JPH10287675A - Production of epsilon-hhexanitrohexaazaisowurtzitane using seed crystal - Google Patents

Production of epsilon-hhexanitrohexaazaisowurtzitane using seed crystal

Info

Publication number
JPH10287675A
JPH10287675A JP11175797A JP11175797A JPH10287675A JP H10287675 A JPH10287675 A JP H10287675A JP 11175797 A JP11175797 A JP 11175797A JP 11175797 A JP11175797 A JP 11175797A JP H10287675 A JPH10287675 A JP H10287675A
Authority
JP
Japan
Prior art keywords
solvent
hniw
producing
boiling point
hexanitrohexaazaisowurtzitane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11175797A
Other languages
Japanese (ja)
Other versions
JP2893524B2 (en
Inventor
Hideshi Kawabe
秀史 川邊
Yasushi Miya
裕史 美矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11175797A priority Critical patent/JP2893524B2/en
Publication of JPH10287675A publication Critical patent/JPH10287675A/en
Application granted granted Critical
Publication of JP2893524B2 publication Critical patent/JP2893524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound having a high density and a high energy, in a high purity and a good yield in a short time, by using the mixture of a low boiling point good solvent with a low boiling point poor solvent as solvent and using the compound as seed crystals. SOLUTION: This method for producing ε-hexanitrohexaazaisowurtzitane (hereinafter referred to as HNIW) of the formula: W(NO)6 (W is a hexavalent hexaazalsowurtzitane residue of the formula) comprises dissolving HNIW in the mixture of a low boiling point good solvent (preferably acetone or tetrahydrofuran) with a low boiling point poor solvent (preferably toluene or xylene), adding the ε-HNIW (preferably its crystals having an average particle diameter of 0.1-100 μm) as seed crystals and subsequently evaporating the solvents to deposit the crystals. The ε-HNIW as the seed crystals is preferably added in an amount of 0.05-10 wt.%. The evaporation speed of the solvent is preferably 0.5-50 %/hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来の火薬組成物
の高性能化をはかるために利用されるεーヘキサニトロ
ヘキサアザイソウルチタン結晶を種子結晶を用いて90
%以上の純度で製造するεーヘキサニトロヘキサアザイ
ソウルチタンの製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a conventional explosive composition by using a seed crystal of .epsilon.-hexanitrohexaazaisowurtzitane crystal, which is used for improving the performance of a conventional explosive composition.
The present invention relates to a method for producing ε-hexanitrohexaazaisosoultitanium produced with a purity of at least%.

【0002】[0002]

【従来の技術】ヘキサニトロヘキサアザイソウルチタン
(以下「HNIW」という。)は高密度かつ高エネルギ
ー物質であり、次世代の高性能火薬材料として有望視さ
れている。 W(NO2 6 (1) [式中、Wは次の式(2)に示す6価のヘキサアザイソ
ウルチタン残基を表す。]
2. Description of the Related Art Hexanitrohexaazaisosoultitanium (hereinafter referred to as "HNIW") is a high-density and high-energy substance, and is regarded as a promising next-generation high explosive material. W (NO 2 ) 6 (1) [wherein, W represents a hexavalent hexaazaisowurtzitanium residue represented by the following formula (2). ]

【0003】[0003]

【化2】 HNIWには複数の結晶形態があり、少なくともα−H
NIW、βーHNIW、γーHNIW、εーHNIWの
存在が確認されている。その中で、εーHNIWは密度
が高く、熱力学的に安定な状態であることから、火薬材
料として最も注目されている結晶形態である。また、α
ーHNIW、βーHNIW、またはγーHNIWは準安
定状態の結晶として知られている。εーHNIWを種子
結晶として脱水したαーHNIWからε−HNIWを得
ることができなかったという報告がある[Propel
lants、Explosives、Pyrotech
nics19、19ー25(1994)]。しかし該報
告には、具体的な条件は一切記載されていない。
Embedded image HNIW has multiple crystal forms, at least α-H
The existence of NIW, β-HNIW, γ-HNIW, and ε-HNIW has been confirmed. Among them, ε-HNIW is a crystal form that has received the most attention as an explosive material because it has a high density and is thermodynamically stable. Also, α
-HNIW, β-HNIW, or γ-HNIW are known as metastable crystals. There is a report that ε-HNIW could not be obtained from α-HNIW dehydrated with ε-HNIW as seed crystals [Propel
lants, Explosives, Pyrotech
nics 19, 19-25 (1994)]. However, the report does not describe any specific conditions.

【0004】また、αーHNIW、βーHNIW、また
はγーHNIWとεーHNIWの混合物はキシレン、ま
たは10〜30%アセトフェノンを添加したキシレン、
ビス(2ーフルオロー2、2ージニトロエチル)ホルマ
ールなどの溶媒中でεーHNIWに変換するという報告
がある。また、溶液状態のγーHNIWとεーHNIW
の混合物は64℃以下でεーHNIWに再結晶化される
という報告がある。
Further, α-HNIW, β-HNIW, or a mixture of γ-HNIW and ε-HNIW is xylene or xylene to which 10 to 30% acetophenone is added.
There is a report that it is converted to ε-HNIW in a solvent such as bis (2-fluoro-2,2 dinitroethyl) formal. Also, γ-HNIW and ε-HNIW in a solution state
Is reported to recrystallize to ε-HNIW below 64 ° C.

【0005】また、γーHNIWとεーHNIWの混合
物のεーHNIWへの変換はHNIWに対し高い溶解性
を持つケトン類などの溶媒を添加すると24時間以内に
平衡するという報告がある[Propellants、
Explosives、Pyrotechnics1
9、19ー25(1994)、Propellant
s、Explosives、Pyrotechnics
19、63ー69(1994)、Propellant
s、Explosives、Pyrotechnics
19、206ー212(1994)]。しかし、これら
はいずれも、HNIWと溶媒との比率などの具体的な条
件が記載されていない。
It has been reported that the conversion of a mixture of γ-HNIW and ε-HNIW to ε-HNIW equilibrates within 24 hours when a solvent such as a ketone having high solubility in HNIW is added [Propellants]. ,
Explosives, Pyrotechnics1
9, 19-25 (1994), Propellant
s, Explosives, Pyrotechnics
19, 63-69 (1994), Propellant
s, Explosives, Pyrotechnics
19, 206-212 (1994)]. However, none of these documents describes specific conditions such as the ratio of HNIW to the solvent.

【0006】また、αーHNIWとεーHNIWの混合
物でαーHNIWの含有率を高くすると多量のキシレン
を使ってもαーHNIWが残る場合がある。また、αー
HNIW水和物は64℃以下でεーHNIWに変換する
という報告がある[Propellants、Expl
osives、Pyrotechnics19、19ー
25(1994)]。また、クロロホルムと酢酸エチル
の2溶媒結晶方法によりεーHNIWを得たという報告
がある[Int.Annu.Conf.ICT(199
6)、27th(Energetic Materia
ls)、27.1ー27.10]。
When the content of α-HNIW is increased in a mixture of α-HNIW and ε-HNIW, α-HNIW may remain even when a large amount of xylene is used. It has been reported that α-HNIW hydrate converts to ε-HNIW at 64 ° C. or lower [Propellants, Expl.
osives, Pyrotechnics 19, 19-25 (1994)]. There is also a report that ε-HNIW was obtained by a two-solvent crystallization method of chloroform and ethyl acetate [Int. Annu. Conf. ICT (199
6), 27th (Energy Material)
ls), 27.1-27.10].

【0007】また、εーHNIWを得たという報告があ
る[Int.Annu.Conf.ICT(199
6)、27th(Energetic Materia
ls)、39.1ー39.12、Int.Annu.C
onf.ICT(1996)、27th(Energe
tic Materials)、23.1ー23.1
3、Chin.Sci.Bull.(1996)、41
(7)、574ー576、Proc.Beijing
Int.Symp.Explos.、3rd(199
5)、520ー525、Proc.Beijing I
nt.Symp.Explos.、3rd(199
5)、312ー314)Proc.INT.Pyrot
ech.Semin.(1996),22nd,425
−432]。しかし、これらはいずれも具体的なεーH
NIW変換条件については記載されていない。
There is also a report that ε-HNIW has been obtained [Int. Annu. Conf. ICT (199
6), 27th (Energy Material)
ls), 39.1-39.12, Int. Annu. C
onf. ICT (1996), 27th (Energy
tic Materials), 23.1-23.1.
3, Chin. Sci. Bull. (1996), 41
(7), 574-576, Proc. Beijing
Int. Symp. Explos. , 3rd (199
5) 520-525, Proc. Beijing I
nt. Symp. Explos. , 3rd (199
5), 312-314) Proc. INT. Pyrot
ech. Semin. (1996), 22nd, 425
-432]. However, these are all specific ε-H
No description is given of NIW conversion conditions.

【0008】[0008]

【発明が解決しようとする課題】HNIWは、例えば、
WO96−23792号公開公報に記載された方法のよ
うにその前駆体となるヘキサアザイソウルチタン骨格の
6個の窒素原子にうち1つ以上が炭素数1〜10のアシ
ル基であるヘキサアザイソウルチタン誘導体をニトロ化
剤でニトロ化することにより製造できる。しかし、これ
らの方法ではHNIWは準安定状態の結晶であるαーH
NIW、またはβーHNIWを90%以上含有する結晶
で得られることが多く、εーHNIWを得るためには、
更にεーHNIWへ変換する工程が必要である。
The HNIW is, for example,
As disclosed in WO96-23792, a hexaazaihydrate wherein at least one of six nitrogen atoms of a hexaazaisoulitanium skeleton as a precursor thereof is an acyl group having 1 to 10 carbon atoms is used. It can be produced by nitrating a soul titanium derivative with a nitrating agent. However, in these methods, the HNIW is a metastable crystal α-H
NIW or crystals containing 90% or more of β-HNIW are often obtained. In order to obtain ε-HNIW,
Further, a step of converting into ε-HNIW is required.

【0009】種子結晶を用いた結晶析出方法は、低い過
飽和状態からも結晶を成長させることができ、種子結晶
を用いない場合に比べて容易に結晶を析出させることが
できる。ここでいう種子結晶とは結晶成長の核となる微
小結晶のことである。目的物質を溶かした溶液中に種子
結晶と目的物質を溶解しにくい溶媒とを加えて、目的物
質の結晶を析出させる方法が広く知られている。しかし
ながら、この方法では目的物質を溶解できる溶媒が残る
ため、収率良く目的物質の結晶を得ることは難しい。本
発明は、こうした実状の下に、熱力学的安定な高密度の
実質的εーHNIWを短い時間で収率良く得る方法を提
供することを目的とするものである。ここでいう実質的
εーHNIWとは、90%以上のεーHNIWを含有す
る結晶のことである。
The crystal precipitation method using a seed crystal can grow a crystal even from a low supersaturated state, and can precipitate a crystal more easily than a case where no seed crystal is used. The seed crystal referred to here is a small crystal serving as a nucleus for crystal growth. 2. Description of the Related Art There is widely known a method of adding a seed crystal and a solvent in which a target substance is not easily dissolved into a solution in which a target substance is dissolved to precipitate crystals of the target substance. However, in this method, since a solvent capable of dissolving the target substance remains, it is difficult to obtain crystals of the target substance in high yield. An object of the present invention is to provide a method for obtaining thermodynamically stable, high-density substantially ε-HNIW in a short time and with high yield under such circumstances. The term “substantial ε-HNIW” as used herein refers to a crystal containing 90% or more of ε-HNIW.

【0010】[0010]

【課題を解決するための手段】発明者らは、溶媒として
低沸点の良溶媒と貧溶媒の混合溶媒を用いてHNIWを
溶かし、ついでεーHNIWの種子結晶を加え、溶媒を
コントロールされた蒸発速度で蒸発させて結晶を析出さ
せることで実質的εーHNIWを得ることに成功し、本
発明を完成した。ここで言う低沸点の良溶媒とは、常圧
下における沸点が150℃以下で、かつ常温、常圧下に
おいて溶媒100gに対してHNIWを20g以上溶か
すことができる溶媒のことである。
Means for Solving the Problems The inventors dissolve HNIW using a mixed solvent of a good solvent and a poor solvent having a low boiling point as a solvent, and then added seed crystals of ε-HNIW, and controlled the evaporation of the solvent. The inventors succeeded in obtaining substantially ε-HNIW by evaporating the crystals at a rate to precipitate the crystals, and completed the present invention. Here, the good solvent having a low boiling point is a solvent having a boiling point of 150 ° C. or less under normal pressure and capable of dissolving 20 g or more of HNIW in 100 g of the solvent at normal temperature and normal pressure.

【0011】また、ここで言う貧溶媒とは、常温、常圧
下において溶媒100gに対してHNIWを1g以上溶
かすことができない溶媒のことである。蒸発速度とは、
使用した溶媒量を100とし、溶媒の蒸発を開始してか
ら1時間ごとの溶媒の減少量を重量パーセントで表した
数値のことである。すなわち、本発明は、HNIWを低
沸点の良溶媒と貧溶媒の混合溶媒に溶解させ、HNIW
溶液とし、ついでεーHNIWを種子結晶として加え、
溶媒を蒸発させて結晶を析出させ、実質的εーHNIW
を得る方法を提供する。
The term "poor solvent" as used herein means a solvent which cannot dissolve 1 g or more of HNIW per 100 g of the solvent at normal temperature and normal pressure. What is the evaporation rate?
The amount of the solvent used is defined as 100, and the amount of decrease in the solvent every hour from the start of the evaporation of the solvent is represented by a weight percentage. That is, the present invention dissolves HNIW in a mixed solvent of a low boiling point good solvent and a poor solvent,
Solution, then add ε-HNIW as seed crystals,
The solvent is evaporated to precipitate crystals, and substantially ε-HNIW
Provide a way to get

【0012】以下、本発明の実質的εーHNIWを得る
方法について述べる。本発明の出発原料であるHNIW
はどのような方法で製造されたものを用いてもよい。α
ーHNIW、βーHNIW、またはγーHNIWの一種
およびそれらの混合物を主成分とするHNIWを用いる
ことができる。ここで言う主成分とは全体に対して60
%以上含まれる場合を言う。種子結晶として用いられる
εーHNIWの粒径は、通常、0.1〜100ミクロ
ン、好ましくは2〜50ミクロン、さらに好ましくは5
から20ミクロンの範囲で使用される。種子結晶として
用いられるεーHNIWの添加量は、通常、0.05〜
10重量%、好ましくは0.1〜5重量%の範囲で使用
される。種子結晶として用いられるεーHNIWはどの
ような方法で製造されたものを用いてもよい。
Hereinafter, a method for obtaining substantial ε-HNIW of the present invention will be described. HNIW as starting material of the present invention
May be manufactured by any method. α
HNIW containing -HNIW, β-HNIW, or γ-HNIW or a mixture thereof as a main component can be used. The main component referred to here is 60
% If it is included. The particle size of ε-HNIW used as a seed crystal is usually 0.1 to 100 microns, preferably 2 to 50 microns, more preferably 5 to 50 microns.
Used in the range from to 20 microns. The amount of ε-HNIW used as a seed crystal is usually 0.05 to
It is used in an amount of 10% by weight, preferably 0.1 to 5% by weight. Ε-HNIW used as a seed crystal may be produced by any method.

【0013】低沸点の良溶媒としてはアセトン、メチル
エチルケトン、ペンタノン、ヘキサノン、メチルイソブ
チルケトン等のケトン類、テトラヒドロフラン、テトラ
ヒドロピランのエーテル類、酢酸エチルなどが使用され
る。これらの低沸点の良溶媒を2種以上混合して使用し
てもかまわない。貧溶媒としては、ベンゼン、トルエ
ン、キシレンなどが用いられる。溶媒として低沸点の良
溶媒と貧溶媒の混合溶媒を用いる場合の溶媒量は、通
常、HNIWの1gに対して、5〜50ml、好ましく
は10〜40mlの範囲で使用される。溶媒量が5ml
未満の場合、溶媒蒸発時に溶液が不均一になり、副生成
物としてαーHNIWあるいはβーHNIWが得られる
場合がある。また、溶媒量が50mlを越えると析出ま
でに長い時間が必要となる。溶媒として低沸点の良溶媒
と貧溶媒の混合溶媒を用いる場合の貧溶媒の容積は良溶
媒の容積を1とした場合の容積比で表現して、通常、1
〜10、好ましくは2〜5の範囲で使用される。1未満
の場合、析出に時間がかかり、10を越えると結晶の析
出量が少なくなる。
As a good solvent having a low boiling point, ketones such as acetone, methyl ethyl ketone, pentanone, hexanone, methyl isobutyl ketone, tetrahydrofuran, ethers of tetrahydropyran, and ethyl acetate are used. These low-boiling good solvents may be used as a mixture of two or more. Benzene, toluene, xylene and the like are used as the poor solvent. When a mixed solvent of a good solvent and a poor solvent having a low boiling point is used as the solvent, the amount of the solvent is usually in the range of 5 to 50 ml, preferably 10 to 40 ml per 1 g of HNIW. 5ml solvent volume
If it is less than 3, the solution becomes non-uniform during the evaporation of the solvent, and α-HNIW or β-HNIW may be obtained as a by-product. When the amount of the solvent exceeds 50 ml, a long time is required until precipitation. When a mixed solvent of a good solvent and a poor solvent having a low boiling point is used as the solvent, the volume of the poor solvent is expressed by a volume ratio when the volume of the good solvent is set to 1, and is usually 1
It is used in the range of 10 to 10, preferably 2 to 5. If it is less than 1, it takes a long time to precipitate, and if it exceeds 10, the amount of precipitated crystals decreases.

【0014】溶媒の蒸発速度は、通常、0.5〜50重
量%/時間、好ましくは1〜10重量%/時間の範囲で
コントロールされる。0.5重量%/時間未満の場合
は、析出までに長い時間が必要となり、50重量%/時
間を越えると副生成物としてαーHNIWあるいはβー
HNIWが得られる場合がある。溶媒の蒸発速度はどの
ような方法でコントロールしてもよいが、用いる低沸点
の良溶媒の種類によって、蒸発した溶媒が通る容器上部
の表面積を変更させるか、または容器上部をフィルター
等で覆うことによってコントロールされる。溶媒蒸発
は、溶液中のHNIWの濃度を均一に保つため、また種
子結晶を均一に分散させるため、攪拌状態で行うことが
好ましい。通常、50〜500rpm、好ましくは10
0〜300rpmの範囲の攪拌で行われる。溶媒蒸発時
の温度は通常0〜50℃、好ましくは10〜40℃で行
われる。溶媒の蒸発量が20〜40重量%に達した時点
で結晶の濾過を行う。
[0014] The evaporation rate of the solvent is usually controlled in the range of 0.5 to 50% by weight / hour, preferably 1 to 10% by weight / hour. When the amount is less than 0.5% by weight / hour, a long time is required until precipitation. When the amount exceeds 50% by weight / hour, α-HNIW or β-HNIW may be obtained as a by-product. The evaporation rate of the solvent may be controlled by any method, but depending on the type of low-boiling good solvent used, change the surface area of the upper part of the container through which the evaporated solvent passes, or cover the upper part of the container with a filter, etc. Is controlled by The solvent evaporation is preferably performed with stirring to keep the HNIW concentration in the solution uniform and to uniformly disperse the seed crystals. Usually 50 to 500 rpm, preferably 10
The stirring is performed in the range of 0 to 300 rpm. The temperature at the time of solvent evaporation is usually 0 to 50 ° C, preferably 10 to 40 ° C. When the evaporation amount of the solvent reaches 20 to 40% by weight, the crystals are filtered.

【0015】[0015]

【実施例】以下に、実施例を用いて本発明を更に詳細に
説明するが、本発明はこれらの実施例などにより何ら限
定されるものではない。 (実施例1) [α−HNIW→実質的ε−HNIW;アセトンとトル
エンの混合溶媒を用いる例]200mlビーカーに、α
−HNIW2.50g、アセトン10mlを添加し完全
に溶解させた後、トルエン50mlを添加する。更に、
ε−HNIW0.1gを種子結晶として添加する。ビー
カー上部の表面積が1/5になるようアルミホイルで覆
い、蒸発速度3.0〜4.0重量%/時間以内になるよ
うにコントロールしながらスリーワンモーターを用いて
200rpmで攪拌する。20℃で8時間経過後、析出
した結晶をろ過、乾燥し、実質的εーHNIW2.45
g(98.0%)を得た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Example 1) [α-HNIW → substantially ε-HNIW; Example using mixed solvent of acetone and toluene]
After adding 2.50 g of HNIW and 10 ml of acetone to completely dissolve, 50 ml of toluene is added. Furthermore,
0.1 g of ε-HNIW is added as seed crystals. The top of the beaker is covered with aluminum foil so that the surface area is reduced to 1/5, and the mixture is stirred at 200 rpm using a three-one motor while controlling the evaporation rate to be within 3.0 to 4.0% by weight / hour. After 8 hours at 20 ° C., the precipitated crystals were filtered and dried, and substantially ε-HNIW 2.45.
g (98.0%).

【0016】析出した結晶の構造解析は以下のようにし
て行った。赤外吸収(以下「IR」と表現する)スペク
トルをKBr法で、分解能2cm-1で測定した結果、α
−HNIWの特性吸収である1166cm-1の吸収、9
03cm-1の吸収が消去し、ε−HNIWの特性吸収で
ある1138cm-1、1193cm-1が確認された。ま
た、739cm-1、746cm-1、752cm-1、75
9cm-1、をピークトップとする4本の吸収、821c
-1、833cm-1をピークトップとする2本の吸収も
確認された。これらの吸収特性は、文献[Propel
lants,Explosives,Pyrotech
nics 19,63−69(1994)]に掲載され
たε−HNIWのIRスペクトルの特性吸収と一致す
る。以上のことより、実質的ε−HNIWに変換されて
いることを確認した。
The structure analysis of the precipitated crystal was performed as follows. As a result of measuring an infrared absorption (hereinafter, referred to as “IR”) spectrum by a KBr method at a resolution of 2 cm −1 , α
Absorption of 1166 cm -1 which is characteristic absorption of HNIW, 9
Absorption of 03cm -1 is erased, 1138cm -1, is 1193Cm -1 was confirmed that the characteristic absorption of an epsilon-HNIW. 739 cm -1 , 746 cm -1 , 752 cm -1 , 75
4 absorptions with peaks at 9 cm -1 , 821c
Two absorption peaks at m −1 and 833 cm −1 were also confirmed. These absorption properties are described in the literature [Propel
lants, Explosives, Pyrotech
nics 19, 63-69 (1994)], which is consistent with the characteristic absorption of the IR spectrum of ε-HNIW. From the above, it was confirmed that it was substantially converted to ε-HNIW.

【0017】(実施例2) [β−HNIW→実質的ε−HNIW;アセトンとトル
エンの混合溶媒を用いる例]200mlビーカーに、β
−HNIW2.50g、アセトン10mlを添加し完全
に溶解させた後、トルエン50mlを添加する。更に、
ε−HNIW0.1gを種子結晶として添加する。ビー
カー上部の表面積が1/5になるようアルミホイルで覆
い、蒸発速度3.0〜4.0重量%/時間以内になるよ
うにコントロールしながらスリーワンモーターを用いて
200rpmで攪拌する。20℃で8時間経過後、析出
した結晶をろ過、乾燥し、実質的εーHNIW2.48
g(収率99.2%)を得た。
(Example 2) [β-HNIW → substantially ε-HNIW; Example using a mixed solvent of acetone and toluene]
After adding 2.50 g of HNIW and 10 ml of acetone to completely dissolve, 50 ml of toluene is added. Furthermore,
0.1 g of ε-HNIW is added as seed crystals. The top of the beaker is covered with aluminum foil so that the surface area is reduced to 1/5, and the mixture is stirred at 200 rpm using a three-one motor while controlling the evaporation rate to be within 3.0 to 4.0% by weight / hour. After 8 hours at 20 ° C., the precipitated crystals were filtered and dried, and substantially ε-HNIW 2.48.
g (99.2% yield).

【0018】析出した結晶の構造解析は以下のようにし
て行った。IRスペクトルをKBr法で、分解能2cm
-1で測定した結果、β−HNIWの特性吸収である11
54m-1の吸収、991cm-1の吸収が消去し、ε−H
NIWの特性吸収である1138cm-1、1193cm
-1、吸収が確認された。また、739cm-1、746c
-1、752cm-1、759cm-1、をピークトップと
する4本の吸収、821cm-1、833cm-1をピーク
トップとする2本の吸収も確認された。これらの吸収特
性は、文献[Propellants,Explosi
ves,Pyrotechnics 19,63−69
(1994)]に掲載されたε−HNIWのIRスペク
トルの特性吸収と一致する。以上のことより、実質的ε
−HNIWに変換されていることを確認した。
The structural analysis of the precipitated crystal was performed as follows. IR spectrum was measured by KBr method at a resolution of 2 cm.
As a result of measurement at -1 , the characteristic absorption of β-HNIW is 11
Absorption of 54 m -1 and absorption of 991 cm -1 disappeared, and ε-H
1138cm -1 and 1193cm which are characteristic absorption of NIW
-1 , absorption was confirmed. Also, 739 cm -1 and 746 c
Four absorption peaks at m -1 , 752 cm -1 and 759 cm -1 and two absorption peaks at 821 cm -1 and 833 cm -1 were also confirmed. These absorption properties are described in the literature [Propellants, Explosi.
ves, Pyrotechnics 19, 63-69
(1994)], which is consistent with the characteristic absorption of the IR spectrum of ε-HNIW. From the above, substantial ε
-It was confirmed that it was converted to HNIW.

【0019】(実施例3) [α−HNIW→実質的ε−HNIW;テトラヒドロフ
ランとトルエンの混合溶媒を用いる例]200mlビー
カーに、α−HNIW2.50g、テトラヒドロフラン
10mlを添加し完全に溶解させた後、トルエン50m
lを添加する。更に、ε−HNIW0.1gを種子結晶
として添加する。液温を40℃に昇温し、蒸発速度4.
0〜5.0重量%/時間にコントロールし、スリーワン
モーターを用いて200rpmで攪拌し、6時間経過
後、析出した結晶をろ過、乾燥し、実質的εーHNIW
2.45g(収率98.0%)を得た。析出した結晶
は、実施例1と同様にして実質的ε−HNIWであるこ
とを確認した。
(Example 3) [α-HNIW → substantially ε-HNIW; Example using a mixed solvent of tetrahydrofuran and toluene] 2.50 g of α-HNIW and 10 ml of tetrahydrofuran were added to a 200 ml beaker and completely dissolved. , Toluene 50m
Add l. Further, 0.1 g of ε-HNIW is added as seed crystals. The liquid temperature was raised to 40 ° C., and the evaporation rate was 4.
The mixture was controlled at 0 to 5.0% by weight / hour and stirred at 200 rpm using a three-one motor. After 6 hours, the precipitated crystals were filtered and dried, and substantially ε-HNIW.
2.45 g (98.0% yield) were obtained. The precipitated crystals were confirmed to be substantially ε-HNIW in the same manner as in Example 1.

【0020】[0020]

【発明の効果】本発明により、高密度で高エネルギーな
εーヘキサニトロヘキサアザイソウルチタンを90%以
上の純度で収率よく短時間で得ることができる。また、
本発明により得られた結晶は鋭角な角を持たず、火薬の
組成物として用いた場合、低感度化が図られる。
According to the present invention, high-density and high-energy ε-hexanitrohexaazaisowurtzitanium can be obtained with a purity of 90% or more in a high yield in a short time. Also,
The crystals obtained by the present invention have no sharp corners, and when used as an explosive composition, the sensitivity is reduced.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年4月21日[Submission date] April 21, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【化1】 Embedded image

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 下記の一般式(1)で表されるεーヘキ
サニトロヘキサアザイソウルチタンの製法であって、ヘ
キサニトロヘキサアザイソウルチタンを溶媒に溶解させ
てヘキサニトロヘキサアザイソウルチタン溶液とし、種
子結晶としてεーヘキサニトロヘキサアザイソウルチタ
ンを加えた後、溶媒を蒸発させて結晶を析出させること
を特徴とするεーヘキサニトロヘキサアザイソウルチタ
ンの製法。 W(NO2 6 (1) [式中、Wは次の式(2)に示す6価のヘキサアザイソ
ウルチタン残基を表す。] 【化1】
1. A method for producing ε-hexanitrohexaazaisowurtitanium represented by the following general formula (1), comprising: dissolving hexanitrohexaazaisowurtzitanium in a solvent; A method for producing ε-hexanitrohexaazaisowurtzitane, comprising preparing a titanium solution, adding ε-hexanitrohexaazaisowurtzitane as seed crystals, and evaporating the solvent to precipitate crystals. W (NO 2 ) 6 (1) [wherein, W represents a hexavalent hexaazaisowurtzitanium residue represented by the following formula (2). ]
【請求項2】 溶媒に溶解させるヘキサニトロヘキサア
ザイソウルチタンがαーヘキサニトロヘキサアザイソウ
ルチタン、βーヘキサニトロヘキサアザイソウルチタ
ン、またはγーヘキサニトロヘキサアザイソウルチタン
を主成分とするヘキサニトロヘキサアザイソウルチタン
であることを特徴とする請求項1記載のεーヘキサニト
ロヘキサアザイソウルチタンの製法。
2. The method according to claim 1, wherein the hexanitrohexaazaisosoultitanium to be dissolved in the solvent is composed mainly of α-hexanitrohexaazaisowurtzitane, β-hexanitrohexaazaisowurtzitanium, or γ-hexanitrohexaazaisowurtzitanium. 2. The method for producing .epsilon.-hexanitrohexaazaisowurtzitane according to claim 1, wherein
【請求項3】 種子結晶として加えるεーヘキサニトロ
ヘキサアザイソウルチタンの添加量が0.05〜10重
量%の範囲であることを特徴とする請求項1又は2記載
のεーヘキサニトロヘキサアザイソウルチタンの製法。
3. The ε-hexanitrohexa according to claim 1, wherein the amount of ε-hexanitrohexaazaisowurtzitane added as seed crystals is in the range of 0.05 to 10% by weight. Azai Soul Titanium manufacturing method.
【請求項4】 種子結晶として加えるεーヘキサニトロ
ヘキサアザイソウルチタン結晶の平均粒径が0.1〜1
00ミクロンの範囲であることを特徴とする請求項1〜
3記載のεーヘキサニトロヘキサアザイソウルチタンの
製法。
4. An ε-hexanitrohexaazaisowurtzitanium crystal added as a seed crystal having an average particle size of 0.1 to 1
2. The method of claim 1, wherein the diameter is in the range of 00 microns.
3. The method for producing ε-hexanitrohexaazaisosoultitanium according to 3.
【請求項5】 溶媒が低沸点の良溶媒と貧溶媒の混合溶
媒であることを特徴とする請求項1〜4記載のεーヘキ
サニトロヘキサアザイソウルチタンの製法。
5. The method according to claim 1, wherein the solvent is a mixed solvent of a good solvent having a low boiling point and a poor solvent.
【請求項6】 低沸点の良溶媒がアセトン、メチルエチ
ルケトン、テトラヒドロフランのいずれか一種以上であ
ることを特徴とする請求項5記載のεーヘキサニトロヘ
キサアザイソウルチタンの製法。
6. The method of claim 5, wherein the good solvent having a low boiling point is at least one of acetone, methyl ethyl ketone and tetrahydrofuran.
【請求項7】 低沸点の良溶媒がテトラヒドロフランで
あることを特徴とする請求項6記載のεーヘキサニトロ
ヘキサアザイソウルチタンの製法。
7. The method of claim 6, wherein the good solvent having a low boiling point is tetrahydrofuran.
【請求項8】 貧溶媒がトルエン及び/又はキシレンで
あることを特徴とする請求項5〜7記載のεーヘキサニ
トロヘキサアザイソウルチタンの製法。
8. The method for producing ε-hexanitrohexaazaisowurtzitanium according to claim 5, wherein the poor solvent is toluene and / or xylene.
【請求項9】 貧溶媒がトルエンであることを特徴とす
る請求項5〜7記載のεーヘキサニトロヘキサアザイソ
ウルチタンの製法。
9. The method for producing ε-hexanitrohexaazaisowurtzitane according to claim 5, wherein the poor solvent is toluene.
【請求項10】 溶媒を蒸発速度0.5〜10重量%の
範囲で蒸発させることを特徴とする請求項1〜10記載
のεーヘキサニトロヘキサアザイソウルチタンの製法。
10. The method for producing ε-hexanitrohexaazaisowurtitanium according to claim 1, wherein the solvent is evaporated at an evaporation rate of 0.5 to 10% by weight.
JP11175797A 1997-04-15 1997-04-15 Production of ε-hexanitrohexaazaisowurtzitane using seed crystals Expired - Fee Related JP2893524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175797A JP2893524B2 (en) 1997-04-15 1997-04-15 Production of ε-hexanitrohexaazaisowurtzitane using seed crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175797A JP2893524B2 (en) 1997-04-15 1997-04-15 Production of ε-hexanitrohexaazaisowurtzitane using seed crystals

Publications (2)

Publication Number Publication Date
JPH10287675A true JPH10287675A (en) 1998-10-27
JP2893524B2 JP2893524B2 (en) 1999-05-24

Family

ID=14569425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175797A Expired - Fee Related JP2893524B2 (en) 1997-04-15 1997-04-15 Production of ε-hexanitrohexaazaisowurtzitane using seed crystals

Country Status (1)

Country Link
JP (1) JP2893524B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973149A (en) * 1997-10-29 1999-10-26 Snpe Process for producing the epsilon polymorphic form of hexanitrohexaazaisowurtzitane
KR100399200B1 (en) * 2001-07-05 2003-09-26 국방과학연구소 Purification of high purity hniw by recrystallization
JP2013505894A (en) * 2009-09-29 2013-02-21 エスエムウー Hexanitrohexazaisoleum titanium crystal suspension, method for producing said suspension, and method for producing pyrotechnic objects
CN103539800A (en) * 2013-10-18 2014-01-29 中国工程物理研究院化工材料研究所 Preparation method of large-particle hexanitrohexaazaisowurtzitane explosive
JP2014514237A (en) * 2011-04-08 2014-06-19 エラクレス Method for obtaining an explosive of hexanitrohexaazai Seoul titanium crystal having a rounded form, explosive and corresponding energy material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973149A (en) * 1997-10-29 1999-10-26 Snpe Process for producing the epsilon polymorphic form of hexanitrohexaazaisowurtzitane
KR100399200B1 (en) * 2001-07-05 2003-09-26 국방과학연구소 Purification of high purity hniw by recrystallization
JP2013505894A (en) * 2009-09-29 2013-02-21 エスエムウー Hexanitrohexazaisoleum titanium crystal suspension, method for producing said suspension, and method for producing pyrotechnic objects
JP2014514237A (en) * 2011-04-08 2014-06-19 エラクレス Method for obtaining an explosive of hexanitrohexaazai Seoul titanium crystal having a rounded form, explosive and corresponding energy material
CN103539800A (en) * 2013-10-18 2014-01-29 中国工程物理研究院化工材料研究所 Preparation method of large-particle hexanitrohexaazaisowurtzitane explosive

Also Published As

Publication number Publication date
JP2893524B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
Qiu et al. Nanoscale 2CL-20· HMX high explosive cocrystal synthesized by bead milling
CN106831278B (en) A kind of Subjective and Objective explosive and preparation method thereof with high crystalline density
Yang et al. Cocrystal explosive hydrate of a powerful explosive, HNIW, with enhanced safety
US5973149A (en) Process for producing the epsilon polymorphic form of hexanitrohexaazaisowurtzitane
Wang et al. Preparation of HMX/TATB composite particles using a mechanochemical approach
JP2893524B2 (en) Production of ε-hexanitrohexaazaisowurtzitane using seed crystals
Zhu et al. Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR
JP2779614B1 (en) Production method of ε-hexanitrohexaazaisosoul titanium
JP4467240B2 (en) Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,903,11] -dodecane
WO2016020496A1 (en) Method for colloidal preparation of a metal carbide, said metal carbide thus prepared and uses thereof
Liu et al. Rapid and High‐Yielding Formation of CL‐20/DNDAP Cocrystals via Self‐Assembly in Slightly Soluble‐Medium with Improved Sensitivity and Thermal Stability
Patil et al. Co-agglomerated crystals of 2, 2′, 4, 4′, 6, 6′-hexanitro-stilbene/-azobenzene with attractive nitramines
CN108299324B (en) Preparation method of spherical 5,5 '-bitetrazole-1, 1' -dioxygen hydroxylammonium salt
Zhang et al. Analysis of the thermal behaviour of CL-20, potassium perchlorate, lithium perchlorate and their Admixtures by DSC and TG
US9850180B1 (en) Method for manufacture of amorphous energetics
CN106518883B (en) Six azepine isoamyl of nanometer ε crystal form hexanitro hereby alkane explosive and its batch preparation
JPH11322752A (en) Crystallization of epsilon-hexanitrohexaazaisowurzitane using seed crystal
CN109503494B (en) Crystal form of 1,1 '-diamino-4, 4', 5,5 '-tetranitro-2, 2' -biimidazole and preparation method thereof
Zhu et al. Thermal decomposition kinetics of hexanitrohexaazaisowurtzitane/ammonium perchlorate
KR100251342B1 (en) Particle size control of ñ -hniw crystals
EP0177248A1 (en) Process for preparing diazomethane derivative
KR100239893B1 (en) Method for making fine particles of ñ -hniw
KR102336825B1 (en) Hniw recrystallization method
Li et al. Scaled-up production and quality controlling techniques of energetic cocrystals: challenges and prospects
Luo et al. A safe and scalable process for the synthesis of melt-cast explosive 1-methyl-3, 5-dinitro-1 H-1, 2, 4-triazole

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees