JPH10287999A - Method for supplying zinc ion to zinc-nickel alloy electroplating bath and device therefor - Google Patents

Method for supplying zinc ion to zinc-nickel alloy electroplating bath and device therefor

Info

Publication number
JPH10287999A
JPH10287999A JP9885197A JP9885197A JPH10287999A JP H10287999 A JPH10287999 A JP H10287999A JP 9885197 A JP9885197 A JP 9885197A JP 9885197 A JP9885197 A JP 9885197A JP H10287999 A JPH10287999 A JP H10287999A
Authority
JP
Japan
Prior art keywords
metal
plating solution
counter electrode
plate
alloy electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9885197A
Other languages
Japanese (ja)
Other versions
JP3370896B2 (en
Inventor
Kiyokazu Ishizuka
清和 石塚
Shinichiro Mori
晋一郎 森
Kazumi Nishimura
一実 西村
Hiroyuki Kitaike
宏至 北池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09885197A priority Critical patent/JP3370896B2/en
Publication of JPH10287999A publication Critical patent/JPH10287999A/en
Application granted granted Critical
Publication of JP3370896B2 publication Critical patent/JP3370896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for simply and inexpensively supplying Zn in a sulfuric acid-bath Zn-Ni alloy plating bath while preventing the electrolytical substitution of Ni without needing an intricate equipment such as diaphragm. SOLUTION: The counter NHE potential on the surface of metallic Zn is limited within the range expressed by inequility (-0.314+0.045×(pH) < potential on metallic Zn surface <-0.059×(pH)). The circulating plating soln. for the plating bath of a Zn-Ni alloy electrodepositing device having the sulfuric acid bath at <=pH4 using the insoluble anode is passed through a metallic Zn dissolving tank 23 to dissolve metallic Zn 23, and Zn ion is supplied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不溶性陽極を用い
る硫酸浴によるZn−Ni系合金電気メッキ装置のメッ
キ浴槽からの循環メッキ液を金属Znの溶解槽に通し、
メッキ液中に金属Znを溶解させてZnイオンを供給す
るに際し、Niの置換析出によるZn溶解速度の低下や
Niスラッジの発生のない金属Znの溶解方法及び装置
に関する。
[0001] The present invention relates to a method for passing a circulating plating solution from a plating bath of a Zn-Ni-based alloy electroplating apparatus using a sulfuric acid bath using an insoluble anode through a bath for dissolving metallic Zn.
The present invention relates to a method and an apparatus for dissolving metal Zn, in which when dissolving metal Zn in a plating solution and supplying Zn ions, the Zn dissolution rate is not reduced due to displacement precipitation of Ni and Ni sludge is not generated.

【0002】[0002]

【従来の技術】Zn−Ni系合金電気メッキ鋼板は、従
来の亜鉛メッキ鋼板に比較して耐食性に優れ、自動車は
じめ各種用途で使用されている。鋼帯に対して連続的に
Zn−Ni系合金メッキを施すには、通常、鉛系または
イリジウム系の不溶性アノードを使用し、メッキ浴とし
ては、硫酸系の浴が使用される。メッキで消費されるイ
オンは、金属または酸化物または各種の塩で供給され
る。コスト的には金属を溶解してイオンを供給する方法
が最も有効であることは言うまでもない。
2. Description of the Related Art Zn-Ni alloy electroplated steel sheets have excellent corrosion resistance as compared with conventional galvanized steel sheets and are used in various applications such as automobiles. In order to continuously coat a steel strip with a Zn-Ni-based alloy, a lead-based or iridium-based insoluble anode is usually used, and a sulfuric acid-based bath is used as a plating bath. The ions consumed in the plating are supplied as metal or oxide or various salts. Needless to say, the method of supplying ions by dissolving the metal is the most effective in terms of cost.

【0003】Znイオンを金属Znの溶解によって供給
することは、Znのメッキでの使用量が多いこともあっ
て最大の課題である。しかし、Niイオンの共存するメ
ッキ液中に金属Znを溶解させようとすると、Znに対
して電気化学的に貴なNiが析出し、これが金属Znを
覆うため溶解速度が著しく低下してしまうという問題が
生じる。析出したNiの一部は再溶解するものの、溶解
しきれなかったものはスラッジとして残り、Ni原単位
の悪化や押しキズ発生等の品質不良を引き起こす原因と
もなる。
[0003] Supplying Zn ions by dissolving metallic Zn is the biggest problem because of the large amount of Zn used in plating. However, when trying to dissolve metallic Zn in a plating solution in which Ni ions coexist, Ni that is electrochemically noble with respect to Zn precipitates and covers the metallic Zn, so that the dissolution rate is significantly reduced. Problems arise. Although a part of the precipitated Ni is re-dissolved, the one that has not been completely dissolved remains as sludge, which may cause deterioration of the Ni basic unit and occurrence of poor quality such as generation of a push flaw.

【0004】この問題の解決のための方法として、例え
ば特開平5−222597号公報や、特開平6−811
99号公報では、金属Znの比表面積とメッキ浴温を特
定の範囲に制御することにより、金属Znの効率的溶解
を図る方法が開示されている。しかし本発明者等の検討
の結果、この方法は、浴中のNi濃度が低い場合のみ有
効であり、実用的なNi濃度のメッキ液で溶解する場合
は、Niの置換析出による損失が大きく、有効な方法と
は言えない。また、特開平6−200400号公報で
は、メッキ浴にクエン酸等のオキシ酸またはオキシ酸塩
を添加し、Niイオンを錯塩としてトラップし、金属Z
n溶解時のNi置換析出を抑制する方法が開示されてい
る。この方法では、添加するオキシ酸の濃度管理が煩雑
であり、スラッジの発生やメッキ性能への悪影響も懸念
されるし、またコスト的にも有利とは言い難い。
As a method for solving this problem, for example, JP-A-5-222597 and JP-A-6-811
No. 99 discloses a method of controlling the specific surface area of the metal Zn and the plating bath temperature to be in specific ranges to thereby efficiently dissolve the metal Zn. However, as a result of investigations by the present inventors, this method is effective only when the Ni concentration in the bath is low, and when dissolving with a plating solution having a practical Ni concentration, the loss due to displacement precipitation of Ni is large, It is not an effective method. In Japanese Patent Application Laid-Open No. 6-200400, an oxyacid such as citric acid or an oxyacid salt is added to a plating bath, Ni ions are trapped as a complex salt, and metal Z is added.
A method for suppressing the precipitation of Ni substitution during the dissolution of n is disclosed. In this method, the control of the concentration of the added oxyacid is complicated, and there is a fear that sludge is generated and the plating performance is adversely affected.

【0005】さらに、特開平4−362200号公報お
よび特開平5−9799号公報では、金属Znを保持し
たバスケットと対極を隔膜を介して溶解槽中に保持し、
バスケット側にメッキ液を通すとともに対極側に酸溶液
を通し、バスケット側を陽極として通電して溶解する方
法が示されている。この方法では、Zn上へのNi析出
は防止でき、対極への金属の析出もないが、電力コスト
的に有利とは言えず、電極や隔膜の設備の維持管理も煩
雑でランニングコストの負荷も大きい。また、陰極側に
流通する酸水溶液の管理も必要となる。
Further, in JP-A-4-362200 and JP-A-5-9799, a basket holding a metal Zn and a counter electrode are held in a melting tank via a diaphragm,
A method is shown in which a plating solution is passed through the basket side and an acid solution is passed through the counter electrode side, and the basket side is used as an anode to dissolve by energizing. In this method, Ni deposition on Zn can be prevented, and no metal is deposited on the counter electrode. However, this method is not advantageous in terms of power cost. large. In addition, it is necessary to control the acid aqueous solution flowing to the cathode side.

【0006】[0006]

【発明が解決しようとする課題】以上のように従来行わ
れているZn−Ni系合金電気メッキにおける金属Zn
の溶解方法は、 (ア)化学溶解の物理的条件を厳しくする。 (イ)添加剤によってNi析出を抑えながら溶解する。 (ウ)通電溶解により電気化学的にNi析出を抑えて溶
解する。 の3つに大別できる。(ア)の方法では、Ni析出が避
けられず、(イ)の方法では、Ni析出は避けられるも
のの、メッキ品質への添加剤の影響が未知であり、いず
れも有効な手段とは言えない。(ウ)の方法は、Ni析
出が避けられ、メッキ品質への悪影響もないことから最
も有効な方法であるが、通電溶解であるが故に複雑な設
備が必要で、操業コスト、設備コストの負荷が大きいと
いう問題がある。
As described above, the metal Zn in the conventional Zn-Ni-based alloy electroplating is used.
(1) The physical conditions of chemical dissolution are strict. (A) The additive dissolves while suppressing Ni precipitation. (C) Dissolution while suppressing Ni deposition electrochemically by energizing dissolution. Can be roughly divided into three. In the method (A), Ni precipitation cannot be avoided, and in the method (A), Ni precipitation can be avoided, but the effect of the additive on the plating quality is unknown, and neither can be said to be an effective means. . The method (c) is the most effective method because the precipitation of Ni is avoided and there is no adverse effect on the plating quality. There is a problem that is large.

【0007】以上に鑑み、本発明は、Niの置換析出を
有効に防止し、なおかつ隔膜等の複雑な設備を必要とせ
ず、簡便でコスト的に有利な、硫酸浴Zn−Ni系合金
メッキ浴におけるZnイオンの供給方法とその装置を提
供することを目的とする。
In view of the above, the present invention provides a sulfuric acid bath Zn-Ni-based alloy plating bath which effectively prevents the substitutional precipitation of Ni, does not require complicated equipment such as a diaphragm, and is simple and cost-effective. It is an object of the present invention to provide a Zn ion supply method and an apparatus therefor.

【0008】[0008]

【課題を解決するための手段】本発明者等は、Zn−N
i系合金メッキ浴中での金属Znの溶解現象を支配する
原理・原則を理解するため、電気化学的な考察、検証を
行った。その結果、得られた結論を以下に記す。
Means for Solving the Problems The present inventors have proposed Zn-N
In order to understand the principle governing the dissolution phenomenon of metal Zn in the i-based alloy plating bath, electrochemical considerations and verifications were performed. The conclusions obtained as a result are described below.

【0009】図1および図2にそれぞれ、Zn、Niの
電位−pH図を示す(MARCEL POURBAIX 著“ATLS OF EL
ECTROCHEMICAL EQUILIBRIA”より引用)。また、溶解時
に起きている素反応について下記の(1)〜(3)式に
示す。 Zn=Zn2++2e- (1) Ni=Ni2++2e- (2) 2H+ + 2e- =H2 (3) 溶解初期の金属Zn上の電位は実測の結果、ほぼ(1)
式で示されるZnの酸化還元電位である−0.8V(対
NHE)付近にあり、この電位においては、Niイオン
は、図2の電位−pH図が示唆するとおり、イオンとし
ては安定でいられなくなるため金属として析出し、この
ことが金属Zn溶解を困難にする原因の根本であること
がわかった。そこで安定した溶解を維持するためには、
溶解時の金属Zn上の電位を(2)式で示されるNiの
酸化還元電位よりも常に高く保つ必要がある。
FIG. 1 and FIG. 2 show the potential-pH diagrams of Zn and Ni, respectively (MARCEL POURBAIX, “ATLS OF EL”).
ECTROCHEMICAL EQUILIBRIA "). The elementary reactions occurring during dissolution are shown in the following formulas (1) to (3). Zn = Zn 2+ + 2e (1) Ni = Ni 2+ + 2e (2) 2H + + 2e = H 2 (3) As a result of the actual measurement, the potential on the metal Zn in the initial stage of dissolution is almost (1)
The oxidation-reduction potential of Zn represented by the formula is around -0.8 V (vs. NHE). At this potential, Ni ions are not stable as ions as suggested by the potential-pH diagram of FIG. Since it is no longer possible to deposit metal as a metal, it was found that this is the root of the cause of the difficulty in dissolving metal Zn. Therefore, in order to maintain stable dissolution,
It is necessary to keep the potential on the metal Zn during melting higher than the oxidation-reduction potential of Ni represented by the formula (2).

【0010】先行技術で取り上げた特開平4−3622
00号公報および特開平5−9799号公報のNi析出
防止効果について、以上のような電気化学的見地から見
ると、金属Znをアノードとして通電溶解することでZ
n上の電位を(2)式以上に保ち、Niの析出を防止し
ている、と解釈でき、Zn上の電位を制御することが安
定した溶解を行う上で極めて重要であることがわかる。
一方、特開平4−362200号公報および特開平5−
9799号公報では、対極側で(3)式に示す水素発生
が起こっており、電気溶解であるがため、既に述べた電
力コストの負荷や隔膜といった複雑な設備を回避するこ
とができない。
[0010] Japanese Patent Application Laid-Open No. Hei 4-3622, which was mentioned in the prior art.
No. 00 and JP-A-5-9799, from the electrochemical point of view as described above, it is found that Zr is obtained by dissolving a metal Zn as an anode and conducting electricity.
It can be interpreted that the potential on n is maintained at or above the formula (2) to prevent precipitation of Ni, and it is understood that controlling the potential on Zn is extremely important for stable dissolution.
On the other hand, JP-A-4-362200 and JP-A-5-362
In Japanese Patent No. 9799, hydrogen generation represented by the formula (3) occurs on the counter electrode side, and electrolysis is performed. Therefore, complicated facilities such as the load of power cost and the diaphragm described above cannot be avoided.

【0011】本発明者等は、これについて更に検討を進
めた結果、Zn上の電位を(2)式のNi析出が起こる
電位以上に保持しつつ、なおかつ、同じZn上で(3)
式の水素発生も同時に起こる状況を創り出せば、Ni析
出が防止でき、Znの効率的溶解が可能で、しかもこの
場合通電溶解ではない化学的な溶解が実現するため、安
価で簡単な設備で溶解することができるとの結論に至っ
た。すなわち、図2の斜線で示した、Niの酸化還元電
位よりも高く、水素発生電位よりも低い領域において
は、原理原則としてNiをいっさい析出させることな
く、Znの溶解が化学的に可能である。本発明者等は、
以上の平衡論的示唆を実際の金属Zn溶解に適用し、具
現化する方法を鋭意検討した結果、本発明の完成に至っ
たものである。
As a result of further study of the present inventors, the present inventors have found that while maintaining the potential on Zn to be equal to or higher than the potential at which Ni precipitation occurs in the formula (2), the same holds true for (3) on the same Zn.
By creating a situation in which hydrogen generation in the formula also occurs at the same time, Ni precipitation can be prevented, Zn can be efficiently dissolved, and in this case, chemical dissolution rather than electric dissolution is realized, so it is inexpensive and simple equipment It was concluded that it could be dissolved. That is, in the region shown by the oblique lines in FIG. 2 that is higher than the oxidation-reduction potential of Ni and lower than the hydrogen generation potential, dissolution of Zn is chemically possible without precipitating any Ni in principle. . The present inventors,
The present inventors have completed the present invention as a result of earnestly studying a method of applying the above equilibrium suggestion to actual dissolution of metallic Zn and realizing it.

【0012】すなわち本発明の第1は、不溶性陽極を用
いたpH4以下の硫酸浴によるZn−Ni系合金電気メ
ッキ装置のメッキ浴槽からの循環メッキ液を金属Znの
溶解槽に通し、メッキ液中に金属Znを溶解させてZn
イオンを供給する方法において、金属Zn上の電位(対
NHE)を下記第式の範囲内にすることを特徴とする
Zn−Ni系合金メッキ浴へのZnイオンの供給方法で
ある。 −0.314+0.045×(pH)<金属Zn表面上の電位<−0.059 ×(pH) ・・・
That is, a first aspect of the present invention is that a circulating plating solution from a plating bath of a Zn—Ni alloy electroplating apparatus using a sulfuric acid bath having a pH of 4 or less using an insoluble anode is passed through a bath for dissolving metallic Zn. Dissolve metal Zn in Zn
In the method for supplying ions, a potential (on NHE) on metal Zn is set within a range of the following formula, and the method for supplying Zn ions to a Zn—Ni-based alloy plating bath is provided. −0.314 + 0.045 × (pH) <potential on metal Zn surface <−0.059 × (pH)

【0013】本発明の第2、第3は、上記第1の発明を
実現する具体的方法に関し、第2は、金属Znの溶解槽
に対極と参照極を設け、金属Znと対極間に電圧を印加
し、参照極によって対極と対面する金属Zn表面上の電
位を測定し、金属Znと対極間の電圧を操作して、対極
と対面する金属Zn表面上の電位(対NHE)を第式
の範囲内にすることを特徴とする本発明の第1に記載の
Zn−Ni系合金電気メッキ浴へのZnイオンの供給方
法であり、第3は、金属Znの溶解槽に対極を設け、金
属Znをアノードとして金属Zn、対極間に0.001
〜0.2A/dm2の微弱電流を流すと共に、対極と対面す
る金属Zn表面上を流通するメッキ液の硫酸濃度を10
g/l 以上とし、そのメッキ液の流速を0.5m/min 以上
にすることにより、対極と対面する金属Zn表面上の電
位(対NHE)を第式の範囲内にすることを特徴とす
る本発明の第1に記載のZn−Ni系合金電気メッキ浴
へのZnイオンの供給方法である。
The second and third aspects of the present invention relate to a specific method for realizing the first aspect of the present invention. The second aspect is that a counter electrode and a reference electrode are provided in a melting tank for metal Zn, and a voltage is applied between the metal Zn and the counter electrode. Is applied, the potential on the metal Zn surface facing the counter electrode is measured by the reference electrode, and the voltage between the metal Zn and the counter electrode is manipulated to calculate the potential on the metal Zn surface facing the counter electrode (vs. NHE) according to the following equation. The present invention provides a method for supplying Zn ions to a Zn-Ni-based alloy electroplating bath according to the first aspect of the present invention, wherein a counter electrode is provided in a metal Zn melting tank, Metal Zn as anode, metal Zn, 0.001 between counter electrodes
And a sulfuric acid concentration of the plating solution flowing on the surface of the metal Zn facing the counter electrode of 10 to 0.2 A / dm 2.
g / l or more, and the flow rate of the plating solution is 0.5 m / min or more, so that the potential (on NHE) on the metal Zn surface facing the counter electrode is within the range of the following equation. 1 is a method for supplying Zn ions to a Zn-Ni-based alloy electroplating bath according to the first aspect of the present invention.

【0014】また、本発明の第4は、上記本発明の第2
又は第3の溶解速度を高める方法で、本発明の第5は上
記本発明の第2又は第3の金属Znの溶解残りを無くす
る方法である。本発明の第6、8、10(7、9、1
1)は本発明の第3、且つ第4(5)の方法を実施する
ための装置である。
A fourth aspect of the present invention is the second aspect of the present invention.
Alternatively, the fifth method of the present invention is a method of increasing the third dissolution rate, and the fifth method of the present invention is a method of eliminating the undissolved residue of the second or third metal Zn of the present invention. The sixth, eighth, tenth (7, 9, 1) of the present invention
1) is an apparatus for implementing the third and fourth (5) methods of the present invention.

【0015】一般的なZn−Ni系合金メッキ浴は、p
H4以下、浴温30〜70℃程度の硫酸浴である。ここ
でZn−Ni系合金メッキ浴というのは、金属イオンと
してZnおよびNiのみを含む場合と、これに加えてC
o等の第3元素を含む場合の両方を言う。このような浴
中で金属Znの溶解を行った場合、図3に一例を示すよ
うに溶解初期には十分な溶解速度が得られるものの、す
ぐに溶解速度の著しい低下が起きる。このような低下が
起きる原因は、既に述べているように金属Niが置換析
出し、金属Znの周りを覆い反応点をふさいでしまうか
らである。析出したNiを物理的に剥ぎ落としてやる
と、溶解速度は再度初期のレベルにまで復活するもの
の、また初めと同様に低下する。一度析出したNiは、
スラッジとして残り、Ni原単位の悪化ばかりでなく、
メッキ浴槽に流入した場合には、押しキズ等の品質不良
を引き起こす。したがって、いかに析出Niを少なくす
るかが課題となる。
A general Zn—Ni-based alloy plating bath is p
It is a sulfuric acid bath having a bath temperature of about 30 to 70 ° C. at H4 or lower. Here, the Zn-Ni-based alloy plating bath refers to a case where only Zn and Ni are contained as metal ions,
Both include cases where a third element such as o is included. When metal Zn is dissolved in such a bath, a sufficient dissolution rate can be obtained in the initial stage of dissolution as shown in an example in FIG. The reason why such a decrease occurs is that, as already described, metal Ni is substitutionally precipitated and covers the metal Zn and blocks the reaction point. If the precipitated Ni is physically stripped off, the dissolution rate will be restored to the initial level again, but will decrease as before. Once deposited Ni,
It remains as sludge and not only deteriorates Ni basic unit,
When flowing into the plating bath, poor quality such as a push flaw is caused. Therefore, it is an issue how to reduce the amount of precipitated Ni.

【0016】次に、金属Zn上の電位を種々変化させて
溶解を行い、反応後Zn表面に析出したNiおよび溶解
槽下部に残滓として溜まったNiを定量した。具体的に
は、図4に示すように、金属Zn溶解槽1のメッキ液2
中に対極4および金属Zn板3の下部を浸漬し、対極
面、金属Zn板の板面が所定距離を存して対向するよう
に保持し、金属Zn板3および対極4の上部の間に電源
8により電圧を印加し、塩橋5、参照極6および電位差
計7によって対極4と対向するメッキ液中の金属Zn板
3上の電位を電位差計7で測定可能とし、金属Zn板3
と対極4間の電圧を操作して、上記金属Zn板3上の電
位(対NHE)を変化させ、かつ飽和カロメル電極を参
照極とし、Ptを対極として実験を行った。メッキ液濃
度条件は次のとおりである。 (メッキ液濃度) ZnSO4 7H2 O;180g/l NiSO4 6H2 O;100,250,400g/l Na2 SO4 ;100g/l H2 SO4 ;25g/l pH=1.0
Next, melting was performed by changing the potential on the metal Zn in various ways, and Ni precipitated on the Zn surface after the reaction and Ni accumulated as residue in the lower portion of the melting tank were quantified. Specifically, as shown in FIG.
The counter electrode 4 and the lower portion of the metal Zn plate 3 are immersed therein, and the counter electrode surface and the plate surface of the metal Zn plate are held so as to face each other at a predetermined distance, and between the metal Zn plate 3 and the upper portion of the counter electrode 4. A voltage is applied by a power supply 8, and the potential on the metal Zn plate 3 in the plating solution facing the counter electrode 4 can be measured by the potentiometer 7 by the salt bridge 5, the reference electrode 6 and the potentiometer 7.
The experiment was performed by changing the potential (on NHE) on the metal Zn plate 3 by operating the voltage between the electrode and the counter electrode 4, using a saturated calomel electrode as a reference electrode, and using Pt as a counter electrode. The plating solution concentration conditions are as follows. (Plating solution concentration) ZnSO 4 7H 2 O; 180 g / l NiSO 4 6H 2 O; 100, 250, 400 g / l Na 2 SO 4 ; 100 g / l H 2 SO 4 ; 25 g / l pH = 1.0

【0017】図5に結果を示す。Znの浸漬電位に相当
する−0.8V(対NHE)付近では、多量の金属Ni
が析出し、その量は浴中のNi濃度の増加とともに増大
した。電位を上げていくと析出Ni量は減少し、電位が
−0.25Vを上回ると、浴中Ni濃度によらず、Ni
の析出が無くなることが判明した。次に、Ni濃度を4
00g/l に固定し、pHを0〜3に変化させて同様に行
い、Ni析出がゼロになる電位を求め、pHに対してプ
ロットしたものを図6に示す。pHが低いほど析出Ni
量が少なく、また析出がゼロになる電位がpHが低いほ
ど低いことが判明した。これはpHが低いほど一度析出
したNiの再溶解が起こりやすいためと推定している。
図6からNi析出が起こらなくなる範囲として、 −0.314+0.045×(pH)<Zn電位 を規定した。
FIG. 5 shows the results. Near -0.8 V (vs. NHE), which corresponds to the immersion potential of Zn, a large amount of metallic Ni
Was precipitated, and the amount increased with an increase in the Ni concentration in the bath. When the potential is increased, the amount of precipitated Ni decreases. When the potential exceeds -0.25 V, Ni is reduced regardless of the Ni concentration in the bath.
It was found that the precipitation of was eliminated. Next, the Ni concentration was set to 4
The same procedure was carried out while fixing the pressure at 00 g / l and changing the pH to 0 to 3. The potential at which Ni precipitation was zero was determined and plotted against pH. The lower the pH, the more Ni
It was found that the potential at which the amount was small and the precipitation became zero was lower as the pH was lower. This is presumed to be because the lower the pH, the more easily the Ni precipitated once becomes redissolved.
As shown in FIG. 6, −0.314 + 0.045 × (pH) <Zn potential is defined as a range in which Ni precipitation does not occur.

【0018】一方、電位を更に上げていくと、ある時点
からZn上での水素発生が停止してしまい、化学溶解で
はなく、通電溶解に変化してしまう。この電位の上限
は、液のpHに依存し、以下式の関係にある。 Zn電位<−0.059×(pH)
On the other hand, if the potential is further increased, the generation of hydrogen on Zn stops at a certain point, and it changes to chemical dissolution instead of chemical dissolution. The upper limit of this potential depends on the pH of the solution, and has the following relationship. Zn potential <−0.059 × (pH)

【0019】以上の検討に基づき、Zn上にNiを置換
析出させることなく、かつZn上で水素発生が起こり、
Znの化学溶解を進行させるための電位として以下範囲
を規定した。 −0.314+0.045×(pH)<Zn電位<−
0.059×(pH)
Based on the above study, hydrogen is generated on Zn without substituting and depositing Ni on Zn,
The following range was defined as the potential for promoting the chemical dissolution of Zn. −0.314 + 0.045 × (pH) <Zn potential <−
0.059 × (pH)

【0020】また図4の装置において、対極4と対向す
る金属Znの表面を金属Zn板の板面とするよりも、金
属Zn板の積層体の積層板厚面とする方が溶解速度が大
きくなることが判明した。更に、図4のように金属Zn
3の下部をメッキ液中に浸漬保持すると、液面より上方
の金属Zn部分は溶解されないため解け残りが生じる
が、Tiバスケットの下部をメッキ液中に浸漬保持し、
メッキ液中のTiバスケット内に金属Zn粒、金属Zn
板、金属Znインゴット等を充填することで金属Znの
解け残りをなくすることができ、原料コストを低減でき
る。
In the apparatus shown in FIG. 4, the dissolution rate is higher when the surface of the metal Zn facing the counter electrode 4 is a thick plate of the laminate of the metal Zn plates than a plate surface of the metal Zn plate. It turned out to be. Further, as shown in FIG.
When the lower part of No. 3 is immersed and held in the plating solution, the metal Zn portion above the liquid surface is not melted and unmelted remains, but the lower part of the Ti basket is immersed and held in the plating solution.
Metal Zn particles, metal Zn in Ti basket in plating solution
By filling a plate, a metal Zn ingot, or the like, unmelted metal Zn can be eliminated, and the raw material cost can be reduced.

【0021】不溶性陽極を用いたpH4以下の硫酸浴に
よるZn−Ni系合金電気メッキ装置のメッキ浴槽から
の循環メッキ液を金属Znの溶解槽に通し、メッキ液中
に金属Znを溶解させてZnイオンを供給する方法にお
いて、上記方法を適用する場合は、図7に示したメッキ
浴槽、例えば水平に走行するストリップ10の上下面に
対向して、ストリップ面に向かってメッキ液を噴出させ
るスリットを有する静圧流体支持パッドと、このパッド
のストリップ走行方向の両側に電気的に絶縁された左右
一対の不溶性陽極を配置し、これら陽極のストリップ入
側部と出側部にメッキ液の流出口を形成し、これら流出
口の直前、直後に設けたコンダクターロールとからなる
ストリップの水平型流体支持メッキセル9と、メッキ液
循環タンク12と、金属Zn溶解槽11とからなる電気
メッキ設備の金属Zn溶解槽部分に、図4の金属Zn溶
解装置を導入すればよい。
A circulating plating solution from a plating bath of a Zn—Ni-based alloy electroplating apparatus using a sulfuric acid bath having a pH of 4 or less using an insoluble anode is passed through a dissolution tank for metal Zn to dissolve the metal Zn in the plating solution. In the method of supplying ions, when the above method is applied, a plating bath shown in FIG. 7, for example, a slit for jetting a plating solution toward the strip surface is provided opposite to the upper and lower surfaces of the horizontally running strip 10. A static pressure fluid support pad having, and a pair of electrically insulated left and right insoluble anodes arranged on both sides of the pad in the strip running direction, and a plating solution outlet on the strip entrance side and the exit side of these anodes. And a horizontal fluid-supporting plating cell 9 of strip consisting of conductor rolls provided immediately before and immediately after these outlets; The metal Zn dissolution tank portion of the electroplating equipment comprising a metal Zn dissolving tank 11 Prefecture, may be introduced metal Zn dissolution apparatus of FIG.

【0022】なお図7では、金属Zn溶解装置はメッキ
浴槽(メッキセル)−循環タンクのメッキ液の循環系統
とは別に循環タンク12とでメッキ液の循環系統を形成
するように設けているが、メッキセル(メッキ浴槽)−
循環タンクのメッキ液の循環系統中に配置してもよい。
さらに、図4の金属Zn溶解装置を図7の電気メッキ設
備に導入するに際し、対極は、不溶性のPb、Ti、参
照極は銀/塩化銀電極であってよい。また、金属Znは
上記金属Zn板の積層体、Tiバスケットに充填した金
属Znであってよい。尚、図7において、13はメッキ
液循環ポンプ、14は流量調整バルブを示す。
In FIG. 7, the metal Zn dissolving apparatus is provided so as to form a plating solution circulation system with the circulation tank 12 separately from the plating bath (plating cell) -circulation tank circulation system. Plating cell (plating bath)
It may be arranged in the circulation system of the plating solution in the circulation tank.
Further, when introducing the metal Zn melting apparatus of FIG. 4 into the electroplating equipment of FIG. 7, the counter electrode may be insoluble Pb and Ti, and the reference electrode may be a silver / silver chloride electrode. Further, the metal Zn may be a stacked body of the metal Zn plate or metal Zn filled in a Ti basket. In FIG. 7, 13 denotes a plating solution circulation pump, and 14 denotes a flow rate adjusting valve.

【0023】金属Zn溶解装置が大規模になってくる
と、反応開始からの時間変化、およびZnの位置によっ
て電位のバラツキが大きくなってくるので、上記の方法
によってある一点の電位を規定しても、他の点での電位
が目標どおりにならず、金属Niが析出してしまう場合
がある。また、塩橋、参照極といった装置は非常にデリ
ケートであり、腐食環境の強い溶解槽付近で使用するに
は、維持管理にかかる負荷が大きい。これらについて改
善策を検討した結果、経時変化や位置によって電位がバ
ラツク原因は、溶解反応に伴う金属Zn上の反応場のp
Hの増加やZn濃度の増加等の濃度バラツキが生じるこ
とによることが判明し、これを避けるためには、メッキ
液を流通し、金属Znに対して常に新しい液を接触させ
ることが重要であることが判明した。また、塩橋、参照
極により電位を測定しなくても、対極と対面する金属Z
n表面上を流通するメッキ液の硫酸濃度と、そのメッキ
液の流速、および金属Znと対極間の電流密度を規定す
ることにより、金属Zn表面上の電位を既に述べたNi
析出の起きない化学溶解範囲の電位に保つことが可能で
あることが判明した。
When the size of the metal Zn dissolving apparatus becomes large, the variation of the potential becomes large depending on the time change from the start of the reaction and the position of Zn. Therefore, the potential at one point is defined by the above method. Also, the potential at other points may not reach the target, and metal Ni may be deposited. In addition, devices such as a salt bridge and a reference electrode are very delicate, and when used near a melting tank having a strong corrosive environment, the load on maintenance is large. As a result of studying improvement measures for these, the cause of the potential variation depending on the change with time and the position is due to the p of the reaction field on the metal Zn accompanying the dissolution reaction.
It has been found that concentration variations such as an increase in H and an increase in Zn concentration occur, and in order to avoid this, it is important to distribute a plating solution and always contact a new solution with metal Zn. It has been found. In addition, even if the potential is not measured by the salt bridge and the reference electrode, the metal Z facing the counter electrode can be used.
By defining the sulfuric acid concentration of the plating solution flowing on the n surface, the flow rate of the plating solution, and the current density between the metal Zn and the counter electrode, the potential on the surface of the metal Zn was reduced to the level of Ni as described above.
It has been found that it is possible to maintain the potential in the chemical dissolution range where precipitation does not occur.

【0024】対極と対面する金属Zn表面上を流通する
メッキ液の硫酸濃度は、10g/l 以上、好ましくは15
g/l 以上必要であり、これより低い場合には、Zn溶解
反応に伴う反応場でのpH変化が大きく、電位のバラツ
キが大きくなってしまう。対極と対面する金属Zn表面
上を流通するメッキ液の流速は、硫酸濃度以上に重要で
あり、0.5m/min 以上の流速が必要である。これより
も流速が小さいと、金属Zn表面上の反応場への硫酸供
給が不足し、また反応場で増加したZnイオンが拡散し
にくいため、電位のバラツキが大きくなってしまう。金
属Zn/対極間には、Znに対して外部電源からわずか
にZnをアノーディックにする方向に電圧を印加すれば
よく、あくまでZn上の電位を所定の電位に保つのが目
的であるから、流れる電流についてはあまり重要ではな
いが、電位を所定値に保つためには、先の硫酸濃度、流
量条件下で0.001〜0.2A/dm2 の電流密度が必要
である。電流の下限は、Ni析出が起きない電位を安定
して確保するために必要であり、一方、上限の0.2A/
dm2 を越えると、対極への金属の析出が発生し、逆効果
である。
The sulfuric acid concentration of the plating solution flowing over the metal Zn surface facing the counter electrode is 10 g / l or more, preferably 15 g / l or more.
g / l or more is necessary, and if it is lower than this, the change in pH in the reaction field accompanying the Zn dissolution reaction is large, and the variation in potential is large. The flow rate of the plating solution flowing on the metal Zn surface facing the counter electrode is more important than the sulfuric acid concentration, and requires a flow rate of 0.5 m / min or more. If the flow rate is lower than this, the supply of sulfuric acid to the reaction field on the metal Zn surface becomes insufficient, and the Zn ions increased in the reaction field are difficult to diffuse, so that the variation in potential increases. Between the metal Zn and the counter electrode, a voltage may be applied to Zn from an external power supply in a direction to slightly make Zn anodic, and the purpose is to keep the potential on Zn at a predetermined potential. Although the flowing current is not so important, a current density of 0.001 to 0.2 A / dm 2 is required under the above sulfuric acid concentration and flow rate conditions in order to keep the potential at a predetermined value. The lower limit of the current is necessary to stably secure a potential at which Ni precipitation does not occur, while the upper limit of 0.2 A /
When dm 2 is exceeded, metal is deposited on the counter electrode, which is the opposite effect.

【0025】電源としては、直流整流器が好適であり、
所定電流密度になるように電流値をセットすればよい。
溶解槽に流通するメッキ液の硫酸濃度は、図7において
メッキ液循環タンク内の濃度と同等であるが、溶解槽内
における、対極と対面する金属Zn表面上を流通するメ
ッキ液の硫酸濃度については、直接測定するのは実際的
には困難である。そこで、溶解槽出側にて硫酸濃度を測
定し、この濃度が所定値以上になるようにメッキ液循環
タンク内の濃度を調整することが実際的には用いられ
る。溶解槽出側での硫酸濃度は、溶解槽内における、対
極と対面する金属Zn表面上を流通するメッキ液の硫酸
濃度の最低値にほぼ等しいと考えられるからである。溶
解槽へのメッキ液流通量は流量調整バルブの開度で調整
できるが、溶解槽内における、対極と対面する金属Zn
表面上を流通するメッキ液の流速については、金属Zn
/対極の間のバルク流速で近似する。このためには、設
備的に金属Znと対極の間隔を小さく保つ必要がある。
金属Zn表面上において所定の流速が得られる液流通量
を予め調査しておき、この液流量の値になるように流量
調整バルブの開度を調整するのが最も容易である。
As a power source, a DC rectifier is preferable.
What is necessary is just to set a current value so that it may become a predetermined current density.
The sulfuric acid concentration of the plating solution flowing through the dissolving tank is the same as the concentration in the plating solution circulating tank in FIG. 7, but the sulfuric acid concentration of the plating solution flowing on the metal Zn surface facing the counter electrode in the dissolving tank. Is difficult in practice to measure directly. Therefore, it is actually used to measure the concentration of sulfuric acid at the outlet side of the dissolving tank and adjust the concentration in the plating solution circulation tank so that the concentration becomes equal to or higher than a predetermined value. This is because the sulfuric acid concentration at the exit side of the dissolving tank is considered to be substantially equal to the minimum value of the sulfuric acid concentration of the plating solution flowing on the metal Zn surface facing the counter electrode in the dissolving tank. The flow rate of the plating solution to the melting tank can be adjusted by the opening of the flow rate control valve.
Regarding the flow rate of the plating solution flowing on the surface, the metal Zn
/ Approximate with bulk flow rate between counter electrodes. For this purpose, it is necessary to keep the interval between the metal Zn and the counter electrode small in equipment.
It is easiest to investigate in advance the flow rate of the liquid at which a predetermined flow rate can be obtained on the surface of the metal Zn, and to adjust the opening of the flow control valve so as to obtain the value of the liquid flow rate.

【0026】[0026]

【発明の実施の形態】本発明を実施する金属Zn溶解装
置例を図8に示す。図8(A)は溶解装置の平面図、図
8(B)は図8(A)のX−X断面図、図8(C)は図
8(B)のY−Y断面図、図8(D)は図8(B)のZ
−Z断面図である。
FIG. 8 shows an example of a metal Zn melting apparatus for carrying out the present invention. 8A is a plan view of the melting apparatus, FIG. 8B is a sectional view taken along line XX of FIG. 8A, FIG. 8C is a sectional view taken along line YY of FIG. (D) is Z in FIG. 8 (B).
It is -Z sectional drawing.

【0027】図8の金属Zn溶解装置例は、図9(A)
に斜視図で示すように、複数の金属Zn板を積層して積
層体23としその上部に孔をあけ、この孔に通電棒24
を挿入し、図8に示すように全面がゴムライニングされ
た溶解槽21のメッキ液面の上方に配置した2本の通電
用支持棒25で上記通電棒24の両端部を支えること
で、金属Zn板の積層体23の下部をメッキ液中に浸漬
保持し、対極27の上端部に設けた対極支持板29の両
端部を電気絶縁物28を介して上記2本の導電性支持棒
25にて支えることで対極27の下部を、メッキ液中の
金属Zn板積層体23下部の積層端面に対向して、メッ
キ液中に浸漬保持し、対極27と金属Zn板積層体の積
層端面との間をメッキ液が流れるように溶解槽21にメ
ッキ液供給口26および排出口31を設けると共に、支
持棒25、通電棒24を介して金属Zn板積層体23を
陽極、対極支持板29を介して対極27を陰極とするよ
うに電源(図示せず)に接続したものである。
FIG. 9A shows an example of the apparatus for melting metal Zn in FIG.
As shown in a perspective view, a plurality of metal Zn plates are laminated to form a laminate 23, a hole is formed in the upper portion thereof, and a current-carrying rod 24 is formed in the hole.
By supporting both ends of the current-carrying rod 24 with two current-carrying support rods 25 disposed above the plating solution surface of the dissolving tank 21 whose entire surface is rubber-lined as shown in FIG. The lower part of the Zn plate laminate 23 is immersed and held in the plating solution, and both ends of the counter electrode support plate 29 provided on the upper end of the counter electrode 27 are connected to the two conductive support rods 25 via the electric insulator 28. The lower part of the counter electrode 27 is immersed and held in the plating solution facing the lower end surface of the metal Zn plate laminate 23 in the plating solution to support the lower end of the counter electrode 27 and the lamination end surface of the metal Zn plate laminate. A plating solution supply port 26 and a discharge port 31 are provided in the dissolving tank 21 so that the plating solution flows between them, and the metal Zn plate laminate 23 is connected to the anode and the counter electrode support plate 29 via the support rod 25 and the current supply rod 24. Power source (not shown) so that the counter electrode 27 is used as a cathode. Which are connected to.

【0028】図8の装置例においては、メッキ液供給口
26から流入するメッキ液が対極27と金属Zn板積層
体23の積層端面との間を下方に向かって流れるように
溶解槽21内に隔壁22を設け、隔壁22下端を水平に
通過したメッキ液は、隔壁22に沿って上方に向かって
流れ、排出口31より流出するようになしているが、隔
壁を設けることなくメッキ液が対極と金属Zn板積層体
の積層端面との間を水平方向に流れるように、溶解槽の
側壁にメッキ液供給口および排出口を設けてもよい。
In the example of the apparatus shown in FIG. 8, the plating solution flowing from the plating solution supply port 26 flows downward between the counter electrode 27 and the lamination end face of the metal Zn plate laminate 23 into the dissolution tank 21. The plating solution that has been provided with the partition wall 22 and passed horizontally through the lower end of the partition wall 22 flows upward along the partition wall 22 and flows out from the discharge port 31. A plating solution supply port and a discharge port may be provided on the side wall of the melting tank so that the plating solution flows horizontally between the metal Zn plate laminate and the lamination end face.

【0029】また本装置例では、必要な金属Znの溶解
速度(Znイオンの供給速度)の確保のために、図8
(A)に示すように、溶解槽21内のメッキ液中に、4
つの対極27が間隔を存してそれらの下部が浸漬保持さ
れ、対極27の間に金属Zn板積層体23の下部が、浸
漬保持されているが、必要な溶解速度(イオン供給速
度)が確保されるならば、2つの対極の間に1つの金属
Zn板積層体、あるいは1つの対極と1つの金属Zn板
積層体の下部がメッキ液中に浸漬保持されてもよい。
In this example of the apparatus, in order to secure a necessary dissolution rate of metal Zn (supply rate of Zn ions), FIG.
As shown in FIG.
The lower portions of the two counter electrodes 27 are immersed and held at intervals, and the lower portion of the metal Zn plate laminate 23 is immersed and held between the counter electrodes 27, but a necessary dissolution rate (ion supply rate) is secured. If so, one metal Zn plate laminate or two counter electrodes and one metal Zn plate laminate may be immersed and held in a plating solution between two counter electrodes.

【0030】更に本装置例では、図9(A)に示すよう
に金属Zn板を積層して上部に孔をあけ、この孔に通電
棒24を挿入し、溶解槽21のメッキ液面の上方に配置
した2本の通電用支持棒25で上記通電棒24の両端部
を支えることで、金属Zn板の積層体23の下部をメッ
キ液中に浸漬保持しているが、図9(B)に示すよう
に、Tiバスケット32の上部にフランジ33を設け、
溶解槽21のメッキ液面の上方に配置した2本の通電用
支持棒25で上記フランジ33を支えることで、Tiバ
スケット32の下部をメッキ液中に浸漬保持すると共
に、上記Tiバスケット32に、金属Zn粒、金属Zn
板もしくは金属Znインゴット34等を充填し、メッキ
液中に浸漬しない金属Znを無くし、未溶解金属Znを
なくするようにしてもよい。
Further, in this example of the apparatus, as shown in FIG. 9A, a metal Zn plate is laminated and a hole is formed in the upper part. The lower part of the metal Zn plate laminate 23 is immersed and held in the plating solution by supporting both ends of the current-carrying rods 24 with the two current-carrying support rods 25 arranged in FIG. 9B. As shown in the figure, a flange 33 is provided on the upper part of the Ti basket 32,
The lower part of the Ti basket 32 is immersed and held in the plating solution by supporting the flange 33 with the two current-carrying support rods 25 disposed above the plating solution level of the dissolving tank 21, and the Ti basket 32 Metal Zn grains, metal Zn
A plate or a metal Zn ingot 34 or the like may be filled so as to eliminate metal Zn that is not immersed in the plating solution and eliminate undissolved metal Zn.

【0031】このような構成の金属Zn溶解装置を図7
のZn−Ni系合金電気メッキ設備の金属Zn溶解装置
として用いることにより、Zn−Ni系合金電気メッキ
浴へのZnイオンの供給を行うことができる。
FIG. 7 shows a metal Zn melting apparatus having such a configuration.
By using the apparatus as a metal Zn dissolving device of the Zn-Ni-based alloy electroplating equipment, Zn ions can be supplied to the Zn-Ni-based alloy electroplating bath.

【0032】[0032]

【実施例】図8の金属Zn溶解装置を図7のZn−Ni
系合金電気メッキ設備の金属Zn溶解装置として用い、
メッキ液循環タンクにて測定した濃度が下記に示す濃度
で、温度が60℃であるメッキ液を、図8の金属Zn溶
解槽に2m3 /minの流量で流通し、溶解槽メッキ液中に
幾何面積で約10m2 の金属Znを浸漬し、Zn/対極
間にZnをアノードとして10Aの電流を流した。この
場合、図4と同様の装置で金属Zn表面上の電位を測定
したところ、平均的に約−0.1V(対NHE)であっ
た。また、図8の装置においては、金属Znと対極の距
離は、約10cm程度であり、対極と対面する金属Zn表
面上のメッキ液の流速は、金属Zn/対極間のバルク流
速に近似することが可能であり、この流速は平均的に1
m/minであった。また、溶解槽出側での硫酸濃度は15g
/l であった。
FIG. 8 shows a Zn-Ni dissolving apparatus shown in FIG.
Used as a metal Zn melting device for electroplating equipment
A plating solution having a concentration measured at a plating solution circulation tank shown below and having a temperature of 60 ° C. was passed through the metal Zn dissolving tank shown in FIG. 8 at a flow rate of 2 m 3 / min. About 10 m 2 of metallic Zn was immersed in a geometric area, and a current of 10 A was passed between Zn and the counter electrode with Zn as an anode. In this case, when the potential on the metal Zn surface was measured by the same device as in FIG. 4, it was about -0.1 V (vs. NHE) on average. In the apparatus shown in FIG. 8, the distance between the metal Zn and the counter electrode is about 10 cm, and the flow rate of the plating solution on the metal Zn surface facing the counter electrode is close to the bulk flow rate between the metal Zn and the counter electrode. At an average flow rate of 1
m / min. The sulfuric acid concentration at the outlet of the dissolution tank was 15 g.
/ l.

【0033】図10に溶解開始からの溶解速度の経時変
化を示す。溶解速度は、溶解槽入側、出側それぞれのZ
n濃度を測定して求めた。なお、図10では、比較とし
て、液流量が小流量(流速実測値で0.3m/min )の場
合()と低硫酸濃度(溶解槽出側で測定して7g/l )
の場合()および通電なしの場合()も合わせて表
示している。
FIG. 10 shows the change over time in the dissolution rate from the start of dissolution. The dissolution rate is determined by Z
The n concentration was determined by measurement. In FIG. 10, for comparison, the case where the liquid flow rate is a small flow rate (actually measured flow rate: 0.3 m / min) () and the low sulfuric acid concentration (7 g / l measured at the dissolution tank outlet side)
() And () without power supply are also shown.

【0034】本発明に基づく溶解方法(実施例)によ
れば、初期の高い溶解速度を維持することが可能であ
る。更にこの場合、溶解槽出側でメッキ液を採取し、液
中のNiスラッジの観察を行ったが、スラッジは検出さ
れなかった。比較例(図10中の,,)では、経
時とともに著しく溶解速度が減少し、また溶解槽出側で
は、金属Niスラッジが10〜1000ppm 程度検出さ
れた。
According to the dissolution method (Example) according to the present invention, it is possible to maintain an initial high dissolution rate. Further, in this case, a plating solution was collected on the exit side of the melting tank, and Ni sludge in the solution was observed, but no sludge was detected. In the comparative example (, in FIG. 10), the dissolution rate was remarkably reduced with time, and about 10 to 1000 ppm of metallic Ni sludge was detected on the exit side of the dissolution tank.

【0035】[0035]

【発明の効果】本発明によれば、Niを置換析出させる
ことなく金属Znの溶解が可能であり、Ni原単位の悪
化や押しキズ発生等の品質不良を引き起こすことなし
に、硫酸浴Zn−Ni系合金電気メッキ浴中に金属Zn
を溶解させてZnイオンを補充することが可能となる。
この場合に必要な設備は既に述べたように、隔膜等の複
雑なものは不要であり、極めてシンプルでコスト的にも
有利なものである。
According to the present invention, it is possible to dissolve metallic Zn without substituting and precipitating Ni, and it is possible to dissolve the sulfuric acid bath Zn- Metal Zn in Ni-based alloy electroplating bath
Can be dissolved to replenish Zn ions.
As described above, the equipment required in this case does not require complicated equipment such as a diaphragm, and is extremely simple and advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Znの電位pH図。FIG. 1 is a potential pH diagram of Zn.

【図2】Niの電位pH図。FIG. 2 is a potential pH diagram of Ni.

【図3】Zn溶解速度の経時変化の図である。FIG. 3 is a diagram showing the change over time of the Zn dissolution rate.

【図4】本発明に関わる溶解装置の図である。FIG. 4 is a diagram of a melting apparatus according to the present invention.

【図5】本発明に関わる析出Ni量の変化の図である。FIG. 5 is a diagram showing a change in the amount of precipitated Ni according to the present invention.

【図6】本発明に関わるNi析出がなくなる電位の図で
ある。
FIG. 6 is a diagram of a potential at which Ni precipitation according to the present invention is eliminated.

【図7】本発明に関わる溶解設備の図である。FIG. 7 is a diagram of a melting facility according to the present invention.

【図8】本発明に関わる溶解設備の詳細図である。FIG. 8 is a detailed view of a melting facility according to the present invention.

【図9】本発明に関わる溶解設備の詳細図である。FIG. 9 is a detailed view of a melting facility according to the present invention.

【図10】本発明に関わるZn溶解速度の経時変化の図
である。
FIG. 10 is a diagram showing the change over time of the Zn dissolution rate according to the present invention.

【符号の説明】[Explanation of symbols]

1 金属Zn溶解槽 2 メッキ液 3 金属Zn板 4 対極 5 塩橋 6 参照極 7 電位差計 8 電源 9 メッキセル 10 ストリップ 11 金属Zn溶解槽 12 メッキ液循
環タンク 13 メッキ液循環ポンプ 14 流量調整バ
ルブ 21 溶解槽 22 隔壁 23 金属Zn板積層体 24 通電棒 25 導電性支持棒 26 メッキ液供
給口 27 対極 28 電気絶縁物 29 対極支持板 31 メッキ液排
出口 32 Tiバスケット 33 フランジ 34 金属Zn粒
DESCRIPTION OF SYMBOLS 1 Metal Zn dissolution tank 2 Plating solution 3 Metal Zn plate 4 Counter electrode 5 Salt bridge 6 Reference electrode 7 Potentiometer 8 Power supply 9 Plating cell 10 Strip 11 Metal Zn dissolution tank 12 Plating solution circulation tank 13 Plating solution circulation pump 14 Flow control valve 21 Dissolution Tank 22 Partition wall 23 Metal Zn plate laminate 24 Conducting rod 25 Conductive support rod 26 Plating solution supply port 27 Counter electrode 28 Electrical insulator 29 Counter electrode support plate 31 Plating solution discharge port 32 Ti basket 33 Flange 34 Metal Zn particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北池 宏至 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kitaike 1 Nippon Steel Corporation Hirohata Works, Himeji City, Hyogo Prefecture

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 不溶性陽極を用いたpH4以下の硫酸浴
によるZn−Ni系合金電気メッキ装置のメッキ浴槽か
らの循環メッキ液を金属Znの溶解槽に通し、メッキ液
中に金属Znを溶解させてZnイオンを供給する方法に
おいて、金属Zn表面上の電位(対NHE)を下記第
式の範囲内にすることを特徴とするZn−Ni系合金電
気メッキ浴へのZnイオンの供給方法。 −0.314+0.045×(pH)<金属Zn表面上の電位<−0.059 ×(pH) ・・・
1. A circulating plating solution from a plating bath of a Zn—Ni-based alloy electroplating apparatus using a sulfuric acid bath having a pH of 4 or less using an insoluble anode is passed through a metal Zn dissolution tank to dissolve the metal Zn in the plating solution. A method of supplying Zn ions to a Zn—Ni-based alloy electroplating bath, wherein the potential (on NHE) on the metal Zn surface is set within the range of the following formula. −0.314 + 0.045 × (pH) <potential on metal Zn surface <−0.059 × (pH)
【請求項2】 金属Znの溶解槽に対極と参照極を設
け、金属Znと対極間に電圧を印加し、参照極によって
対極と対面する金属Zn表面上の電位を測定し、金属Z
nと対極間の電圧を操作して、対極と対面する金属Zn
表面上の電位(対NHE)を第式の範囲内にすること
を特徴とする請求項1に記載のZn−Ni系合金電気め
っき浴へのZnイオンの供給方法。
2. A counter electrode and a reference electrode are provided in a melting tank for metal Zn, a voltage is applied between the metal Zn and the counter electrode, and a potential on the metal Zn surface facing the counter electrode by the reference electrode is measured.
By manipulating the voltage between n and the counter electrode, the metal Zn facing the counter electrode
The method for supplying Zn ions to a Zn-Ni-based alloy electroplating bath according to claim 1, wherein the potential on the surface (vs. NHE) is within the range of the following equation.
【請求項3】 金属Znの溶解槽に対極を設け、金属Z
nをアノードとして金属Zn、対極間に0.001〜
0.2A/dm2 の微弱電流を流すと共に、対極と対面する
金属Zn表面上を流通するメッキ液の硫酸濃度を10g/
l 以上とし、そのメッキ液の流速を0.5m/min 以上に
することにより、対極と対面する金属Zn表面上の電位
(対NHE)を第式の範囲内にすることを特徴とする
請求項1に記載のZn−Ni系合金電気めっき浴へのZ
nイオンの供給方法。
3. A counter electrode is provided in a melting tank for metal Zn,
n as the anode, metal Zn, and between 0.001 and
A weak current of 0.2 A / dm 2 was passed, and the sulfuric acid concentration of the plating solution flowing on the metal Zn surface facing the counter electrode was 10 g / dm 2.
The potential on the surface of the metal Zn facing the counter electrode (vs. NHE) is set within the range of the following equation by setting the flow rate of the plating solution to 0.5 m / min or more. Z to the Zn-Ni-based alloy electroplating bath described in 1
How to supply n ions.
【請求項4】 メッキ液中で対極と対面する金属Zn表
面が金属Zn板の積層体の積層板厚面であることを特徴
とする請求項2または3に記載のZn−Ni系合金電気
めっき浴へのZnイオンの供給方法。
4. The Zn—Ni-based alloy electroplating according to claim 2, wherein the surface of the metal Zn facing the counter electrode in the plating solution is a thick plate of the laminate of the metal Zn plates. How to supply Zn ions to the bath.
【請求項5】 メッキ液中で対極と対面する金属Znが
Tiバスケット内に充填された金属Zn粒、金属Zn
板、金属Znインゴット等であることを特徴とする請求
項2または3に記載のZn−Ni系合金電気めっき浴へ
のZnイオンの供給方法。
5. A metal Zn particle filled with a metal Zn facing a counter electrode in a plating solution in a Ti basket.
The method for supplying Zn ions to a Zn-Ni alloy electroplating bath according to claim 2 or 3, wherein the method is a plate, a metal Zn ingot, or the like.
【請求項6】 不溶性陽極を用いたpH4以下の硫酸浴
によるZn−Ni系合金電気メッキ装置のメッキ浴槽か
らの循環メッキ液を金属Znの溶解槽に通し、メッキ液
中に金属Znを溶解させてZnイオンを供給する装置に
おいて、上記溶解槽のメッキ液中に金属Zn板の積層体
を浸漬保持すると共に、上記金属Zn板積層体の積層板
厚面と対面するように対極をメッキ液中に浸漬保持し、
対極と金属Zn板積層体の積層板厚面との間をメッキ液
が流れるように溶解槽にメッキ液供給口および排出口を
設け、金属Zn板積層体を陽極、対極を陰極とする電源
を設けたことを特徴とするZn−Ni系合金電気メッキ
浴へのZnイオンの供給装置。
6. A circulating plating solution from a plating bath of a Zn—Ni-based alloy electroplating apparatus using a sulfuric acid bath having a pH of 4 or less using an insoluble anode is passed through a metal Zn dissolution tank to dissolve the metal Zn in the plating solution. In a device for supplying Zn ions, the laminate of metal Zn plates is immersed and held in the plating solution of the dissolving tank, and the counter electrode is placed in the plating solution so as to face the thick plate of the metal Zn plate laminate. Immersed in
A plating solution supply port and a discharge port are provided in the dissolution tank so that the plating solution flows between the counter electrode and the laminated plate thick surface of the metal Zn plate laminate, and a power supply having the metal Zn plate laminate as an anode and the counter electrode as a cathode is provided. An apparatus for supplying Zn ions to a Zn-Ni-based alloy electroplating bath, wherein the apparatus is provided.
【請求項7】 不溶性陽極を用いたpH4以下の硫酸浴
によるZn−Ni系合金電気メッキ装置のメッキ浴槽か
らの循環メッキ液を金属Znの溶解槽に通し、メッキ液
中に金属Znを溶解させてZnイオンを供給する装置に
おいて、上記溶解槽のメッキ液中に浸漬保持したTiバ
スケット内に、金属Zn粒、金属Zn板、金属Znイン
ゴット等を充填し、Tiバスケットと対面するように対
極をメッキ液中に浸漬保持し、対極とTiバスケットの
間をメッキ液が流れるように溶解槽にメッキ液供給口お
よび排出口を設け、上記Tiバスケットを介して上記金
属Znを陽極、対極を陰極とする電源を設けたことを特
徴とするZn−Ni系合金電気メッキ浴へのZnイオン
の供給装置。
7. A circulating plating solution from a plating bath of a Zn—Ni-based alloy electroplating apparatus using a sulfuric acid bath having a pH of 4 or less using an insoluble anode is passed through a metal Zn dissolution tank to dissolve the metal Zn in the plating solution. In a device for supplying Zn ions, a Ti basket immersed and held in a plating solution of the dissolving tank is filled with metal Zn particles, a metal Zn plate, a metal Zn ingot, and the like, and a counter electrode is provided so as to face the Ti basket. A plating solution supply port and a discharge port are provided in the dissolving tank so that the plating solution flows between the counter electrode and the Ti basket while being immersed and held in the plating solution. The metal Zn is an anode through the Ti basket, and the counter electrode is a cathode. A supply device for supplying Zn ions to a Zn-Ni-based alloy electroplating bath, comprising a power supply for performing the above-mentioned operations.
【請求項8】 金属Zn板を積層して上部に孔をあけ、
この孔に通電棒を挿入し、溶解槽のメッキ液面の上方に
配置した2本の通電用支持棒で上記通電棒の両端部を支
えることで金属Zn板の積層体の下部をメッキ液中に浸
漬保持し、対極の上端部に設けた対極支持板の両端部を
電気絶縁物を介して上記2本の導電性支持棒にて支える
ことで対極の下部を、メッキ液中の金属Zn板積層体下
部の積層板厚面に対向して、メッキ液中に浸漬保持する
と共に、支持棒、通電棒を介して金属Zn板積層体を陽
極、対極支持板を介して対極を陰極とするように電源に
接続したことを特徴とする請求項6に記載のZn−Ni
系合金電気メッキ浴へのZnイオンの供給装置。
8. A metal Zn plate is laminated and a hole is formed in an upper part,
A current-carrying rod is inserted into this hole, and two ends of the current-carrying rod are supported by two current-carrying support rods disposed above the plating solution level of the dissolving tank, so that the lower part of the metal Zn plate laminate is placed in the plating solution. The lower end of the counter electrode is supported by the two conductive support rods via an electrical insulator, and the lower part of the counter electrode is supported by the metal Zn plate in the plating solution. Opposite to the thick surface of the laminate at the bottom of the laminate, while being immersed and held in the plating solution, the support rod, the metal Zn plate laminate through a current-carrying rod as an anode, and the counter electrode as a cathode through a counter electrode support plate. The Zn-Ni according to claim 6, wherein the Zn—Ni is connected to a power supply.
Equipment for supplying Zn ions to a system alloy electroplating bath.
【請求項9】 Tiバスケットの上部にフランジを設
け、溶解槽のメッキ液面の上方に配置した2本の通電用
支持棒で上記フランジを支えることでTiバスケットの
下部をメッキ液中に浸漬保持すると共に、上記Tiバス
ケットに、金属Zn粒、金属Zn板、金属Znインゴッ
ト等を充填し、対極の上端部に設けた対極支持板の両端
部を電気絶縁物を介して上記2本の導電性支持棒にて支
えることで対極の下部を、Tiバスケットに対向して、
メッキ液中に浸漬保持すると共に、支持棒、フランジ、
Tiバスケットを介して金属Znを陽極、対極支持板を
介して対極を陰極とするように電源に接続したことを特
徴とする請求項7に記載のZn−Ni系合金電気メッキ
浴へのZnイオンの供給装置。
9. A flange is provided on an upper portion of a Ti basket, and the lower portion of the Ti basket is immersed and held in a plating solution by supporting the flange with two current-carrying support rods disposed above a plating solution level of a melting tank. At the same time, the Ti basket is filled with metal Zn grains, a metal Zn plate, a metal Zn ingot, and the like, and both ends of the counter electrode support plate provided at the upper end of the counter electrode are electrically connected to each other through an electrical insulator. By supporting with a support rod, the lower part of the counter electrode faces the Ti basket,
While immersing and holding in the plating solution, support rods, flanges,
The Zn ion to the Zn-Ni alloy electroplating bath according to claim 7, wherein the Zn-Ni alloy electroplating bath is connected to a power source such that the metal Zn is an anode via a Ti basket and the counter electrode is a cathode via a counter electrode support plate. Feeder.
【請求項10】 溶解槽内のメッキ液中に、複数の対極
が間隔を存してそれらの下部が浸漬保持され、対極の間
に金属Zn板積層体の下部が、浸漬保持されることを特
徴とする請求項6または8に記載のZn−Ni系合金電
気メッキ浴へのZnイオンの供給装置。
10. A method in which a plurality of counter electrodes are immersed and held at intervals in a plating solution in a melting tank, and a lower portion of a metal Zn plate laminate is immersed and held between the counter electrodes. The apparatus for supplying Zn ions to a Zn-Ni-based alloy electroplating bath according to claim 6 or 8, wherein:
【請求項11】 溶解槽内のメッキ液中に、複数の対極
が間隔を存してそれらの下部が浸漬保持され、対極の間
にTiバスケットの下部が浸漬保持され、このバスケッ
ト内に金属Zn粒、金属Zn板、金属Znインゴット等
が充填されることを特徴とする請求項7または9に記載
のZn−Ni系合金電気めっき浴へのZnイオンの供給
装置。
11. A lower portion of a plurality of counter electrodes is immersed and held in a plating solution in a melting tank at intervals, and a lower portion of a Ti basket is immersed and held between the counter electrodes. The apparatus for supplying Zn ions to a Zn-Ni-based alloy electroplating bath according to claim 7 or 9, wherein the apparatus is filled with grains, a metal Zn plate, a metal Zn ingot, or the like.
JP09885197A 1997-04-16 1997-04-16 Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath Expired - Fee Related JP3370896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09885197A JP3370896B2 (en) 1997-04-16 1997-04-16 Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09885197A JP3370896B2 (en) 1997-04-16 1997-04-16 Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath

Publications (2)

Publication Number Publication Date
JPH10287999A true JPH10287999A (en) 1998-10-27
JP3370896B2 JP3370896B2 (en) 2003-01-27

Family

ID=14230745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09885197A Expired - Fee Related JP3370896B2 (en) 1997-04-16 1997-04-16 Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath

Country Status (1)

Country Link
JP (1) JP3370896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403463B1 (en) * 1998-12-08 2004-01-28 주식회사 포스코 Manufacturing method of nickel flash-plated steel sheet to attach nickel uniformly and finely over the whole steel plate
KR101287439B1 (en) * 2012-10-15 2013-07-19 (주) 거양 Zinc plate for anode electrode of plating equipment having sulfuric acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403463B1 (en) * 1998-12-08 2004-01-28 주식회사 포스코 Manufacturing method of nickel flash-plated steel sheet to attach nickel uniformly and finely over the whole steel plate
KR101287439B1 (en) * 2012-10-15 2013-07-19 (주) 거양 Zinc plate for anode electrode of plating equipment having sulfuric acid

Also Published As

Publication number Publication date
JP3370896B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
Martelli et al. Deactivation mechanisms of oxygen evolving anodes at high current densities
JP4346551B2 (en) Anode for electroplating
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JP6169719B2 (en) Device and method for electrolytic coating of objects
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
JP3370896B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JPH05331669A (en) Apparatus and method for preventing corrosion of cathod madeof aluminum-containing metal
KR100558129B1 (en) Method and apparatus for regulating the concentration of substances in electrolytes
JPH0525957B2 (en)
Bai et al. High current density on electroplating smooth alkaline zinc coating
EP3461933B1 (en) Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated
JPS6213589A (en) Method and apparatus for preventing inverse current in electrolytic cell
JPH06158397A (en) Method for electroplating metal
JPH057474B2 (en)
JP3370897B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP3164927B2 (en) Electrolysis equipment for metal materials
SE519898C2 (en) Ways to etch copper on card and device and electrolyte for carrying out the method
JP2019044221A (en) Operation method of copper electrorefining
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
JP2001149940A (en) Bath water quality improvement device
JP7048941B2 (en) Copper electrolytic refining method
Stanković The Effect of Fe (II) ions on kinetics and mechanism of anodic dissolution and cathodic deposition of copper
JPH11200098A (en) Tin electroplating method
JPS60135591A (en) Method for preventing corrosion of metallic electrode plate for electrolysis
US4061553A (en) Electroplating apparatus and method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees