JPH10287500A - Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor - Google Patents

Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor

Info

Publication number
JPH10287500A
JPH10287500A JP9750297A JP9750297A JPH10287500A JP H10287500 A JPH10287500 A JP H10287500A JP 9750297 A JP9750297 A JP 9750297A JP 9750297 A JP9750297 A JP 9750297A JP H10287500 A JPH10287500 A JP H10287500A
Authority
JP
Japan
Prior art keywords
single crystal
semi
wafers
wafer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9750297A
Other languages
Japanese (ja)
Inventor
Minoru Seki
実 関
Tomoki Inada
知己 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9750297A priority Critical patent/JPH10287500A/en
Publication of JPH10287500A publication Critical patent/JPH10287500A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide both a method for heat-treating a semi-insulating GaAs single crystal having an increased number of wafers to be heat-treated per unit time and an apparatus therefor. SOLUTION: Semi-insulating GaAs single crystal wafers 3 are sandwiched between wafers 2 made of graphite composed of a substance having a higher thermal conductivity than that of the GaAs and housed in an ampul 1 to thereby adjacently arrange the wafers 3. As a result, the space efficiency of the wafer annealing can be enhanced. That is, the same heating efficiency just as that in the case of sandwiching thin planer heaters between the wafers 3 can be obtained by sandwiching the wafers 3 between the wafers 2, made of the graphite and having a high thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半絶縁性GaAs
単結晶の熱処理方法及び装置に関する。
The present invention relates to a semi-insulating GaAs.
The present invention relates to a single crystal heat treatment method and apparatus.

【0002】[0002]

【従来の技術】半絶縁性GaAs単結晶は、FET(電
界効果トランジスタ)やLSI(大規模集積回路)等の
高速高周波デバイスやホール素子等の磁電変換素子の基
板材料として広い用途に利用されている。これらの素子
に用いられる半絶縁性GaAs単結晶の製造方法として
液体封止剤(B2 3 )を用いる引上げ法(LEC法)
が一般に知られている。引上げ法の利点として大口径、
長尺化が可能であり、高純度結晶を得ることが挙げられ
るが、その欠点として結晶の引上げ軸方向における組成
のずれ及び結晶成長中における結晶の受ける熱履歴の違
いにより、電気特性の不均一を招くことが挙げられる。
2. Description of the Related Art Semi-insulating GaAs single crystals are widely used as substrate materials for high-speed high-frequency devices such as FETs (field-effect transistors) and LSIs (large-scale integrated circuits) and magneto-electric conversion devices such as Hall devices. I have. A pulling method (LEC method) using a liquid sealant (B 2 O 3 ) as a method for producing a semi-insulating GaAs single crystal used for these devices.
Is generally known. Large diameter as an advantage of the pulling method,
It is possible to increase the length and obtain a high-purity crystal, but the disadvantages are that the electrical characteristics are not uniform due to the difference in composition in the crystal pulling axis direction and the difference in the thermal history of the crystal during crystal growth. To invite.

【0003】半絶縁性GaAs単結晶中では過剰に取り
込まれている硼素原子が電気的に深い準位のドナーとし
て挙動する「EL2 」と呼ばれている結晶欠陥が形成さ
れている。このEL2 は半絶縁性特性を維持する上で重
要である。引上げ法で作製された半絶縁性GaAs単結
晶内ではEL2 の分布が不均一であり、電気特性の分布
が不均一となる。EL2 は温度を変化させることにより
生成消失が可能であることから熱処理を行い、EL2
布を均一にすることで電気的特性を均一化することが行
われている。
[0005] In a semi-insulating GaAs single crystal, a crystal defect called “EL 2 ” is formed in which excessively incorporated boron atoms behave as an electrically deep level donor. This EL 2 is important for maintaining semi-insulating properties. In the semi-insulating GaAs single crystal manufactured by the pulling method, the distribution of EL 2 is non-uniform, and the distribution of electric characteristics is non-uniform. Since EL 2 can be produced and disappeared by changing the temperature, heat treatment is performed, and the electrical characteristics are made uniform by making the EL 2 distribution uniform.

【0004】熱処理方法としては、単結晶ブロックを熱
処理する方法と単結晶ウェハを熱処理する方法とがあ
る。
As a heat treatment method, there are a method of heat treating a single crystal block and a method of heat treating a single crystal wafer.

【0005】単結晶ブロックを熱処理する方法は、単結
晶ブロックと若干のAsとを石英アンプルに挿入し、石
英アンプル内を真空引きした後封止切りとし、外部から
熱を加え単結晶を1000℃を超える温度まで上昇さ
せ、その温度で数時間〜数十時間保持した後、ある勾配
で降温するか又は1000℃を超える温度で数時間〜数
十時間保持した後、数ステップで降温、昇温、保持を繰
り返すことが一般に知られている(インゴットアニー
ル)。このインゴットアニールは、炉内の空間効率がよ
い。
A method of heat-treating a single crystal block is to insert a single crystal block and a small amount of As into a quartz ampoule, evacuate the inside of the quartz ampule, make a sealed cut, apply heat from the outside to bring the single crystal to 1000 ° C. Temperature, and after holding at that temperature for several hours to several tens of hours, cooling down at a certain gradient or holding at a temperature exceeding 1000 ° C. for several hours to several tens of hours, then lowering and raising the temperature in several steps It is generally known that the holding is repeated (ingot annealing). This ingot annealing has good space efficiency in the furnace.

【0006】一方、単結晶ウェハを熱処理する方法は、
単結晶ブロックと同等の熱処理を行うが(ウェハアニー
ル)、熱容量が小さいことから、保持時間を短くするこ
とが可能である。また、温度の追従性がよく、昇温、降
温時の熱歪みがウェハ状の薄い形状のため反りや曲りに
より緩和され、インゴットでのクラックや結晶欠陥の心
配がない(この反りや曲りはウェハの研磨加工で取り除
くことができる)。
On the other hand, a method of heat treating a single crystal wafer is as follows.
Although the same heat treatment as that of the single crystal block is performed (wafer annealing), the holding time can be shortened because the heat capacity is small. In addition, the temperature followability is good, and the thermal distortion at the time of temperature rise and fall is alleviated by warping and bending due to the thin shape of the wafer, and there is no fear of cracks or crystal defects in the ingot (this warping or bending is caused by the wafer. Can be removed by polishing).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た従来の技術では、単結晶ブロックを熱処理する場合、
電気的均一性を向上させるために必要な高温保持時間
は、単結晶ブロック中央部まで均一に熱処理させる必要
から10時間以上が一般的であり、昇温、降温及びその
繰り返しを入れた所用時間は丸二日以上にも及ぶ。ま
た、結晶の熱伝導性の制約(金属やカーボン等に比べて
小さい)があり昇温、降温速度を大きくしても結晶の温
度追従性が悪い。さらにウェハ状態よりも熱容量が大き
いため、温度追従性がウェハよりも劣る。結晶の状態で
昇温、降温速度を大きくすると昇温、降温によって誘起
される熱歪みが緩和される際に、結晶にクラックを生じ
させたり、結晶内に滑り転位等の結晶欠陥を誘起してし
まう。
However, in the above-mentioned conventional technique, when a single crystal block is subjected to heat treatment,
The high-temperature holding time required to improve the electrical uniformity is generally 10 hours or more because it is necessary to uniformly heat the single-crystal block to the center, and the time required for heating, cooling, and repetition thereof is required. It lasts more than two full days. In addition, there is a restriction on the thermal conductivity of the crystal (smaller than metal, carbon, etc.), so that even if the rate of temperature rise and fall is increased, the temperature followability of the crystal is poor. Further, since the heat capacity is larger than that of the wafer state, the temperature followability is inferior to that of the wafer. Increasing the rate of temperature rise and fall in the state of the crystal causes cracks in the crystal and induces crystal defects such as slip dislocations in the crystal when the thermal strain induced by the temperature rise and temperature decrease is relaxed. I will.

【0008】一方、単結晶ウェハを熱処理する場合、単
結晶ブロックを熱処理する場合に比べ熱容量が小さいた
め、高温保持時間はおよそ1/3程で同等の均一性を得
ることができるが、1回の熱処理枚数が単結晶ブロック
から取得できるであろうウェハ枚数に比べ極端に少な
く、空間効率が悪いという欠点がある。逆にウェハ熱処
理枚数を上げようとウェハ間の間隔を狭めた場合は、単
結晶ブロックと同等の熱処理時間が必要となるという問
題があった。
On the other hand, when the single crystal wafer is heat-treated, the heat capacity is smaller than when the single crystal block is heat-treated, so that the high temperature holding time can be about 1/3 and the same uniformity can be obtained. The number of heat treatments is extremely smaller than the number of wafers that could be obtained from a single crystal block, resulting in poor space efficiency. Conversely, if the distance between wafers is reduced to increase the number of heat-treated wafers, there is a problem that a heat treatment time equivalent to that of a single crystal block is required.

【0009】そこで、本発明の目的は、上記課題を解決
し、ウェハの単位時間当りの熱処理枚数を高くした半絶
縁性GaAs単結晶の熱処理方法及び装置を提供するこ
とにある。
It is an object of the present invention to solve the above-mentioned problems and to provide a method and an apparatus for heat treating a semi-insulating GaAs single crystal in which the number of heat treatments per unit time of a wafer is increased.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の半絶縁性GaAs単結晶の熱処理方法は、半
絶縁性GaAs単結晶のウェハを熱処理する方法であっ
て、各ウェハをGaAsより熱伝導率の高い物質で挟む
ものである。
According to the present invention, there is provided a method for heat-treating a semi-insulating GaAs single crystal according to the present invention, which comprises heat-treating a semi-insulating GaAs single crystal wafer. It is sandwiched between substances having higher thermal conductivity.

【0011】また本発明の半絶縁性GaAs単結晶のウ
ェハを熱処理する装置は、半絶縁性GaAs単結晶のウ
ェハを熱処理する装置であって、各ウェハを挟むように
配置されGaAsより熱伝導率が高い物質からなる熱伝
導性ウェハと、熱伝導性ウェハと半絶縁性GaAs単結
晶のウェハとを収容するアンプルとを備えたものであ
る。
An apparatus for heat-treating a semi-insulating GaAs single crystal wafer according to the present invention is an apparatus for heat-treating a semi-insulating GaAs single crystal wafer, which is arranged so as to sandwich each wafer and has a higher thermal conductivity than GaAs. And an ampoule accommodating the thermally conductive wafer and the semi-insulating GaAs single crystal wafer.

【0012】本発明によれば、半絶縁性GaAs単結晶
のウェハ間を近接して配置することにより、ウェハアニ
ールの空間効率を高めることができる。
According to the present invention, the space efficiency of wafer annealing can be increased by arranging the semi-insulating GaAs single crystal wafers close to each other.

【0013】しかし、単にウェハを近接させるだけでは
輻射熱が遮られ、極限の近接であるインゴット形状を考
えると、熱容量が大きくなり昇温、降温に制限が生じ
る。また、ウェハに反りや曲りが生じた際にウェハ同士
が接触してクラックや歪みが生じてしまう。
However, simply bringing the wafers close to each other blocks the radiant heat. Considering the ingot shape, which is extremely close, the heat capacity becomes large, and the temperature rise and fall are restricted. Further, when the wafer is warped or bent, the wafers come into contact with each other to cause cracks or distortion.

【0014】そこで、本発明は各ウェハをGaAsより
熱伝導率の高い物質で挟んで配置することにより(ウェ
ハと熱伝導性の高い物質とは接触していないが、接触す
ることを制限しない)、ウェハアニールの空間効率を改
善することができる。各ウェハをGaAsより熱伝導率
の高い物質が挟むことにより、あたかもウェハ間に薄い
面ヒータが挟まれるのと同一の加熱効率を得ることがで
きる。
In view of the above, according to the present invention, each wafer is sandwiched between materials having higher thermal conductivity than GaAs (the wafer does not contact the material having high thermal conductivity, but the contact is not limited). In addition, the space efficiency of wafer annealing can be improved. By sandwiching each wafer with a substance having a higher thermal conductivity than GaAs, the same heating efficiency can be obtained as if a thin surface heater is sandwiched between the wafers.

【0015】ここで、GaAsの熱伝導率は温度によっ
て異なるが、例えば1100℃の場合、約10W/mK
である。すなわち1100℃で熱処理を行う場合、Ga
Asより熱伝導率の高い物質は熱伝導率が10W/mK
を超える物質が対象となる。例えばグラファイトは11
00℃で約60W/mKの熱伝導率となり好ましい物質
である。
Here, the thermal conductivity of GaAs varies depending on the temperature. For example, at 1100 ° C., about 10 W / mK
It is. That is, when heat treatment is performed at 1100 ° C., Ga
A substance having a higher thermal conductivity than As has a thermal conductivity of 10 W / mK.
Substances exceeding the target. For example, graphite is 11
A thermal conductivity of about 60 W / mK at 00 ° C. is a preferable substance.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を詳述
する。
Embodiments of the present invention will be described below in detail.

【0017】本発明の半絶縁性GaAs単結晶の熱処理
方法は、半絶縁性GaAs単結晶のウェハを熱処理する
方法であって、各ウェハをGaAsより熱伝導率の高い
物質で挟むものである。各ウェハをGaAsより熱伝導
率が高い物質で挟むことにより、ウェハを近接して配置
することになり、ウェハアニールの空間効率を高めるこ
とができ、ウェハの単位時間当りの熱処理枚数を高くす
ることができる。
The heat treatment method for a semi-insulating GaAs single crystal according to the present invention is a method for heat-treating a wafer of a semi-insulating GaAs single crystal, wherein each wafer is sandwiched between substances having higher thermal conductivity than GaAs. By sandwiching each wafer with a substance having a higher thermal conductivity than GaAs, the wafers are arranged close to each other, so that the space efficiency of wafer annealing can be increased, and the number of heat treatments per unit time of the wafer can be increased. Can be.

【0018】[0018]

【実施例】Ga6000g、As6500g、液体封止
剤(B2 3 )1200gを使用し、引上げ法により重
量11000g、外径φ76mm、長さ約320mmの
半絶縁性GaAs単結晶を作製した。その両端を切断
し、外径φ76mmに円筒研削し、長さ250mmのG
aAs円柱を作製し、0.7mm厚に切断し、ウェハ2
00枚を作製し、洗浄、エッチングを行った。
EXAMPLE A semi-insulating GaAs single crystal having a weight of 11,000 g, an outer diameter of 76 mm, and a length of about 320 mm was produced by a pulling method using 6000 g of Ga, 6500 g of As, and 1200 g of a liquid sealant (B 2 O 3 ). Both ends are cut and cylindrically ground to an outer diameter of 76 mm.
aAs cylinder was prepared and cut to a thickness of 0.7 mm.
00 sheets were prepared, washed and etched.

【0019】一方、外径φ76mm、厚さ1mmのグラ
ファイト製ウェハの洗浄を行った。
On the other hand, a graphite wafer having an outer diameter of 76 mm and a thickness of 1 mm was cleaned.

【0020】図1は本発明の半絶縁性GaAs単結晶の
熱処理方法を適用した装置に用いられるアンプルの縦断
面図である。
FIG. 1 is a longitudinal sectional view of an ampule used in an apparatus to which the method for heat treating a semi-insulating GaAs single crystal of the present invention is applied.

【0021】同図において、洗浄、乾燥済み石英製のア
ンプル1内に熱伝導性ウェハとしてのグラファイト製ウ
ェハ2とGaAsウェハ3とを交互に接触するように挿
入し、アンプル1内のAs圧を補償させる量のAs4を
入れ真空封じ込みとする。このアンプル1を1100℃
で7時間、500℃で7時間、750℃で7時間の熱処
理を施した。
Referring to FIG. 1, a graphite wafer 2 and a GaAs wafer 3 as heat conductive wafers are alternately inserted into a cleaned and dried quartz ampoule 1 so that the As pressure in the ampoule 1 is reduced. The amount of As4 to be compensated is charged and vacuum sealing is performed. This ampoule 1 at 1100 ° C
For 7 hours, 500 ° C. for 7 hours, and 750 ° C. for 7 hours.

【0022】比較例として実施例と同一仕様で作製した
GaAsウェハを5mm間隔で60枚並べ、全長が実施
の形態と同様の長さとなるようにし、実施の形態と同一
条件で熱処理を行った。
As a comparative example, 60 GaAs wafers manufactured according to the same specifications as those of the embodiment were arranged at intervals of 5 mm so that the entire length was the same as that of the embodiment, and heat treatment was performed under the same conditions as the embodiment.

【0023】(比較例1)実施例と同一仕様で作製した
GaAsウェハを5mm間隔で60枚並べ、全長が実施
例と同等の長さとなるようにし、実施例と同一条件で熱
処理を行った。
(Comparative Example 1) Sixty GaAs wafers manufactured with the same specifications as those of the example were arranged at intervals of 5 mm, and the heat treatment was performed under the same conditions as those of the example so that the total length was the same as that of the example.

【0024】(比較例2)実施例と同一仕様で作製した
外径φ76mm、長さ250mmのGaAs円柱を実施
例と同様石英アンプル内へ挿入し、真空封じ込み後実施
例と同一条件で熱処理を行った。その後0.7mm厚に
切断し、ウェハ200枚を作製した。
(Comparative Example 2) A GaAs cylinder having an outer diameter of φ76 mm and a length of 250 mm manufactured in the same specification as the example was inserted into a quartz ampoule as in the example, and after vacuum sealing, heat treatment was performed under the same conditions as in the example. went. Thereafter, the wafer was cut into a thickness of 0.7 mm to produce 200 wafers.

【0025】評価用のGaAsウェハは、実施例1及び
比較例1の各ウェハの石英アンプル内位置が左端、中央
及び右端から1枚ずつ採取し、比較例2からは石英アン
プル内のGaAs円柱の位置が左端、中央及び右端であ
る部分から切断したウェハ中心とした。均一性評価とし
て各ウェハのEL2 濃度を赤外線吸収法で測定し、又、
比抵抗をパウ法で測定した。表1は各測定結果を示す。
As for the GaAs wafers for evaluation, the positions in the quartz ampules of the wafers of Example 1 and Comparative Example 1 were sampled one by one from the left end, the center, and the right end. From Comparative Example 2, the GaAs cylinders in the quartz ampules were sampled. The center of the wafer was cut from the left, center and right ends. The EL 2 concentration of each wafer was measured by an infrared absorption method as uniformity evaluation, also,
The specific resistance was measured by the Pau method. Table 1 shows each measurement result.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から実施例と比較例1との間には差が
認められず、比較例2より均一性が向上しているのが分
かる。
Table 1 shows that there is no difference between the example and the comparative example 1 and that the uniformity is improved as compared with the comparative example 2.

【0028】以上において本発明によれば、 (1) 半絶縁性GaAsウェハの熱処理枚数を増加させる
ことができる。
As described above, according to the present invention, (1) the number of heat-treated semi-insulating GaAs wafers can be increased.

【0029】(2) 電気的特性が均一な半絶縁性GaAs
ウェハを得ることができる。
(2) Semi-insulating GaAs with uniform electric characteristics
A wafer can be obtained.

【0030】[0030]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0031】各ウェハをGaAsより熱伝導率の高い物
質で挟むことにより、ウェハの単位時間当りの熱処理枚
数を高くした半絶縁性GaAs単結晶の熱処理方法及び
装置の提供を実現することができる。
By sandwiching each wafer with a substance having higher thermal conductivity than GaAs, it is possible to provide a method and apparatus for heat treating a semi-insulating GaAs single crystal in which the number of heat treatments per unit time of the wafer is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半絶縁性GaAs単結晶の熱処理方法
を適用した装置に用いられるアンプルの縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of an ampule used in an apparatus to which a heat treatment method for a semi-insulating GaAs single crystal of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 アンプル 2 グラファイト製ウェハ 3 半絶縁性GaAs単結晶のウェハ 4 As DESCRIPTION OF SYMBOLS 1 Ampoule 2 Graphite wafer 3 Semi-insulating GaAs single crystal wafer 4 As

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁性GaAs単結晶のウェハを熱処
理する方法であって、各ウェハをGaAsより熱伝導率
の高い物質で挟むことを特徴とする半絶縁性GaAs単
結晶の熱処理方法。
1. A method of heat-treating a semi-insulating GaAs single crystal wafer, wherein each wafer is sandwiched between substances having higher thermal conductivity than GaAs.
【請求項2】 半絶縁性GaAs単結晶のウェハを熱処
理する装置であって、各ウェハを挟むように配置されG
aAsより熱伝導率が高い物質からなる熱伝導性ウェハ
と、該熱伝導性ウェハと上記半絶縁性GaAs単結晶の
ウェハとを収容するアンプルとを備えたことを特徴とす
る半絶縁性GaAs単結晶の熱処理装置。
2. An apparatus for heat-treating a semi-insulating GaAs single crystal wafer, comprising:
a thermally conductive wafer made of a substance having a higher thermal conductivity than aAs, and an ampoule accommodating the thermally conductive wafer and the semi-insulating GaAs single crystal wafer. Crystal heat treatment equipment.
JP9750297A 1997-04-15 1997-04-15 Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor Pending JPH10287500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9750297A JPH10287500A (en) 1997-04-15 1997-04-15 Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9750297A JPH10287500A (en) 1997-04-15 1997-04-15 Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH10287500A true JPH10287500A (en) 1998-10-27

Family

ID=14194047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9750297A Pending JPH10287500A (en) 1997-04-15 1997-04-15 Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH10287500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739213A1 (en) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739213A1 (en) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer
US9181633B2 (en) 2005-07-01 2015-11-10 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Similar Documents

Publication Publication Date Title
KR101341471B1 (en) One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
JP5517930B2 (en) Production of SiC substrate with less distortion and warping
Kainosho et al. Undoped semi‐insulating InP by high‐pressure annealing
CN106757357A (en) A kind of preparation method of high-purity semi-insulating silicon carbide substrate
CN114959870A (en) Preparation method of high-temperature pressurized iron-doped zinc selenide crystal
JPH10287500A (en) Heat treatment of semi-insulating gallium arsenic single crystal and apparatus therefor
JPH0750692B2 (en) <III>-<V> Group compound semiconductor heat treatment method
Dong et al. Deep levels in semi-insulating InP obtained by annealing under iron phosphide ambiance
JPH06345598A (en) Cdte crystal for radiation detecting element and its production
US4421479A (en) Process for treating a semiconductor material by blackbody radiation source with constant planar energy flux
JP4843929B2 (en) Heat treatment method of GaAs crystal and GaAs crystal substrate
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
Goff et al. Elimination of slip lines in capless rapid thermal annealing of GaAs
JPH01122999A (en) Heat treatment of compound semiconductor single crystal
CN115874279A (en) Preparation method of tantalum carbide substrate for growing aluminum nitride on silicon carbide
JPH08301700A (en) Heat treatment of semiinsulating gallium-arsenic single crystal and device therefor
CN115295412A (en) High-temperature rapid heat treatment process and device for silicon carbide device
JPH01304788A (en) Manufacture of znse crystal having low-resistance surface
JPH01104751A (en) Heat treatment for single-crystal ga-as wafer
JPS59101825A (en) Manufacture of semiconductor device and heat treatment apparatus therefor
JPH05117097A (en) Method for carrying out heat treatment of gallium arsenide single crystal
JP2004273517A (en) Method of thermally treating gallium arsenide single crystal
JPS63222098A (en) Annealing of gaas single crystal
Shengurov et al. Erbium vaporization from silicon in vacuum
JPS63256592A (en) Treatment of inner surface of quartz boat for producing gallium arsenide single crystal