak sources can be reduced without contaminating the vacuum container in a purge operation. SOLUTION: In an extremely high vacuum environmental device having a vacuum container 2 having an intake valve for vacuum exhaust, a main exhaust device 7 constituted of a main exhaust pump 4 and an auxiliary pump 6 which perform vacuum exhaust for the vacuum container 2 and generates extremely high vacuum and a purge route 21 returning the vacuum container 2 to atmospheric pressure, an extremely high vacuum environmental device 20 in which a first gate valve 24 and a second gate valve 23 are provided on the purge route 21 and the upstream side, respectively, and an exhaust route 25 which branches from the purge route 21 between the first gate valve and the second gate valve and has a third gate valve 26 by being connected with the auxiliary pump 6 of the main exhaust device 7 performs exhaust from the exhaust route 25 at the beginning of vacuum exhaust and subsequently switches the exhaust system to the main exhaust device 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空環境を形成す
るための技術に関し、特に極高真空環境装置の真空排気
やパージの効率を改善するための装置と方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for forming a vacuum environment, and more particularly, to an apparatus and a method for improving the efficiency of evacuation and purging of an extremely high vacuum environment apparatus.

【0002】[0002]

【従来の技術】表面化学あるいは物理実験などの分野に
おいて、極高真空環境を達成できる真空環境装置の需要
が高まっている。この分野における真空グレード区分
は、10 5〜100Paが低真空、100〜10-1Pa
が中真空、10-1〜10-5Paが高真空、10-5〜10
-9Paが超高真空、10-9Pa以下が極高真空と分類さ
れるのが一般的である。そして10-9Pa以下の極高真
空は、現時点における限界技術の一つであり、これを達
成するにはリークおよび脱ガスを極小とした真空容器
と、十分な圧縮比を有する排気装置の組み合わせが不可
欠である。
2. Description of the Related Art Surface chemistry or physics experiments
Demand for vacuum environment equipment that can achieve an extremely high vacuum environment
Is growing. Vacuum grade classification in this field
Is 10 Five~ 100Pa is low vacuum, 100 ~ 10-1Pa
Is medium vacuum, 10-1-10-FivePa is high vacuum, 10-Five-10
-9Pa is ultra-high vacuum, 10-9Pa or less is classified as ultra-high vacuum
It is common that And 10-9Extremely high true below Pa
The sky is one of the limit technologies at the moment,
Vacuum container with minimal leak and degas to achieve
And exhaust system with sufficient compression ratio cannot be combined
Is missing.

【0003】極高真空を達成できる従来の極高真空環境
装置の一例を図5に示す。この極高真空環境装置1は、
真空容器2と、真空容器に付属する吸気弁3と、真空容
器2を排気するための、主ターボ分子ポンプ4、背圧側
ターボ分子ポンプ5、油回転ポンプ6を直列に接続して
構成された主排気装置7と、パージ用ガスボンベ8と、
該ガスボンベ8からのパージガスを、減圧弁9、高真空
弁10を介して前記主ターボ分子ポンプ4と背圧側ター
ボ分子ポンプ5を接続する経路に導入するパージ経路1
1とから構成されている。また、真空容器2と主ターボ
分子ポンプ4および背圧側ターボ分子ポンプ5を接続す
る経路には、それぞれの真空度を測定する真空計12,
13が設けられている。
FIG. 5 shows an example of a conventional ultra-high vacuum environment apparatus capable of achieving an ultra-high vacuum. This extremely high vacuum environment device 1
The vacuum vessel 2, an intake valve 3 attached to the vacuum vessel, and a main turbo molecular pump 4, a back pressure side turbo molecular pump 5, and an oil rotary pump 6 for exhausting the vacuum vessel 2 are connected in series. A main exhaust device 7, a purge gas cylinder 8,
A purge path 1 for introducing a purge gas from the gas cylinder 8 through a pressure reducing valve 9 and a high vacuum valve 10 to a path connecting the main turbo molecular pump 4 and the back pressure side turbo molecular pump 5.
And 1. In addition, a path connecting the vacuum vessel 2 to the main turbo molecular pump 4 and the back pressure side turbo molecular pump 5 is provided with a vacuum gauge 12 for measuring the degree of vacuum,
13 are provided.

【0004】真空容器2の内面は、その表面からの脱ガ
スを極小にするために、電解研磨等の表面処理が施され
ている。さらにリークを極小にするために、各溶接部は
ヘリウムリーク試験等で気密性の確認が実施されてい
る。また主排気装置7は、真空容器2を105Paの大
気圧から10-9Pa以下の極高真空領域迄の排気に必要
な圧縮比を有している。
[0004] The inner surface of the vacuum vessel 2 is subjected to a surface treatment such as electrolytic polishing in order to minimize outgassing from the surface. Further, in order to minimize the leak, the airtightness of each welded portion is confirmed by a helium leak test or the like. Further, the main exhaust device 7 has a compression ratio necessary for exhausting the vacuum vessel 2 from an atmospheric pressure of 10 5 Pa to an extremely high vacuum region of 10 -9 Pa or less.

【0005】このような極高真空環境装置1は、レイア
ウトの変更が生じた場合やゲージ交換等のメンテナンス
時には、真空容器2内を極高真空状態から加圧して大気
圧まで戻す必要がある。この大気圧戻し操作を、大気開
放により外気を導入する方法で行うと、大気中の水蒸気
やその他種々の大気成分ガスが不純物として、真空容器
2の清浄な内面に付着してしまい、再起動する際にこれ
ら不純物の影響で、到達真空度の悪化あるいは所定の極
高真空状態の真空度に到達するのに長時間を要する等、
性能劣化を招くことになる。
In such an ultra-high vacuum environment apparatus 1, it is necessary to pressurize the inside of the vacuum vessel 2 from an ultra-high vacuum state and return it to atmospheric pressure when the layout is changed or when maintenance such as gauge replacement is performed. If this atmospheric pressure returning operation is performed by a method of introducing outside air by opening to the atmosphere, water vapor and other various atmospheric component gases in the atmosphere will adhere to the clean inner surface of the vacuum vessel 2 as impurities, and restart. At the time, due to the influence of these impurities, it takes a long time to reach the vacuum degree of the ultimate vacuum degree or a predetermined extremely high vacuum state,
This will result in performance degradation.

【0006】これを回避するためには、これら不純物の
少ないガスをパージガスとして導入して、大気圧に戻す
方法が一般的に採用されている。図5の例では、パージ
用ガスボンベ8に充填された上記不純物の少ないガス、
例えば窒素ガスが、パージガスとして、減圧弁9および
高真空弁10が備えられたパージ経路11から、主排気
装置7の主ターボ分子ポンプ4と背圧側ターボ分子ポン
プ5の間に導入されている。この例における高真空弁1
0の構造は、グランド部が金属ベロー、シール部(弁
座)はゴム系材料を用いている。
In order to avoid this, a method is generally adopted in which a gas containing a small amount of these impurities is introduced as a purge gas and the pressure is returned to the atmospheric pressure. In the example of FIG. 5, the gas with a small amount of impurities filled in the purge gas cylinder 8,
For example, nitrogen gas is introduced as a purge gas from the purge path 11 provided with the pressure reducing valve 9 and the high vacuum valve 10 between the main turbo molecular pump 4 and the back pressure side turbo molecular pump 5 of the main exhaust device 7. High vacuum valve 1 in this example
In the structure of No. 0, the ground portion uses a metal bellows, and the seal portion (valve seat) uses a rubber-based material.

【0007】ところが、このパージガス導入方法は、パ
ージガス経路11が主ターボ分子ポンプ4の排気側に接
続されているため、導入されたパージガスは、主ターボ
分子ポンプ4を逆流して、吸気弁3を介して真空容器2
に導かれることになる。周知のように一般的な主ターボ
分子ポンプ4は、軸受に潤滑油を用いており、ガスの流
れの中にこの潤滑油が混入することは避けられず、パー
ジガスを逆流させると混入した油分が真空容器2内に持
ち込まれてしまうという問題がある。
However, in this method of introducing a purge gas, since the purge gas passage 11 is connected to the exhaust side of the main turbo molecular pump 4, the introduced purge gas flows back through the main turbo molecular pump 4 to cause the intake valve 3 to flow. Via vacuum container 2
Will be led to. As is well known, a general main turbo molecular pump 4 uses a lubricating oil for a bearing, and it is inevitable that the lubricating oil is mixed in a gas flow. There is a problem of being brought into the vacuum vessel 2.

【0008】前述の通り真空容器2内表面は高度に清浄
な状態に保たれており、極僅かな油分といえども一旦こ
れが付着すると、該油分は蒸気圧が高いため簡単に除去
できず、到達真空度の劣化を招くことになる。また、付
着した油分を完全に取り除くためには、真空容器2を極
高真空環境装置1から取り外して洗浄するか、または、
別途の特別な洗浄装置を用いて行う必要が生じる等、多
大な労力と費用を要することになる。
As described above, the inner surface of the vacuum vessel 2 is kept in a highly clean state. Even if a very small amount of oil adheres, once the oil adheres, the oil cannot be easily removed because of its high vapor pressure. The degree of vacuum will be degraded. In order to completely remove the attached oil, the vacuum vessel 2 is removed from the ultrahigh vacuum environment device 1 and washed, or
This requires a great deal of labor and cost, such as the necessity of using a separate special cleaning device.

【0009】また、油潤滑式ターボ分子ポンプの代わり
に、オイルレスの磁気式軸受複合分子ポンプを使用した
例が、例えば実公平7−20395号公報に記載されて
いる。このポンプの場合は、パージガスの逆流によって
油分を真空容器内に持ち込むことはないが、機械として
の精密度が高いため、パージガスを逆流させることによ
って、回転体であるブレードのオフセットの狂いによる
性能劣化等、ポンプ自身の障害が懸念される。
An example in which an oil-less magnetic bearing composite molecular pump is used instead of the oil-lubricated turbo molecular pump is described in, for example, Japanese Utility Model Publication No. 7-20395. In the case of this pump, the oil content is not brought into the vacuum vessel by the backflow of the purge gas.However, since the precision of the machine is high, the reverse flow of the purge gas causes deterioration of the performance due to the offset of the rotating blade. There is a concern about the failure of the pump itself.

【0010】いずれにしても、主排気装置の主ターボ分
子ポンプ4背圧側から、ポンプを逆流させるようなパー
ジガス導入方法は、真空容器の汚染防止の観点から好ま
しくなく、特に極高真空環境装置のように僅かの油分で
も性能劣化を招くものにあってはなおさらである。
In any case, a method of introducing a purge gas in which the pump is caused to flow backward from the back pressure side of the main turbo molecular pump 4 of the main exhaust device is not preferable from the viewpoint of preventing contamination of the vacuum vessel. This is even more so in a case where performance is deteriorated even with a small amount of oil.

【0011】図6は、排気ポンプ潤滑油の逆流による真
空容器内汚染を防止した従来の極高真空環境装置を例示
するものである。この極高真空環境装置14は、パージ
経路の接続位置を除いて、その他の構成は前記図5に示
した極高真空環境装置1と同じであり、同一構成要素に
は同じ符号を付して詳細な説明は省略する。
FIG. 6 illustrates a conventional ultra-high vacuum environment apparatus which prevents contamination in a vacuum vessel due to backflow of an exhaust pump lubricating oil. The configuration of the ultra-high vacuum environment device 14 is the same as that of the ultra-high vacuum environment device 1 shown in FIG. 5 except for the connection position of the purge path, and the same components are denoted by the same reference numerals. Detailed description is omitted.

【0012】この装置14において、減圧弁9と超高真
空弁10aが設けられたパージ経路11aは、真空容器
2に接続されている。したがってパージ用ガスボンベ8
からのパージガスは、直接真空容器2に導入されるの
で、パージガス導入時に、図5に示したような主排気装
置の主ターボ分子ポンプ4の油分を真空容器2に持ち込
みこれを汚染させることはない。
In the apparatus 14, a purge path 11a provided with a pressure reducing valve 9 and an ultra-high vacuum valve 10a is connected to the vacuum vessel 2. Therefore, the purge gas cylinder 8
Is introduced directly into the vacuum vessel 2, so that when the purge gas is introduced, the oil content of the main turbo-molecular pump 4 of the main exhaust device as shown in FIG. 5 is not carried into the vacuum vessel 2 and does not contaminate it. .

【0013】パージガスは、ボンベ等の容器に充填され
たものを用いるのが一般的であり、その充填圧力は大気
圧以上、例えば15MPaである。パージガスを真空容
器2に導入するパージ操作に当たっては、減圧弁9で大
気圧近く、例えば100hPa程度まで減圧するが、こ
れを大気圧以下(真空状態)まで減圧することはしな
い。これは、大気圧以下まで減圧すると、パージ経路1
1aのどこかにリークが発生したような場合、そのリー
ク箇所から外気が侵入し真空容器2を汚染することにな
るからである。
As the purge gas, a gas filled in a container such as a cylinder is generally used, and the filling pressure is equal to or higher than the atmospheric pressure, for example, 15 MPa. In the purge operation for introducing the purge gas into the vacuum vessel 2, the pressure is reduced to a value close to the atmospheric pressure, for example, about 100 hPa by the pressure reducing valve 9, but the pressure is not reduced to the atmospheric pressure or less (vacuum state). This is because when the pressure is reduced to below the atmospheric pressure, the purge path 1
This is because if a leak occurs somewhere in 1a, outside air enters from the leak location and contaminates the vacuum vessel 2.

【0014】したがってパージ操作時は、パージ経路1
1aに設けられた超高真空弁10aの一次側、即ち超高
真空弁10aと減圧弁9間のパージ経路11aは大気圧
力以上であり、一方超高真空弁10aの2次側となる真
空容器2側は極高真空状態であるので、超高真空弁10
aは、その出入口の間で大気圧(0.1MPa)以上の
圧力差が発生することになる。
Therefore, during the purging operation, the purge path 1
Vacuum vessel on the primary side of the ultra-high vacuum valve 10a provided in 1a, that is, the purge path 11a between the ultra-high vacuum valve 10a and the pressure reducing valve 9 is at or above atmospheric pressure, while being on the secondary side of the ultra-high vacuum valve 10a. Since the second side is in an extremely high vacuum state, the ultra-high vacuum valve 10
In the case of a, a pressure difference between the entrance and the exit is greater than the atmospheric pressure (0.1 MPa).

【0015】この例のように真空容器2に直接接続され
る超高真空弁10aの構造は、グランド部は前記図5に
示した高真空弁10と同じように金属ベローであるが、
シール部はゴムに替え金属を使用した、いわゆるメタル
タッチ構造のものが用いられる。これはゴムシールのも
のに比べ脱ガスが少なく、且つ高温のベーキングに耐え
るようにするためである。メタルタッチ構造の弁は、そ
のシール機構が繊細で調整も微妙であるので、弁の出入
口に大きな圧力差を与えると圧力差に起因する歪や金属
疲労が生じ、リークの原因となりやすい。前述の如く、
極高真空環境は僅かなリークがあっても達成できないの
で、このようなメタルタッチの弁の出入口に圧力差を生
じさせるようなパージガス導入方法は好ましくない。
In the structure of the ultra-high vacuum valve 10a directly connected to the vacuum vessel 2 as in this example, the ground portion is a metal bellow as in the high vacuum valve 10 shown in FIG.
For the seal portion, a so-called metal touch structure using a metal instead of rubber is used. This is to reduce the outgassing as compared with the rubber seal and to withstand high temperature baking. Since a metal touch structure valve has a delicate sealing mechanism and a delicate adjustment, if a large pressure difference is applied to the inlet / outlet of the valve, distortion or metal fatigue due to the pressure difference occurs, which is likely to cause a leak. As mentioned above,
Since an extremely high vacuum environment cannot be achieved even with a small leak, a method of introducing a purge gas that causes a pressure difference between the inlet and the outlet of the metal touch valve is not preferable.

【0016】また、上記した図5、図6の従来例におい
ては、真空容器2を大気圧の状態から真空排気する場合
は、大気圧状態での水蒸気等の不純物を含んだガス(生
ガス)が主ターボ分子ポンプ4を通過することになる。
極高真空用ターボ分子ポンプは、ブレード等に脱ガス低
減処理を施しているものがあるが、生ガスとの接触によ
りその効果が失われることがあり、その結果極高真空装
置全体の性能低下を招く可能性がある。
In the conventional examples shown in FIGS. 5 and 6, when the vacuum vessel 2 is evacuated from an atmospheric pressure state, a gas (raw gas) containing impurities such as water vapor at the atmospheric pressure state. Will pass through the main turbo molecular pump 4.
Some ultra-high vacuum turbo-molecular pumps have a degassing treatment applied to their blades, etc., but their effects may be lost due to contact with raw gas, resulting in a decrease in the performance of the entire ultra-high vacuum device. May be caused.

【0017】[0017]

【発明が解決しようとする課題】本発明は、上記した従
来の問題点に鑑みてなされたもので、真空容器の効率的
な排気操作ができるとともに、パージ操作に当たって
は、真空容器を汚染することなく、且つ、リーク源を減
少させることのできる極高真空環境装置及び極高真空環
境の形成方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is possible to efficiently exhaust a vacuum vessel and contaminate the vacuum vessel during a purging operation. It is an object of the present invention to provide an ultra-high vacuum environment device and a method for forming an ultra-high vacuum environment, which can reduce the number of leak sources without any problem.

【0018】[0018]

【課題を解決するための手段】上記した目的を達成する
ため本発明の極高真空環境装置は、真空排気用の吸気弁
を有する真空容器と、該真空容器を真空排気して極高真
空を発生させる主排気ポンプと補助ポンプからなる主排
気装置と、前記真空容器を大気圧に戻すパージ経路を有
する極高真空環境装置において、前記パージ経路に第1
仕切弁と、該第1仕切弁の上流側に第2仕切弁を設ける
とともに、前記第1仕切弁と第2仕切弁の間のパージ経
路から分岐し、第3仕切弁を有する排気経路を、前記主
排気装置の前記補助ポンプに接続して設けたことを特徴
としている。
In order to achieve the above object, an ultrahigh vacuum environment apparatus according to the present invention comprises a vacuum vessel having an intake valve for evacuating, and an ultrahigh vacuum by evacuating the vacuum vessel. In an ultra-high vacuum environment device having a main exhaust device including a main exhaust pump and an auxiliary pump for generating a gas, and a purge path for returning the vacuum vessel to the atmospheric pressure, a first exhaust path is provided in the purge path.
A gate valve, a second gate valve provided upstream of the first gate valve, and an exhaust path branched from a purge path between the first gate valve and the second gate valve and having a third gate valve, The main exhaust device is connected to the auxiliary pump.

【0019】本発明の極高真空環境装置において、前記
真空容器と前記吸気弁との間に管路を設けるとともに、
該管路に前記パージ経路を接続しても良い。また、前記
主排気装置とは別の補助排気装置を設けるとともに、前
記第3仕切弁を有する排気経路を該補助排気装置に接続
しても良い。さらに、前記第2仕切弁の上流側のパージ
経路に、低温トラップを設けた構成としても良い。
In the ultrahigh vacuum environment apparatus of the present invention, a pipe is provided between the vacuum vessel and the intake valve,
The purge path may be connected to the pipeline. Further, an auxiliary exhaust device different from the main exhaust device may be provided, and an exhaust path having the third gate valve may be connected to the auxiliary exhaust device. Further, a low temperature trap may be provided in the purge path on the upstream side of the second gate valve.

【0020】また、本発明の極高真空環境形成方法は、
真空排気用の吸気弁を有する真空容器に、主排気ポンプ
と補助ポンプからなる主排気装置と、前記真空容器を大
気圧に戻すパージ経路を接続し、該真空容器を真空排気
して極高真空を発生させる極高真空環境形成方法におい
て、前記パージ経路に第1仕切弁と第2仕切弁とを設け
るとともに、該第1仕切弁と第2仕切弁との間に、該パ
ージ経路から分岐した第3仕切弁を有する排気管路を設
け、前記真空容器の到達真空度が低い状態の排気初期時
には、前記第1仕切弁と排気管路の第3仕切弁を通して
真空容器の排気を行い、前記真空容器の到達真空度が所
定値以上に達した後、排気経路を切り替え、前記主排気
装置で真空容器の排気を行うことを特徴としている。
Further, the method for forming an ultra-high vacuum environment of the present invention comprises:
A vacuum pump having an intake valve for vacuum pumping is connected to a main pumping device including a main pump and an auxiliary pump, and a purge path for returning the vacuum chamber to atmospheric pressure. In the method for forming an ultra-high vacuum environment, a first gate valve and a second gate valve are provided in the purge path, and a branch from the purge path is provided between the first gate valve and the second gate valve. An exhaust pipe having a third gate valve is provided, and at the time of initial evacuation when the ultimate vacuum degree of the vacuum vessel is low, the vacuum vessel is evacuated through the first gate valve and the third gate valve of the exhaust pipe, After the ultimate degree of vacuum of the vacuum container reaches a predetermined value or more, the exhaust path is switched, and the main exhaust device exhausts the vacuum container.

【0021】本発明の極高真空環境形成方法において、
前記排気初期時の排気を、前記主排気装置の補助ポンプ
を用いて、或いは前記主排気装置とは別体の補助排気装
置を用いて行うことができる。また、前記真空容器への
パージガス導入時に、前記第1仕切弁を開、前記第3仕
切弁を閉とした後、第2仕切弁を開として、パージガス
を第1仕切弁を介して真空容器に導入させることができ
る。さらに、前記真空容器へのパージガス導入時、該パ
ージガス中の不純物を低温トラップで除去するように構
成しても良い。
In the method for forming an extremely high vacuum environment according to the present invention,
The evacuation at the initial stage of the evacuation can be performed by using an auxiliary pump of the main exhaust device or by using an auxiliary exhaust device separate from the main exhaust device. Further, when the purge gas is introduced into the vacuum vessel, the first gate valve is opened, the third gate valve is closed, and then the second gate valve is opened, and the purge gas is supplied to the vacuum vessel via the first gate valve. Can be introduced. Further, when the purge gas is introduced into the vacuum vessel, impurities in the purge gas may be removed by a low-temperature trap.

【0022】[0022]

【発明の実施の形態】図1は、本発明を適用した極高真
空環境装置の設備構成の第一形態例を示す図である。な
お、前記図5に示した従来例と同一要素のものには同一
符号を付して、その詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a first embodiment of the equipment configuration of an ultra-high vacuum environment apparatus to which the present invention is applied. The same elements as those in the conventional example shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0023】この極高真空環境装置20は、真空容器2
と、該真空容器2に付属する吸気弁3と、主ターボ分子
ポンプ4、背圧側ターボ分子ポンプ5、油回転ポンプ6
を直列に接続して構成される主排気装置7と、パージ用
ガスボンベ8と、該ガスボンベ8からのパージガスを真
空容器2に導入するパージ経路21と、該パージ経路2
1から分岐して主排気装置7に接続される排気経路25
とから構成されている。また、真空容器2および主ター
ボ分子ポンプ4と背圧側ターボ分子ポンプ5の中間経路
には、真空度を測定する真空計12,13がそれぞれ設
けられている。
This ultra-high vacuum environment device 20 includes a vacuum vessel 2
And an intake valve 3 attached to the vacuum vessel 2, a main turbo molecular pump 4, a back pressure side turbo molecular pump 5, and an oil rotary pump 6.
Are connected in series, a purge gas cylinder 8, a purge path 21 for introducing a purge gas from the gas cylinder 8 into the vacuum container 2,
Exhaust path 25 branched from 1 and connected to main exhaust device 7
It is composed of In addition, vacuum gauges 12 and 13 for measuring the degree of vacuum are provided in the vacuum vessel 2 and an intermediate path between the main turbo molecular pump 4 and the back pressure side turbo molecular pump 5, respectively.

【0024】前記パージ経路21には、減圧弁22と、
高真空弁23と、超高真空弁24が設けられている。ま
た、前記排気経路25には、高真空弁26が設けられて
いる。前記パージ経路21に設けられた超高真空弁24
は、真空容器2に対して第1仕切弁、同じく高真空弁2
3は第2仕切弁、また、排気経路25に設けられた高真
空弁26は第3仕切弁となっている。
A pressure reducing valve 22 is connected to the purge path 21.
A high vacuum valve 23 and an ultra-high vacuum valve 24 are provided. The exhaust path 25 is provided with a high vacuum valve 26. The ultra-high vacuum valve 24 provided in the purge path 21
Is a first gate valve for the vacuum vessel 2 and a high vacuum valve 2
Reference numeral 3 denotes a second gate valve, and a high vacuum valve 26 provided in the exhaust path 25 serves as a third gate valve.

【0025】上記の如く構成された極高真空環境装置2
0を用いた極高真空形成方法(真空排気及びパージ運
転)について以下に説明する。先ず大気圧状態から行う
真空排気運転の初期は、吸気弁3、第2仕切弁である高
真空弁23を閉とし、第1仕切弁および第3仕切弁であ
る超高真空弁24および高真空弁26を開とし、主排気
装置7の油回転ポンプ6を起動する。この操作により、
真空容器2内のガスは、第1仕切弁24、第3仕切弁2
6、排気経路25、背圧側ターボ分子ポンプ5を経由し
て、油回転ポンプ6で吸引され大気に排気される。した
がって排気初期時、真空容器2の真空度が低真空時に
は、排気ガスは主ターボ分子ポンプ4をバイパスし、生
ガスが主ターボ分子ポンプ4に接触しないので、ブレー
ドなどの脱ガス処理効果を損ねることがなく、稼動後、
極高真空環境装置20全体の性能低下(脱ガスによる真
空度劣化)を招くことが無くなる。
The ultra-high vacuum environment device 2 configured as described above
The method for forming an ultra-high vacuum using 0 (evacuation and purge operation) will be described below. First, in the initial stage of the vacuum evacuation operation performed from the atmospheric pressure state, the intake valve 3 and the high vacuum valve 23 as the second gate valve are closed, and the ultra-high vacuum valve 24 as the first and third gate valves and the high vacuum The valve 26 is opened, and the oil rotary pump 6 of the main exhaust device 7 is started. By this operation,
The gas in the vacuum vessel 2 is supplied to the first gate valve 24 and the third gate valve 2.
6, via the exhaust path 25 and the back pressure side turbo molecular pump 5, the oil is sucked by the oil rotary pump 6 and exhausted to the atmosphere. Therefore, at the initial stage of evacuation, when the degree of vacuum of the vacuum vessel 2 is low, the exhaust gas bypasses the main turbo molecular pump 4 and the raw gas does not contact the main turbo molecular pump 4, thereby impairing the degassing effect of the blades and the like. Without operation,
The performance of the entire ultra-high vacuum environment device 20 is not degraded (the degree of vacuum is degraded by degassing).

【0026】油回転ポンプ6の運転を継続すると、排気
系の真空度が次第に高くなり、真空計13で背圧側ター
ボ分子ポンプ5を起動できる真空度に達したことを確認
して、背圧側ターボ分子ポンプ5を起動する。この操作
で排気系の真空度がさらに高くなり、真空計12で主タ
ーボ分子ポンプ4を起動できる真空度に達したことを確
認して、超高真空弁24(第1仕切弁)、高真空弁26
(第3仕切弁)を閉、吸気弁3を開として、主ターボ分
子ポンプ4を起動し所定の極高真空領域までの真空排気
を行い、最後に吸気弁3を閉、主ターボ分子ポンプ4を
停止して、極高真空環境装置20は定常運転状態とな
る。
When the operation of the oil rotary pump 6 is continued, the degree of vacuum of the exhaust system gradually increases, and it is confirmed by the vacuum gauge 13 that the degree of vacuum has reached a level at which the back-pressure side turbo-molecular pump 5 can be started. The molecular pump 5 is started. This operation further increases the degree of vacuum of the exhaust system, and confirms that the vacuum gauge 12 has reached a degree of vacuum at which the main turbo molecular pump 4 can be started. The ultrahigh vacuum valve 24 (first gate valve) and the high vacuum Valve 26
(Third gate valve) is closed, the intake valve 3 is opened, the main turbo molecular pump 4 is started to evacuate to a predetermined extremely high vacuum region, and finally the intake valve 3 is closed, and the main turbo molecular pump 4 is closed. Is stopped, and the ultra-high vacuum environment device 20 enters a steady operation state.

【0027】この定常運転状態でのパージ経路に注目す
ると、真空容器2は、該真空容器2に対して第1仕切弁
である超高真空弁24、第2仕切弁である高真空弁2
3、第3仕切弁である高真空弁26により遮断されてお
り、これら3個の仕切弁に囲まれたパージ経路21c
は、前記した真空排気操作で背圧側ターボ分子ポンプ5
により超高真空に排気されているため、第1の仕切弁で
ある超高真空弁24の出入口の圧力差は極小さなものと
なる。
Paying attention to the purge path in this steady operation state, the vacuum vessel 2 is provided with an ultra-high vacuum valve 24 as a first gate valve and a high vacuum valve 2 as a second gate valve with respect to the vacuum chamber 2.
3. The purge path 21c, which is shut off by the high vacuum valve 26, which is the third gate valve, and is surrounded by these three gate valves.
Is the back pressure side turbo molecular pump 5
, The pressure difference between the inlet and the outlet of the ultra-high vacuum valve 24, which is the first gate valve, becomes extremely small.

【0028】一例として、真空容器2内の真空度が1×
10-10Pa、パージ経路21cの真空度が1×10-5
Paの場合を想定すると、第1仕切弁である超高真空弁
24の出入口の圧力差は1×10-5Paと微小となり、
この微小な圧力差に起因する歪や金属疲労は無視し得る
程度のものであり、第1仕切弁である超高真空弁24の
出入口の圧力差に起因して生じる、歪などによるリーク
を回避することができる。
As an example, the degree of vacuum in the vacuum vessel 2 is 1 ×
10 −10 Pa, the degree of vacuum in the purge path 21c is 1 × 10 −5
Assuming the case of Pa, the pressure difference between the inlet and the outlet of the ultrahigh vacuum valve 24 as the first gate valve is as small as 1 × 10 −5 Pa,
The distortion and metal fatigue caused by the minute pressure difference are negligible, and the leakage caused by the distortion caused by the pressure difference between the inlet and the outlet of the ultrahigh vacuum valve 24 as the first gate valve is avoided. can do.

【0029】さらに、前記3個の仕切弁に囲まれたパー
ジ経路21cは、高真空若しくは超高真空に保持されて
いるため、仮に第1仕切弁である超高真空弁24に微小
のリークが発生したとしても、パージ経路21から真空
容器2に漏洩するリーク量は、従来のようにパージ経路
21cが大気圧以上である場合と比較して、無視できる
程度のリーク量に抑えることができる。
Further, since the purge path 21c surrounded by the three gate valves is maintained at a high vacuum or an ultra-high vacuum, a small leak may occur in the ultra-high vacuum valve 24 as the first gate valve. Even if it occurs, the amount of leakage leaking from the purge path 21 to the vacuum vessel 2 can be suppressed to a negligible amount as compared with the conventional case where the purge path 21c is at or above the atmospheric pressure.

【0030】また、前記3個の仕切弁に囲まれたパージ
経路21cを排気するのは、背圧側ターボ分子ポンプ5
であり、これは主ターボ分子ポンプ4の背圧側である。
したがって、パージ経路21cから排気経路25を付加
したことにより、極高真空環境装置20の性能を直接左
右する主ターボ分子ポンプ4の性能には、一切影響を与
えることがないので、極高真空環境装置20全体の性能
低下を防止することができる。
The purging path 21c surrounded by the three gate valves is evacuated by the back pressure side turbo molecular pump 5.
Which is on the back pressure side of the main turbo molecular pump 4.
Therefore, the addition of the exhaust path 25 from the purge path 21c does not affect the performance of the main turbo-molecular pump 4 that directly affects the performance of the ultra-high vacuum environment device 20 at all. It is possible to prevent the performance of the entire device 20 from deteriorating.

【0031】次に、本形態例のパージ運転の方法につい
て説明する。先ず、パージ経路の減圧弁22が適切な圧
力に調整できることを確認後、第3仕切弁である高真空
弁26を閉、第1仕切弁である超高真空弁24および吸
気弁3を開とし、その後第2の仕切弁である高真空弁2
3を開とする。この操作により、パージガスは、真空容
器2、主ターボ分子ポンプ4、背圧側ターボ分子ポンプ
5、油回転ポンプ6の順に導入される。したがって、従
来例のように主ターボ分子ポンプ4を逆流させることが
ないから、真空容器2に油分を持ち込むことなく、パー
ジ運転をすることができる。
Next, a method of the purge operation according to this embodiment will be described. First, after confirming that the pressure reducing valve 22 in the purge path can be adjusted to an appropriate pressure, the high vacuum valve 26 as the third gate valve is closed, and the ultrahigh vacuum valve 24 and the intake valve 3 as the first gate valve are opened. , And then a high vacuum valve 2 as a second gate valve
Open 3 By this operation, the purge gas is introduced into the vacuum vessel 2, the main turbo molecular pump 4, the back pressure side turbo molecular pump 5, and the oil rotary pump 6 in this order. Therefore, unlike the conventional example, the main turbo molecular pump 4 does not flow backward, so that the purge operation can be performed without bringing oil into the vacuum vessel 2.

【0032】なお、本形態例では、主排気装置7は、主
ターボ分子ポンプ4、背圧側ターボ分子ポンプ5、油回
転ポンプ6を直列に接続して構成した場合を示したが、
所望の排気性能を有するものであれば、この構成に限定
されるものではなく、例えば補助ポンプとしての背圧側
ターボ分子ポンプ5と油回転ポンプ6は一体型とするこ
とができる。
In this embodiment, the main exhaust device 7 is configured by connecting the main turbo molecular pump 4, the back pressure side turbo molecular pump 5, and the oil rotary pump 6 in series.
The configuration is not limited as long as it has desired exhaust performance. For example, the back-pressure side turbo-molecular pump 5 and the oil rotary pump 6 as auxiliary pumps can be integrated.

【0033】また、本形態例の構成において、第3仕切
弁である高真空弁26を介して排気する排気経路25
は、補助ポンプである背圧側ターボ分子ポンプ5に接続
したものを示したが、これに代えて、破線25aで示す
ように補助ポンプである油回転ポンプ6に接続すること
もできる。即ち、主排気装置7の補助ポンプの何れかま
たは真空排気の真空度の高さにしたがって補助ポンプを
切り替えて使用することもできる。
In the configuration of the present embodiment, an exhaust passage 25 for exhausting through a high vacuum valve 26 as a third gate valve.
Is connected to the back pressure side turbo-molecular pump 5 which is an auxiliary pump, but may be connected to an oil rotary pump 6 which is an auxiliary pump as shown by a broken line 25a instead. That is, any one of the auxiliary pumps of the main exhaust device 7 or the auxiliary pump can be switched and used in accordance with the degree of vacuum of the evacuation.

【0034】図2は、本発明を適用した極高真空環境装
置の設備構成の第二形態例を示す図である。なお、前記
図1に示した第一形態例と同一要素のものには、同一符
号、ないし関連符号(20番台を30番台にして)を付
し、その詳細な説明は省略する。
FIG. 2 is a view showing a second embodiment of the equipment configuration of the ultra-high vacuum environment apparatus to which the present invention is applied. The same elements as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals or related reference numerals (20s are replaced by 30s), and detailed description thereof will be omitted.

【0035】この極高真空環境装置30は、前記図1に
示した構成の極高真空環境装置20の、真空容器2と吸
気弁3の間に、真空容器接続弁37および管路38を付
加して、パージ経路31を該管路38に接続して構成し
たものである。その他の構成は図1に示すものと同じで
ある。
This ultra-high vacuum environment device 30 is provided with a vacuum vessel connection valve 37 and a pipe 38 between the vacuum vessel 2 and the intake valve 3 of the ultra-high vacuum environment apparatus 20 having the structure shown in FIG. Then, the purge path 31 is connected to the pipe 38. Other configurations are the same as those shown in FIG.

【0036】付加された真空容器接続弁37および管路
38は、何らかの理由で真空容器2にパージ経路を接続
できない場合、例えば真空容器2に溶接でノズルを取り
付けたくない場合や既設真空容器に本発明のパージ経路
を追設する場合等に有効である。
The added vacuum vessel connection valve 37 and pipe line 38 are used when the purge path cannot be connected to the vacuum vessel 2 for some reason, for example, when it is not desired to attach a nozzle to the vacuum vessel 2 by welding, or when the existing vacuum vessel is not used. This is effective when the purge path of the present invention is additionally provided.

【0037】本形態例の排気運転およびパージ運転方法
は、前述の図1における運転方法と基本的に同じであ
る。先ず大気圧状態から行う真空排気運転の初期は、吸
気弁3および第2仕切弁である高真空弁33を閉とし、
真空容器接続弁37、第1仕切弁および第3仕切弁であ
る超高真空弁34、高真空弁36を開とし、主排気装置
7の油回転ポンプ6を起動する。この操作により、真空
容器2内のガスは、真空容器接続弁37、管路38、第
1仕切弁34、第3仕切弁36、排気経路35、背圧側
ターボ分子ポンプ5を経由して、油回転ポンプ6で吸引
され、大気に排気される。
The exhaust operation method and the purge operation method of this embodiment are basically the same as the operation method shown in FIG. First, in the initial stage of the evacuation operation performed from the atmospheric pressure state, the intake valve 3 and the high vacuum valve 33 as the second gate valve are closed,
The vacuum vessel connection valve 37, the ultra high vacuum valve 34 and the high vacuum valve 36 as the first and third gate valves are opened, and the oil rotary pump 6 of the main exhaust device 7 is started. By this operation, the gas in the vacuum vessel 2 passes through the vacuum vessel connection valve 37, the pipe line 38, the first gate valve 34, the third gate valve 36, the exhaust path 35, and the back pressure side turbo molecular pump 5, and It is sucked by the rotary pump 6 and exhausted to the atmosphere.

【0038】油回転ポンプ6の運転を継続すると、排気
系の真空度が次第に高くなり、真空計13で背圧側ター
ボ分子ポンプ5を起動できる真空度に達したことを確認
して、背圧側ターボ分子ポンプを起動する。この操作で
排気系の真空度がさらに高くなり、真空計12で主ター
ボ分子ポンプ4を起動できる真空度に達したことを確認
して、超高真空弁34(第1仕切弁)、高真空弁36
(第2仕切弁)を閉、主ターボ分子ポンプ4を起動し、
吸気弁3を開として、所定の極高真空領域までの真空排
気を行い、最後に真空容器接続弁37および吸気弁3を
閉、主ターボ分子ポンプ4を停止して、極高真空環境装
置20は定常運転状態となる。
When the operation of the oil rotary pump 6 is continued, the degree of vacuum of the exhaust system gradually increases, and it is confirmed by the vacuum gauge 13 that the degree of vacuum has reached a level at which the back pressure side turbo molecular pump 5 can be started. Start the molecular pump. This operation further increases the degree of vacuum of the exhaust system, and confirms that the vacuum gauge 12 has reached a degree of vacuum at which the main turbo molecular pump 4 can be started. Then, the ultrahigh vacuum valve 34 (first gate valve) and the high vacuum Valve 36
(2nd gate valve) is closed, the main turbo molecular pump 4 is started,
The intake valve 3 is opened to evacuate to a predetermined ultra-high vacuum region. Finally, the vacuum vessel connection valve 37 and the intake valve 3 are closed, the main turbo molecular pump 4 is stopped, and the ultra-high vacuum environment device 20 is opened. Becomes a steady operation state.

【0039】次に、本形態例のパージ運転の方法につい
て説明する。先ず、パージ経路の減圧弁32が適切な圧
力に調整できることを確認後、第3仕切弁である高真空
弁36を閉、真空容器接続弁37、吸気弁3、第1仕切
弁である超高真空弁34を開とし、その後第2仕切弁で
ある高真空弁33を開とする。この操作により、パージ
ガスは、管路38、真空容器接続弁37を介して真空容
器2に、また吸気弁3を介して主ターボ分子ポンプ4、
背圧側ターボ分子ポンプ5、油回転ポンプ6の順に導入
される。
Next, a method of the purge operation according to the present embodiment will be described. First, after confirming that the pressure reducing valve 32 of the purge path can be adjusted to an appropriate pressure, the high vacuum valve 36 as the third gate valve is closed, the vacuum vessel connection valve 37, the intake valve 3, and the ultra high valve as the first gate valve. The vacuum valve 34 is opened, and then the high vacuum valve 33 as the second gate valve is opened. With this operation, the purge gas is supplied to the vacuum vessel 2 via the pipe 38 and the vacuum vessel connection valve 37, and the main turbo molecular pump 4 via the intake valve 3.
The back pressure side turbo molecular pump 5 and the oil rotary pump 6 are introduced in this order.

【0040】本形態例においても、排気初期時は生ガス
が主ターボ分子ポンプに接触しないので、ブレードなど
の脱ガス処理効果を損ねることがなく、また第1仕切弁
である超高真空弁34の出入口の圧力差は極小にするこ
とができリークを防止または極小にできる。さらにパー
ジガスを主排気装置を逆流させないので、真空容器を油
分で汚染させることもない等、上記第一形態例と同様な
効果が得られる。
Also in this embodiment, since the raw gas does not come into contact with the main turbo molecular pump at the initial stage of evacuation, the degassing effect of the blade or the like is not impaired, and the ultrahigh vacuum valve 34 as the first gate valve is used. The pressure difference at the entrance and exit of the can be minimized to prevent or minimize leakage. Further, since the purge gas does not flow backward through the main exhaust device, the same effects as those of the first embodiment can be obtained, such as no contamination of the vacuum vessel with oil.

【0041】図3は、本発明を適用した極高真空環境装
置の設備構成の第三形態例を示す図である。なお、前記
図1に示した第一形態例と同一要素のものには、同一符
号、ないし関連符号(20番台を40番台にして)を付
し、その詳細な説明は省略する。
FIG. 3 is a diagram showing a third embodiment of the equipment configuration of the ultrahigh vacuum environment apparatus to which the present invention is applied. The same elements as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals or related reference numerals (20s to 40s), and detailed description thereof will be omitted.

【0042】この極高真空環境装置40は、真空容器2
に初期排気用およびパージガス導入経路41cの排気用
として、主排気装置7とは別の補助排気装置49を設け
て構成されている。
The ultra-high vacuum environment device 40 includes the vacuum vessel 2
Further, an auxiliary exhaust device 49 separate from the main exhaust device 7 is provided for initial exhaust and exhaust of the purge gas introduction path 41c.

【0043】先ず大気圧状態から行う真空排気運転の初
期は、吸気弁3、第2および第3仕切弁である高真空弁
43および46を閉、第1仕切弁である超高真空弁44
を開として、補助排気装置49の油ポンプ48を起動
し、その後第3仕切弁である高真空弁46を開とする。
この操作により、真空容器2内のガスは、超高真空弁4
4(第1仕切弁)、高真空弁46(第3仕切弁)、補助
排気装置49側の排気経路45、背圧側ターボ分子ポン
プ47を経由して、油回転ポンプ48で吸引され大気に
排気される。
First, in the initial stage of the vacuum evacuation operation performed from the atmospheric pressure state, the intake valve 3, the high vacuum valves 43 and 46 as the second and third gate valves are closed, and the ultrahigh vacuum valve 44 as the first gate valve.
, The oil pump 48 of the auxiliary exhaust device 49 is started, and then the high vacuum valve 46 as the third gate valve is opened.
By this operation, the gas in the vacuum vessel 2 is transferred to the ultra-high vacuum valve 4.
4 (the first gate valve), the high vacuum valve 46 (the third gate valve), the exhaust path 45 on the auxiliary exhaust device 49 side, and the back pressure side turbo-molecular pump 47, and are sucked by the oil rotary pump 48 and exhausted to the atmosphere. Is done.

【0044】補助排気装置49側の油回転ポンプ48の
運転を継続すると、補助排気経路45の真空度が次第に
高くなり、該経路45に設けられた真空計50で背圧側
ターボ分子ポンプ47を起動できる真空度に達したこと
を確認して、背圧側ターボ分子ポンプ47を起動する。
この操作で真空容器2を含めた排気系の真空度がさらに
高くなり、真空計12で主排気装置7の主ターボ分子ポ
ンプ4を起動できる真空度に達したことを確認して、排
気系を、補助排気装置49から主排気装置7に切り替え
る。即ち、主排気装置7の油ポンプ6、背圧側ターボ分
子ポンプ5を起動し、超高真空弁44(第1仕切弁)、
高真空弁46(第3仕切弁)を閉、吸気弁3を開とし
て、主ターボ分子ポンプ4を起動し所定の極高真空領域
までの真空排気を行い、最後に吸気弁3を閉、主ターボ
分子ポンプ4を停止して、極高真空環境装置40は定常
運転状態となる。
When the operation of the oil rotary pump 48 on the auxiliary exhaust device 49 side is continued, the degree of vacuum in the auxiliary exhaust path 45 gradually increases, and the back pressure side turbo molecular pump 47 is started by the vacuum gauge 50 provided in the auxiliary exhaust path 45. After confirming that the vacuum degree has been reached, the back pressure side turbo molecular pump 47 is started.
By this operation, the degree of vacuum of the exhaust system including the vacuum vessel 2 was further increased, and it was confirmed by the vacuum gauge 12 that the degree of vacuum reached the level at which the main turbo molecular pump 4 of the main exhaust device 7 could be started. Then, the mode is switched from the auxiliary exhaust device 49 to the main exhaust device 7. That is, the oil pump 6 and the back-pressure side turbo-molecular pump 5 of the main exhaust device 7 are started, and the ultra-high vacuum valve 44 (first gate valve),
The high vacuum valve 46 (third gate valve) is closed, the intake valve 3 is opened, the main turbo molecular pump 4 is started to evacuate to a predetermined extremely high vacuum region, and finally the intake valve 3 is closed and The turbo molecular pump 4 is stopped, and the ultrahigh vacuum environment device 40 enters a steady operation state.

【0045】次に、本形態例のパージ運転の方法につい
て説明する。先ず、パージ経路の減圧弁42が適切な圧
力に調整できることを確認後、吸気弁3、第3仕切弁で
ある高真空弁46を閉、第1仕切弁であり超高真空弁4
4を開とし、その後第2仕切弁である高真空弁43を開
とする。この操作によりパージガスは、パージ経路4
1、第1仕切弁44を介して真空容器2に導入される。
Next, a method of the purge operation according to this embodiment will be described. First, after confirming that the pressure reducing valve 42 in the purge path can be adjusted to an appropriate pressure, the intake valve 3 and the high vacuum valve 46 as the third gate valve are closed, and the ultra high vacuum valve 4 as the first gate valve is closed.
4 is opened, and then the high vacuum valve 43 as the second gate valve is opened. This operation causes the purge gas to flow through the purge path 4
1. Introduced into the vacuum vessel 2 through the first gate valve 44.

【0046】本形態例においても、排気初期時は生ガス
が主ターボ分子ポンプに接触しないので、ブレードなど
の脱ガス処理効果を損ねることがなく、また第1仕切弁
である超高真空弁34の出入口の圧力差は極小にするこ
とができリークを防止または極小にでき、さらに、パー
ジガスを主排気装置を逆流させないので、真空容器を油
分で汚染させることもない等、上記第一形態例と同様な
効果が得られる。
Also in this embodiment, the raw gas does not come into contact with the main turbo molecular pump at the initial stage of evacuation, so that the degassing effect of the blade or the like is not impaired, and the ultrahigh vacuum valve 34 as the first gate valve is used. The pressure difference between the inlet and the outlet of the first embodiment can be minimized to prevent or minimize leakage, and furthermore, since the purge gas does not flow back to the main exhaust device, the vacuum vessel is not contaminated with oil. Similar effects can be obtained.

【0047】図4は、本発明の極高真空環境装置の第四
形態例を示すものである。この装置は上記第一形態例の
パージガス導入経路21に、液体窒素を用いた低温トラ
ップ60を設けた構成になっている。
FIG. 4 shows a fourth embodiment of the ultrahigh vacuum environment apparatus of the present invention. This apparatus has a configuration in which a low-temperature trap 60 using liquid nitrogen is provided in the purge gas introduction path 21 of the first embodiment.

【0048】この低温トラップ60は、液体窒素溜容器
61、この容器61に液体窒素LNを供給する経路6
2、気化したLNを排出する経路63、液体窒素溜容器
61内を加圧するための加圧経路64およびパージガス
を液体窒素溜容器61の液体窒素中に導入する経路65
から構成され、それぞれの経路には必要に応じ弁が設け
られている。
The low-temperature trap 60 includes a liquid nitrogen reservoir 61 and a path 6 for supplying liquid nitrogen LN to the container 61.
2. A path 63 for discharging the vaporized LN, a pressure path 64 for pressurizing the inside of the liquid nitrogen reservoir 61, and a path 65 for introducing a purge gas into the liquid nitrogen in the liquid nitrogen reservoir 61.
, And each path is provided with a valve as needed.

【0049】この低温トラップ60は、パージガスボン
ベ8から供給されるパージガス中に微量の水分等の不純
物を含んでいる場合に、パージガス導入経路21bの弁
65aを閉、経路65の弁65bを開にして、パージガ
スを液体窒素溜容器61に導き、該容器中の液体窒素と
熱交換させ冷却することにより、これらの不純物を凝固
して捕捉するために設けたものである。捕捉された不純
物は主排気装置7で系外に放出する。
This low-temperature trap 60 closes the valve 65a of the purge gas introduction path 21b and opens the valve 65b of the path 65 when the purge gas supplied from the purge gas cylinder 8 contains a trace amount of impurities such as moisture. Then, the purge gas is introduced into the liquid nitrogen storage container 61, heat exchange is performed with liquid nitrogen in the container, and the liquid nitrogen is cooled to solidify and trap these impurities. The trapped impurities are released outside the system by the main exhaust device 7.

【0050】加圧経路64は、液体窒素溜容器61に導
入されたパージガス自体が液化しないように、減圧弁2
2前のパージガスを弁64aで圧力調節して液体窒素溜
容器61の上部空間に供給加圧し、冷却温度を調節する
ものである。
The pressurizing path 64 is provided with a pressure reducing valve 2 so that the purge gas introduced into the liquid nitrogen reservoir 61 does not liquefy.
The pressure of the previous purge gas is adjusted by the valve 64a to supply it to the upper space of the liquid nitrogen reservoir 61 and pressurize it to adjust the cooling temperature.

【0051】上記不純物は、パージガスの種類によって
異なるが、例えばパージガスが窒素ガスである場合は、
上記微量の水分の他に、微量の炭酸ガスや酸素などが含
まれる。
The above impurities vary depending on the type of purge gas. For example, when the purge gas is nitrogen gas,
In addition to the above-mentioned trace water, trace carbon dioxide and oxygen are contained.

【0052】また、冷却源としては、パージガス中の不
純物を冷却して凝固できるものなら何でもよく、液体窒
素に限定されるものではない。また、本例では、低温ト
ラップを第一形態例に適用した場合を示したが、前記し
た第二、第三形態例に適用できることは勿論であり、さ
らに、低温トラップの構成も一例を示したものでありこ
れに限定されるものではない。
The cooling source is not limited to liquid nitrogen as long as it can cool and solidify impurities in the purge gas. Further, in this example, the case where the low-temperature trap is applied to the first embodiment is shown. However, it is needless to say that the low-temperature trap can be applied to the second and third embodiments, and the configuration of the low-temperature trap also shows an example. It is not limited to this.

【0053】このようにして、微量の不純物を除去した
ガスをパージガスとして用いることにより、真空容器2
内に不純物を持ち込むのを防止することができるので、
真空排気時における排気時間の短縮や所望の到達真空度
達成を容易にすることができる。
By using the gas from which a trace amount of impurities has been removed as a purge gas, the vacuum vessel 2
Can prevent the introduction of impurities into the interior,
It is possible to shorten the evacuation time and achieve a desired ultimate vacuum degree during evacuation.

【0054】[0054]

【発明の効果】以上説明した通り、本発明によれば、真
空容器に接続された主排気装置とパージ経路のうち、該
パージ経路に第1仕切弁と第2仕切弁とを設けるととも
に、該第1仕切弁と第2仕切弁との間に、該パージ経路
から分岐した第3仕切弁を有する排気管路を設け、前記
真空容器の到達真空度が低い状態の排気初期時には、前
記第1仕切弁と排気管路の第3仕切弁を通して真空容器
の排気を行い、前記真空容器の到達真空度が所定値以上
に達した後、排気経路を切り替え、前記主排気装置で真
空容器の排気を行うことによって、3つの仕切弁に囲ま
れたパージ経路が真空排気され、真空容器側の第1仕切
弁の出入口の圧力差が極小となる。したがって、第1仕
切弁の出入口の圧力差に起因して生じる、歪などによる
リークを回避することができ、従来型の同種装置に比
べ、排気効率と到達真空度が改善され、極高真空環境装
置の性能向上を達成することができる。またパージ経路
を真空容器に接続して配設したことによって、パージ運
転時にパージガスが主排気装置を逆流して真空容器に導
入されることがない、したがって真空容器内に油分等の
不純物を持ち込むことなくパージ運転をすることができ
るので、真空排気時における排気時間の短縮や到達真空
度達成を容易にすることができる。
As described above, according to the present invention, of the main exhaust device connected to the vacuum vessel and the purge path, the purge path is provided with the first gate valve and the second gate valve. An exhaust pipe having a third gate valve branched from the purge path is provided between the first gate valve and the second gate valve, and at the beginning of evacuation when the ultimate vacuum degree of the vacuum vessel is low, the first evacuation line is provided. The vacuum chamber is evacuated through the gate valve and the third gate valve of the exhaust pipe, and after the ultimate vacuum degree of the vacuum vessel reaches a predetermined value or more, the exhaust path is switched, and the exhaust of the vacuum vessel is performed by the main exhaust device. By doing so, the purge path surrounded by the three gate valves is evacuated, and the pressure difference between the inlet and outlet of the first gate valve on the vacuum vessel side is minimized. Therefore, it is possible to avoid a leak due to a strain or the like caused by a pressure difference between an inlet and an outlet of the first gate valve, and to improve the exhaust efficiency and the ultimate vacuum degree as compared with the same type of conventional type device, and to realize an extremely high vacuum environment. An improvement in the performance of the device can be achieved. In addition, since the purge path is connected to the vacuum vessel, the purge gas does not flow backward through the main exhaust device and is introduced into the vacuum vessel during the purge operation. Therefore, impurities such as oil components are brought into the vacuum vessel. Since the purging operation can be performed without the need, the evacuation time at the time of evacuation can be reduced and the ultimate vacuum degree can be easily achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の極高真空環境装置の第一形態例を示
す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of an ultra-high vacuum environment device of the present invention.

【図2】 本発明の極高真空環境装置の第二形態例を示
す構成図。
FIG. 2 is a configuration diagram showing a second embodiment of the ultra-high vacuum environment device of the present invention.

【図3】 本発明の極高真空環境装置の第三形態例を示
す構成図。
FIG. 3 is a configuration diagram showing a third embodiment of the ultra-high vacuum environment device of the present invention.

【図4】 本発明の極高真空環境装置の第四形態例を示
す構成図。
FIG. 4 is a configuration diagram showing a fourth embodiment of the ultrahigh vacuum environment device of the present invention.

【図5】 従来の極高真空環境装置の一例を示す構成
図。
FIG. 5 is a configuration diagram showing an example of a conventional ultra-high vacuum environment device.

【図6】 従来の極高真空環境装置の別な例を示す構成
図。
FIG. 6 is a configuration diagram showing another example of a conventional ultra-high vacuum environment device.

【符号の説明】[Explanation of symbols]

2 真空容器 3 吸気弁 4 主ターボ分子ポンプ(主排気ポンプ) 6 油回転ポンプ(補助ポンプ) 7 主排気装置 20,30,40 極高真空環境装置 21,31,41 パージ経路 23,33,43 高真空弁(第2仕切弁) 24,34,44 超高真空弁(第1仕切弁) 25,35,45 排気経路 26,36,46 高真空弁(第3仕切弁) 2 Vacuum container 3 Intake valve 4 Main turbo molecular pump (Main exhaust pump) 6 Oil rotary pump (Auxiliary pump) 7 Main exhaust device 20, 30, 40 Ultra-high vacuum environment device 21, 31, 41 Purge paths 23, 33, 43 High vacuum valve (second gate valve) 24, 34, 44 Ultra-high vacuum valve (first gate valve) 25, 35, 45 Exhaust path 26, 36, 46 High vacuum valve (third gate valve)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 真空排気用の吸気弁を有する真空容器
と、該真空容器を真空排気して極高真空を発生させる主
排気ポンプと補助ポンプからなる主排気装置と、前記真
空容器を大気圧に戻すパージ経路を有する極高真空環境
装置において、前記パージ経路に第1仕切弁と、該第1
仕切弁の上流側に第2仕切弁を設けるとともに、前記第
1仕切弁と第2仕切弁の間のパージ経路から分岐し、第
3仕切弁を有する排気経路を、前記主排気装置の前記補
助ポンプに接続して設けたことを特徴とする極高真空環
境装置。
1. A vacuum container having an intake valve for evacuating, a main exhaust device including a main exhaust pump and an auxiliary pump for evacuating the vacuum container to generate an extremely high vacuum, and an atmospheric pressure An ultra-high vacuum environment apparatus having a purge path for returning to the first path, wherein a first gate valve is provided in the purge path,
A second gate valve is provided on the upstream side of the gate valve, and a branch path from a purge path between the first gate valve and the second gate valve is provided. An ultra-high vacuum environment device characterized by being connected to a pump.
【請求項2】 前記真空容器と前記吸気弁との間に管路
を設けるとともに、該管路に前記パージ経路を接続した
ことを特徴とする請求項1記載の極高真空環境装置。
2. The ultra-high vacuum environment apparatus according to claim 1, wherein a pipe is provided between the vacuum vessel and the intake valve, and the purge path is connected to the pipe.
【請求項3】 前記主排気装置とは別の補助排気装置を
設けるとともに、前記第3仕切弁を有する排気経路を、
該補助排気装置に接続したことを特徴とする請求項1ま
たは請求項2記載の極高真空環境装置。
3. An auxiliary exhaust device separate from the main exhaust device is provided, and an exhaust path having the third gate valve is provided.
3. The ultra-high vacuum environment device according to claim 1, wherein the device is connected to the auxiliary exhaust device.
【請求項4】 前記第2仕切弁の上流側のパージ経路
に、低温トラップを設けたことを特徴とする請求項1か
ら請求項3のいずれか1項に記載の極高真空環境装置。
4. The ultra-high vacuum environment apparatus according to claim 1, wherein a low-temperature trap is provided in a purge path on an upstream side of the second gate valve.
【請求項5】 真空排気用の吸気弁を有する真空容器
に、主排気ポンプと補助ポンプからなる主排気装置と、
前記真空容器を大気圧に戻すパージ経路を接続し、該真
空容器を真空排気して極高真空を発生させる極高真空環
境形成方法において、 前記パージ経路に第1仕切弁と第2仕切弁とを設けると
ともに、該第1仕切弁と第2仕切弁との間に、該パージ
経路から分岐した第3仕切弁を有する排気管路を設け、 前記真空容器の到達真空度が低い状態の排気初期時に
は、前記第1仕切弁と排気管路の第3仕切弁を通して真
空容器の排気を行い、前記真空容器の到達真空度が所定
値以上に達した後、排気経路を切り替え、前記主排気装
置で真空容器の排気を行うことを特徴とする極高真空環
境形成方法。
5. A vacuum pump having an intake valve for vacuum exhaust, a main exhaust device comprising a main exhaust pump and an auxiliary pump,
A method for forming an ultra-high vacuum environment in which a purge path for returning the vacuum vessel to atmospheric pressure is connected, and the vacuum vessel is evacuated to generate an ultra-high vacuum, wherein a first gate valve and a second gate valve are provided in the purge path. And an exhaust pipe having a third gate valve branched from the purge path is provided between the first gate valve and the second gate valve. Occasionally, the vacuum chamber is evacuated through the first gate valve and the third gate valve of the exhaust pipe, and after the ultimate vacuum degree of the vacuum vessel reaches a predetermined value or more, the exhaust path is switched, and the main exhaust device is used. A method for forming an ultra-high vacuum environment, comprising evacuating a vacuum container.
【請求項6】 前記排気初期時の排気運転を前記主排気
装置の補助ポンプを用いて行うことを特徴とする請求項
5記載の極高真空環境形成方法。
6. The method according to claim 5, wherein the evacuation operation at the initial stage of evacuation is performed using an auxiliary pump of the main evacuation device.
【請求項7】 前記排気経路に接続して前記主排気装置
と別体の補助排気装置を設け、前記排気初期時の排気運
転を該補助排気装置を用いて行うことを特徴とする請求
項5記載の極高真空環境形成方法。
7. An auxiliary exhaust device connected to the exhaust path and separate from the main exhaust device is provided, and the exhaust operation at the initial stage of the exhaust is performed using the auxiliary exhaust device. The method for forming an extremely high vacuum environment according to the above.
【請求項8】 前記真空容器へのパージガス導入時に、
前記第1仕切弁を開、前記第3仕切弁を閉とし、その後
第2仕切弁を開として、パージガスを前記第1仕切弁を
介して真空容器に導入することを特徴とする請求項5乃
至請求項7のいずれか1項記載の極高真空環境形成方
法。
8. When introducing a purge gas into the vacuum vessel,
The purge gas is introduced into the vacuum vessel through the first gate valve by opening the first gate valve, closing the third gate valve, and thereafter opening the second gate valve. The method for forming an extremely high vacuum environment according to claim 7.
【請求項9】 前記第2仕切弁の上流側のパージ経路
に、低温トラップを設け、前記真空容器へのパージガス
導入時、該パージガス中の不純物を除去することを特徴
とする請求項5乃至請求項8のいずれか1項記載の極高
真空環境形成方法。
9. A low-temperature trap is provided in a purge path on an upstream side of the second gate valve, and impurities in the purge gas are removed when the purge gas is introduced into the vacuum vessel. Item 10. The method for forming an ultra-high vacuum environment according to any one of Items 8.
JP09762197A 1997-04-15 1997-04-15 Extreme vacuum environment equipment Expired - Fee Related JP4434327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09762197A JP4434327B2 (en) 1997-04-15 1997-04-15 Extreme vacuum environment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09762197A JP4434327B2 (en) 1997-04-15 1997-04-15 Extreme vacuum environment equipment

Publications (2)

Publication Number Publication Date
JPH10288277A true JPH10288277A (en) 1998-10-27
JP4434327B2 JP4434327B2 (en) 2010-03-17

Family

ID=14197281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09762197A Expired - Fee Related JP4434327B2 (en) 1997-04-15 1997-04-15 Extreme vacuum environment equipment

Country Status (1)

Country Link
JP (1) JP4434327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135213B2 (en) 2006-01-16 2012-03-13 Sony Corporation Physical quantity interpolating method, and color signal processing circuit and camera system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135213B2 (en) 2006-01-16 2012-03-13 Sony Corporation Physical quantity interpolating method, and color signal processing circuit and camera system using the same

Also Published As

Publication number Publication date
JP4434327B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US5259735A (en) Evacuation system and method therefor
EP0919722A2 (en) Regeneration of a cryopump
JP2002097007A (en) Method for collecting rare gas and its implement
JP2010276173A (en) Vacuum heat insulating container, and method for introducing filler gas into vacuum heat insulating layer of the same
JPH10288277A (en) Extremely high vacuum environmental device and extremely high vacuum environment forming method
JP3568667B2 (en) Leak inspection device
JP2004340844A (en) Leak inspection device and control method of leak inspection device
JPH0221618A (en) Process equipment gas supply piping equipment
JP2708569B2 (en) Vacuum device degassing method and degassing device
JP3550616B2 (en) Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus
JP2004028018A (en) Nonload test device and method for compressor
JPH11230034A (en) Evacuating system and its operating method
JPH0770733A (en) Semiconductor producing device and vacuum evacuating method
JP7082924B2 (en) Fluorine compound remover, oxygen remover
JPH09309588A (en) Transportation container for poisonous gas container
JP5732404B2 (en) Process chamber with built-in exhaust system
JPH03157585A (en) Vacuum device and usage thereof
JPH05311403A (en) Gas regenerating device for film forming device
JPH05152217A (en) Exhaust system for manufacturing high-performance semiconductor and control method thereof
JPH0778781A (en) Atmospheric pressure high-temperature processing device and gasd replacing method thereof
JPH07206586A (en) Apparatus for epitaxial growth
JPH04187873A (en) Evacuation device
KR100905651B1 (en) An Apparatus for Maintaining the Purity of H2 Gas for Cooling of an Electric Generator
JPS63285924A (en) Device for manufacturing semiconductor
JP7011384B2 (en) Vacuum processing equipment and rare gas recovery equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees