JPH10286589A - Decoloration of wastewater and treatment method of hardly decomposable substance using hydrogen peroxide - Google Patents

Decoloration of wastewater and treatment method of hardly decomposable substance using hydrogen peroxide

Info

Publication number
JPH10286589A
JPH10286589A JP9722297A JP9722297A JPH10286589A JP H10286589 A JPH10286589 A JP H10286589A JP 9722297 A JP9722297 A JP 9722297A JP 9722297 A JP9722297 A JP 9722297A JP H10286589 A JPH10286589 A JP H10286589A
Authority
JP
Japan
Prior art keywords
white rot
reaction tank
wastewater
white
rot fungi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9722297A
Other languages
Japanese (ja)
Other versions
JP3354432B2 (en
Inventor
Masanori Fujita
正憲 藤田
Tomohiko Hirao
知彦 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP9722297A priority Critical patent/JP3354432B2/en
Publication of JPH10286589A publication Critical patent/JPH10286589A/en
Application granted granted Critical
Publication of JP3354432B2 publication Critical patent/JP3354432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To oxidize and decompose color substances and hardly decomposable substances in practical wastewater at low cost with lowered energy consumption by adding cultivated white putrefactive bacteria to a reaction tank into which the practical wastewater flows, further adding hydrogen peroxide out of the reaction tank, and utilizing the decomposition enzyme produced by the white putrefactive bacteria. SOLUTION: A mixed water MW of raw water OW, which is practical wastewater, and white putrefactive bacteria is stored in a reaction tank R. Hydrogen peroxide is added to the reaction tank R. While becoming fine bubbles, air blown from a blower B is mixed with the mixed water MW by an aeration apparatus S and supplied to the aerobic white putrefactive bacteria. The white putrefactive bacteria in the mixed water MW propagates while decomposing organic matter contained in the raw water OW or a carbon source added from outside, forms flock like aggregate, and floats in the mixed water in suspended state. The color substances contained in the raw water OW are decomposed and decolored and also hardly decomposable substances are decomposed into smaller molecules by the hydrogen peroxide decomposition enzyme released by the propagated white putrefactive bacteria.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は下水処理、し尿処
理、浸出液排水処理、小規模下水処理、下水汚泥熱処理
分離液等の産業排水等における排水処理方法に関し、更
に詳細には、白色腐朽菌と過酸化水素を使用して有色物
質を分解(脱色)し、また難分解性物質の酸化分解を可
能とした排水の脱色および難分解性物質の処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method for industrial wastewater such as sewage treatment, night soil treatment, leachate wastewater treatment, small-scale sewage treatment, and sewage sludge heat-treating separation liquid. The present invention relates to a method for decolorizing wastewater and treating a hardly decomposable substance, which decomposes (decolorizes) a colored substance using hydrogen peroxide and enables oxidative decomposition of a hardly decomposable substance.

【0002】[0002]

【従来の技術】一般に、下水処理・し尿処理・浸出液排
水処理・小規模下水処理・下水汚泥熱処理分離液等の排
水中には広範囲の有機物および無機物が含まれており、
この中でも特に有色物質の分解、即ち脱色や難分解性物
質の除去は、従来から存する生物反応除去設備では困難
であった。例えば、通常の下水処理において用いられる
活性汚泥法、この活性汚泥法の全プロセスを1つの完全
混合反応槽で行う回分式活性汚泥法、また微生物を樹脂
材に固定して排水を通水浄化する生物膜法等が存する
が、これらの生物反応除去設備では、例えば水溶性・低
重合度・低分子量等の易分解性物質の分解が限界であっ
た。
2. Description of the Related Art Generally, wastewater such as sewage treatment, human waste treatment, leachate drainage treatment, small-scale sewage treatment, and sewage sludge heat treatment separation liquid contains a wide range of organic and inorganic substances.
Among these, in particular, it is difficult to decompose a colored substance, that is, decolorize or remove a hardly decomposable substance, using a conventional biological reaction removing apparatus. For example, an activated sludge method used in ordinary sewage treatment, a batch activated sludge method in which the entire process of the activated sludge method is carried out in one complete mixing reaction tank, or a method in which microorganisms are fixed to a resin material to purify wastewater. Although the biofilm method and the like exist, in these biological reaction removing equipment, the decomposition of easily decomposable substances such as water-soluble, low polymerization degree and low molecular weight was limited.

【0003】生物学的処理で脱色や難分解性物質の除去
が困難であるのは、有色物質や難分解性物質はその分子
間力が極めて強固であったり、一般のバクテリアがこれ
らに対する分解酵素を有しないためである。特に有色物
質は同時に難分解性物質であることが多く、排水を脱色
できないことは難分解性物質を分解できないことと同等
の意味を有している。
[0003] The difficulty in decoloring or removing hardly decomposable substances by biological treatment is that colored substances and hardly decomposable substances have extremely strong intermolecular forces, and ordinary bacteria can decompose them. It is because it does not have. In particular, colored substances are often difficult-to-decompose substances at the same time, and the inability to decolorize wastewater has the same meaning as the inability to decompose insoluble substances.

【0004】難分解性物質は一般に水に不溶性であり、
高重合度および高分子量の物質であることが多く、特に
着色性の難分解性物質の具体例としては、フミン・リグ
ニン・メラノイジン関連化合物等がある。ここで、フミ
ンとはタンパク質を加水分解するときに生じる黒色不溶
物であり、リグニンとは木材中にセルロースに伴って2
0〜30%存在する芳香族化合物である。このように生
物由来の有色化合物は従来の生物学的処理によっては分
解することが難かしい物質であることが多い。
[0004] Refractory substances are generally insoluble in water,
In many cases, the substance is a substance having a high degree of polymerization and a high molecular weight, and specific examples of the coloring-hardly decomposable substance include humin, lignin, and melanoidin-related compounds. Here, humin is a black insoluble matter generated when hydrolyzing proteins, and lignin is 2% in wood along with cellulose.
Aromatic compounds present at 0-30%. As described above, a biologically-derived colored compound is often a substance that is difficult to be decomposed by conventional biological treatment.

【0005】よって、従来の脱色又は難分解性物質の除
去は物理化学的処理に依存せざるを得なかった。物理化
学的処理法には、排水中に塩化第二鉄やPAC(ポリア
ルミニウムクロライド)等の無機系凝集剤を投入する凝
集沈殿法、次亜塩素酸ソーダ、オゾン等の強力な酸化剤
を多量に添加する酸化分解法そして紫外線照射による分
解法等がある。
Therefore, conventional decolorization or removal of hardly decomposable substances has had to rely on physicochemical treatment. The physicochemical treatment method includes a coagulation sedimentation method in which an inorganic coagulant such as ferric chloride and PAC (polyaluminum chloride) is introduced into wastewater, and a large amount of a strong oxidizing agent such as sodium hypochlorite and ozone. And a decomposition method by ultraviolet irradiation.

【0006】[0006]

【発明が解決しようとする課題】物理化学的処理法には
次のような欠点がある。凝集沈殿法は凝集剤を排水中に
投入してイオン化し、排水中の固形物を電気的に中和し
て強制的に沈殿させる方法であるが、凝集沈殿に寄与し
なかった凝集剤は処理水と一緒に放流されて環境汚染を
引き起こす。特に近年多用されている合成高分子凝集剤
であるポリアクリルアミドは凝集能の点で優れているも
のの、この物質自身が強い変異原性を示し、ポリアクリ
ルアミド中に含まれるモノマーのアクリルアミドに発ガ
ン性・神経毒があることからその残留性が危惧されてい
る。また、PACもアルツハイマー病の発現物質として
その毒性が指摘されている。
The physicochemical treatment method has the following disadvantages. The coagulation sedimentation method is a method in which a coagulant is injected into wastewater to ionize it, and the solid matter in the wastewater is electrically neutralized and forcibly settled. Released with water causing environmental pollution. In particular, polyacrylamide, a synthetic polymer flocculant widely used in recent years, is excellent in terms of flocculation ability, but this substance itself shows strong mutagenicity, and carcinogenicity to the monomer acrylamide contained in polyacrylamide -Due to the presence of neurotoxin, its persistence is a concern. In addition, PAC has been pointed out as a toxic substance of Alzheimer's disease.

【0007】次亜塩素酸ソーダやオゾンはその強い酸化
力による漂白作用により有色物質の分解による脱色、特
に有機色素の脱色には大きな効果を有する。しかし、こ
れらの薬品代が高価であるばかりでなく、生物に対する
毒性が極めて強い。オゾンの場合には変異原性を有する
とともに発ガン性化合物の生成に関与することが知られ
ており、しかもオゾン発生装置は高価である。
[0007] Sodium hypochlorite and ozone have a great effect on decolorization due to decomposition of colored substances, particularly on decolorization of organic dyes, due to bleaching action due to their strong oxidizing power. However, these chemicals are not only expensive but also extremely toxic to living organisms. In the case of ozone, it is known that it has mutagenic properties and is involved in the generation of carcinogenic compounds, and the ozone generator is expensive.

【0008】紫外線照射では薬品を全く使わないので環
境影響には最も安全であるが、紫外線照射設備が極めて
高価になる。高品質上水道の殺菌手段として紫外線は従
来より研究されているが、水中に懸濁物質や色度成分
(有色物質)があると紫外線が遮断されて殺菌能力が急
減する。このことは脱色作用においても同様であり、排
水の色度が高くなると紫外線到達距離が小さくなり、脱
色作用や難分解性物質の分解力が急減するという欠点が
あり、コストやメンテナンスを考慮すると余り実用化が
進んでいない。
[0008] Ultraviolet irradiation does not use any chemicals, so it is safest against environmental impact, but the ultraviolet irradiation equipment becomes extremely expensive. Ultraviolet rays have been studied as a means of disinfecting high-quality waterworks, but if there is a suspended substance or chromaticity component (colored substance) in water, the ultraviolet rays are blocked and the sterilizing ability is rapidly reduced. The same is true for the decolorizing effect. The higher the chromaticity of the wastewater, the shorter the distance that the ultraviolet light can reach, and the lower the decolorizing effect and the ability to decompose the hardly decomposable substances. Practical application is not progressing.

【0009】[0009]

【課題を解決するための手段】本発明は上記の欠点を解
消するためになされたものであり、易分解性物質の分解
に効果のある生物学的処理方法を改良して、脱色や難分
解性物質の分解にも適用できるようにしたものである。
即ち、本発明に係る排水の脱色および難分解性物質の処
理方法は、処理対象となる排水で予め白色腐朽菌を培養
しながら馴致する工程と、この馴致された白色腐朽菌を
実排水が流入する反応槽に添加する工程と、この反応槽
に外部から過酸化水素を添加し、前記白色腐朽菌が生成
する過酸化水素分解酵素を利用して実排水中の有色物質
および難分解性物質を酸化分解する工程とを基本構成と
している。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and an improved biological treatment method effective for decomposing easily decomposable substances has been proposed to improve decolorization and difficult decomposition. It can be applied to the decomposition of toxic substances.
That is, the method for decolorizing wastewater and treating hardly decomposable substances according to the present invention includes a step of cultivating white rot fungi while cultivating white rot fungi in advance in the wastewater to be treated, and an actual drainage of the adjusted white rot fungi. And adding hydrogen peroxide to the reaction tank from the outside, and using the hydrogen peroxide degrading enzyme generated by the white rot fungus to remove colored substances and hardly decomposable substances in actual wastewater. And a step of oxidative decomposition.

【0010】前記白色腐朽菌を反応槽に添加する工程
で、活性汚泥法を用いる方式、白色腐朽菌を吸着固定し
た微生物膜を用いる方式、更に白色腐朽菌の固定化微生
物を作成して反応槽内に懸濁させる方式を具体例として
提供する。
In the step of adding the white rot fungi to the reaction tank, a method using an activated sludge method, a method using a microbial membrane to which the white rot fungi are adsorbed and fixed, and a microorganism immobilized with the white rot fungi are prepared. A method of suspending the inside is provided as a specific example.

【0011】前記反応槽で脱色および分解処理された排
水を膜分離装置又は沈殿池に導入して白色腐朽菌・分解
物等の固形成分と清澄な処理水に分離する処理方法を提
供する。
[0011] The present invention provides a treatment method for introducing wastewater decolorized and decomposed in the reaction tank into a membrane separation device or a sedimentation tank to separate solid components such as white rot fungi and decomposed products and clear treated water.

【0012】前記反応槽を多段に設け、また送気ブロア
により反応槽を曝気して反応効率を高める処理方法を提
供する。
The present invention provides a processing method in which the reaction vessels are provided in multiple stages, and the reaction vessels are aerated by an air blower to increase the reaction efficiency.

【0013】[0013]

【発明の実施の形態】本発明は排水の脱色や難分解性物
質の除去に微生物を利用することを意図したものであ
る。易分解性の有機性物質の除去は、従来から活性汚泥
法などの微生物による酸化分解能力を利用している。こ
の方式は、微生物の生物活性を利用するため、簡単な設
備で効率よく混入物質を除去することが可能となる。排
水中の脱色および難分解性物質の除去が微生物を利用し
て可能となれば、安価な省エネルギーシステムの構築が
可能となる。また、前述したように脱色の対象となる有
色成分は構造的に難分解性物質と同じ成分であることが
多く、両物質の同時除去も可能となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention intends to utilize microorganisms for decolorizing wastewater and removing hardly decomposable substances. The removal of easily decomposable organic substances has conventionally utilized the oxidative decomposition ability of microorganisms such as an activated sludge method. This method makes it possible to efficiently remove contaminants with simple equipment because the biological activity of microorganisms is used. If decolorization and removal of hardly decomposable substances in wastewater can be performed by using microorganisms, an inexpensive energy saving system can be constructed. Further, as described above, the colored component to be decolorized is often structurally the same as the hardly decomposable substance, so that both substances can be simultaneously removed.

【0014】本発明者等は排水の脱色および難分解性物
質を分解する微生物を鋭意研究した結果、カビ菌の一種
である白色腐朽菌が本発明の目的を達成できることを見
出すに至った。本発明で用いる白色腐朽菌とは担子菌類
に属し、一般的に木材を腐朽させる担子菌のうちセルロ
ース・リグニンを強力に分解する能力を持つ担子菌のこ
とである。具体的にはコリオラス属(Coriolu
s)、レンツィテス・ベツリナ(Lenzites b
etulina)、プレウロトゥス・オストゥレアトゥ
ス(Pleurotus ostreatus)等の好
気性菌が存し、特に財団法人発酵研究所(IFO)から
入手できるコリオラス・ヒルストゥス(Coriolu
s hirsutus)IFO4917株は、本発明に
とって最も好適な白色腐朽菌である。もちろん、上述し
た白色腐朽菌のみならず他の公知の白色腐朽菌も本発明
に利用することが出来る。
The present inventors have conducted intensive studies on microorganisms that decolorize wastewater and decompose hardly decomposable substances, and as a result, have found that white rot fungi, a kind of fungi, can achieve the object of the present invention. The white-rot fungi used in the present invention belong to basidiomycetes, and are basidiomycetes having the ability to strongly degrade cellulose lignin among basidiomycetes that generally rot wood. Specifically, Coriolus (Coriolu)
s), Lenzites betulina (Lenzites b)
aerobes such as E. etulina, Pleurotus ostreatus and Pleurotus ostreatus, and in particular Coriolus hirsutus available from the Fermentation Institute (IFO).
(Shirstus) IFO4917 strain is the most preferred white rot fungus for the present invention. Of course, not only the above-mentioned white-rot fungi but also other known white-rot fungi can be used in the present invention.

【0015】更に、白色腐朽菌の脱色および難分解性物
質分解能は、白色腐朽菌が生成する過酸化水素および過
酸化水素分解酵素(ペルオキシダーゼ)に依っているこ
とが本発明者等の研究によって明らかとなった。即ち、
白色腐朽菌が生成した過酸化水素を同時に生成したペル
オキシダーゼが分解して活性酸素が作られ、この活性酸
素が有色物質を酸化分解して脱色し、また難分解性物質
を酸化分解するのである。
Further, the present inventors have found that the decolorization of white rot fungi and the ability to decompose hardly decomposable substances depend on hydrogen peroxide and hydrogen peroxide degrading enzyme (peroxidase) produced by white rot fungi. It became. That is,
Peroxidase, which simultaneously produces hydrogen peroxide generated by white rot fungi, decomposes to form active oxygen, which oxidatively decomposes colored substances to decolorize and oxidatively decomposes hardly decomposable substances.

【0016】しかし、白色腐朽菌のみの分解作用では、
白色腐朽菌の活性に脱色効果が左右され安定した分解作
用が得られないことがある。白色腐朽菌の分解力の原因
はペルオキシダーゼが過酸化水素を分解して生成した活
性酸素である。本発明者等は、反応槽内に外部から過酸
化水素を加重に添加すると、白色腐朽菌が既に生成した
ペルオキシダーゼによって活性酸素が増大するのではな
いかと着想するに到った。実験を繰り返した結果、白色
腐朽菌により生成されたペルオキシダーゼは反応槽内に
残留し、加重に添加した過酸化水素がこの酵素により分
解されて反応槽内の活性酸素が増大することが確認でき
た。また、加重に添加された過酸化水素量と活性酸素量
の間の量的関係も確認でき、本発明により白色腐朽菌の
活性度に左右されることなく安定した脱色および難分解
性物質の分解を得るに到った。
[0016] However, in the decomposition action of only white rot fungi,
The activity of the white rot fungus affects the decolorizing effect, and a stable decomposition action may not be obtained. The cause of the decomposition power of white rot fungi is active oxygen generated by peroxidase decomposing hydrogen peroxide. The present inventors have come up with the idea that, if hydrogen peroxide is externally added to the reaction vessel by weight, the white rot fungi may increase the active oxygen by the peroxidase already generated. As a result of repeating the experiment, it was confirmed that peroxidase produced by the white rot fungi remained in the reaction tank, and the hydrogen peroxide added under the load was decomposed by this enzyme, and the active oxygen in the reaction tank increased. . In addition, the quantitative relationship between the amount of hydrogen peroxide added by weight and the amount of active oxygen can be confirmed. According to the present invention, stable decolorization and decomposition of hardly decomposable substances are not affected by the activity of white rot fungi. Came to get.

【0017】反応槽に加重に添加される過酸化水素の濃
度(添加率)は0.1mg/l〜5mg/lであればよ
く、更に望ましくは0.5mg/l〜3mg/lであ
る。下限値は白色腐朽菌の活性度に左右されなくなる濃
度であり、上限値はそれ以上添加しても分解効率が上が
らなくなる濃度である。脱色効率および分解効率は過酸
化水素濃度に依存するが、平均すると同じ菌体数では7
5%〜95%以上に増加することが分かった。
The concentration (addition rate) of hydrogen peroxide added to the reaction vessel by weight may be 0.1 mg / l to 5 mg / l, more preferably 0.5 mg / l to 3 mg / l. The lower limit is a concentration that is not affected by the activity of white rot fungi, and the upper limit is a concentration at which decomposition efficiency does not increase even if added more. Decolorization efficiency and decomposition efficiency depend on the concentration of hydrogen peroxide.
It was found to increase from 5% to 95% or more.

【0018】本発明の白色腐朽菌はまず液体培地である
GPY培地(例えば、2.0%グルコース、0.3%ペ
プトン、0.2%酵母エキス、残部蒸留水、pH6.
0)に接種され、20〜30℃で2〜4日間振盪培養さ
れる。白色腐朽菌の培地としては上記GPY培地以外に
公知の寒天培地でも構わない。
The white-rot fungus of the present invention is firstly a GPY medium (eg, 2.0% glucose, 0.3% peptone, 0.2% yeast extract, the balance distilled water, pH 6.0) as a liquid medium.
0) and cultured with shaking at 20-30 ° C for 2-4 days. As a medium for white rot fungi, a known agar medium may be used in addition to the above GPY medium.

【0019】次に、この菌体を対象となる排水で、更に
2〜10日間培養しながら馴致(馴養)する。この前処
理は本発明にとって重要な要件で、白色腐朽菌を対象と
なる排水に順次馴れさせるためのものである。排水の有
色成分の量により濃度を20〜100%に調整する。排
水の有色成分濃度は色度によって表わされ、色度の高い
排水の場合には馴致を濃度の低いものから高いものへと
複数段に分割してもよい。例えば、50%濃度で馴致し
た後100%濃度で馴致し、次の実排水処理に効果的に
移行する等、実排水処理段階で最大効率を挙げるように
工夫できる。
Next, the cells are acclimated (cultivated) for 2 to 10 days in the target wastewater while culturing them. This pretreatment is an important requirement for the present invention, and is intended for the white rot fungi to be gradually adapted to the target wastewater. The concentration is adjusted to 20 to 100% depending on the amount of the colored component in the wastewater. The concentration of the colored component of the wastewater is represented by chromaticity, and in the case of wastewater having a high chromaticity, the adaptation may be divided into a plurality of stages from a low concentration to a high concentration. For example, it is possible to improve the maximum efficiency at the actual drainage treatment stage, such as adjusting to 50% concentration, then adjusting to 100% concentration, and effectively shifting to the next actual drainage treatment.

【0020】次に、実排水処理では、馴致しながら培養
した白色腐朽菌の菌体をペレット状(粒状)に採取し、
これを種菌として利用する。この菌体を濃縮したもの、
運搬・取扱いを容易にするために乾燥したもの、また希
釈したもの等、様々な菌体が本発明の対象となる。この
菌体が後述する反応槽に添加される。更に、実排水処理
では有機物の含量が少ない場合も存するため、白色腐朽
菌を保持する反応槽内において菌体を培養するため、炭
素源としてグルコース、スクロース、フルクトース等の
糖類や、アルコール類、有機酸を所定量添加することが
望ましい。
Next, in the actual wastewater treatment, the cells of the white-rot fungi cultured while acclimating are collected in the form of pellets (granules).
This is used as an inoculum. What concentrated this cell,
Various types of cells, such as those that have been dried for ease of transportation and handling, and those that have been diluted, are objects of the present invention. The cells are added to a reaction tank described below. Further, in actual wastewater treatment, there may be a case where the content of organic matter is small, so that the cells are cultured in a reaction tank holding white rot fungi, so that sugars such as glucose, sucrose, fructose, alcohols, and organics are used as carbon sources. It is desirable to add a predetermined amount of acid.

【0021】本発明を実排水処理に適用するためには次
の3種類の方式が考えられる。第1は活性汚泥法、第2
は微生物膜法および第3は固定化微生物法である。しか
し、どの方法であっても好気性の白色腐朽菌を活性化す
るために、反応槽には酸素を含む気体、主には空気を供
給し、反応槽内の溶存酸素DOは0.5mg/l以上を
維持することが望ましい。又、反応槽内の水温は15〜
30℃、望ましくは25〜30℃に維持する。下限以下
では白色腐朽菌の活性が低下し、上限以上では菌を安定
に保持できないからである。
In order to apply the present invention to actual wastewater treatment, the following three types can be considered. The first is the activated sludge method, the second
Is the microbial membrane method and the third is the immobilized microorganism method. However, in any method, in order to activate aerobic white rot bacteria, a gas containing oxygen, mainly air, is supplied to the reaction tank, and the dissolved oxygen DO in the reaction tank is 0.5 mg / It is desirable to maintain 1 or more. Also, the water temperature in the reaction tank is 15 ~
Maintain at 30 ° C, preferably 25-30 ° C. If the amount is less than the lower limit, the activity of the white-rot fungi decreases, and if the amount is more than the upper limit, the bacteria cannot be stably maintained.

【0022】図1は活性汚泥法による実排水処理方式で
ある。反応槽Rの中には実排水である原水OWと前述し
た白色腐朽菌との混合液MWが貯溜されている。過酸化
水素(H22 )は反応槽Rに添加される。ブロワーB
から送入される空気は曝気装置Sにより細かな気泡とな
って混合液MW中に混入してゆき、好気性の白色腐朽菌
に空気を与える。混合液MW中で白色腐朽菌は原水OW
に含まれる有機物または外部から投入される炭素源を分
解しながら増殖し、フロック状の塊となって混合液中に
懸濁状に浮遊する。
FIG. 1 shows an actual wastewater treatment system using the activated sludge method. In the reaction tank R, a mixed liquid MW of raw water OW, which is actual wastewater, and the above-mentioned white rot fungus is stored. Hydrogen peroxide (H 2 O 2 ) is added to the reaction vessel R. Blower B
The air sent from the air is converted into fine air bubbles by the aeration device S and mixed into the mixed solution MW to give air to the aerobic white rot bacteria. White rot fungi in raw water OW in mixed solution MW
Proliferates while decomposing organic substances contained in the water or a carbon source supplied from the outside, and floats in a mixed liquid as a floc-like mass.

【0023】増殖した白色腐朽菌が生成する過酸化水素
分解酵素により、生成される過酸化水素に加えて外部か
ら添加した過酸化水素が分解されて活性酸素が生成さ
れ、この活性酸素により、原水OW中に含まれる有色物
質は酸化分解されて脱色し、また難分解性物質もより小
さな分子へと分解される。これらの分解物はガスとして
消散したり、栄養源として菌を増殖させたり、また凝集
して懸濁状に浮遊する。
The hydrogen peroxide decomposing enzyme generated by the grown white rot fungus decomposes hydrogen peroxide added from the outside in addition to the generated hydrogen peroxide to generate active oxygen. Colored substances contained in the OW are oxidatively decomposed and decolorized, and hardly decomposable substances are also decomposed into smaller molecules. These decomposition products dissipate as a gas, grow bacteria as a nutrient source, or aggregate and float in suspension.

【0024】混合液MWはポンプPにより膜分離装置M
Sに送出される。反応槽R内での白色腐朽菌の沈殿性が
比較的小さいこともあり、本方式では白色腐朽菌・分解
物等の固形成分FSと処理水TWとの固液分離を膜分離
装置MSにより行うことにした。処理水TWは膜分離
後、処理水タンク(図示省略)に送液される。膜として
は逆浸透膜が利用でき、例えばMF膜、UF膜、RO膜
等が用いられ、混合液MWを高圧ポンプにより逆浸透膜
を透過させて固液分離する。固形成分FSは再び反応槽
Rにフィードバックされる。このようにして原水OWを
連続処理してゆく。
The mixed solution MW is supplied to a membrane separation device M by a pump P.
S is sent out. In this method, solid-liquid separation of the solid component FS such as white rot fungi and decomposition products and the treated water TW is performed by the membrane separation device MS, because the precipitation property of white rot fungi in the reaction tank R is relatively small. It was to be. After the membrane separation, the treated water TW is sent to a treated water tank (not shown). As the membrane, a reverse osmosis membrane can be used. For example, an MF membrane, a UF membrane, an RO membrane, or the like is used. The mixed solution MW is permeated through the reverse osmosis membrane by a high-pressure pump to be separated into a solid and a liquid. The solid component FS is fed back to the reaction tank R again. In this way, the raw water OW is continuously processed.

【0025】図2は微生物膜法による実排水処理方式を
示す。樹脂板の表面に排水で馴致された白色腐朽菌を公
知の固定化技術を使って固定化する。即ち、樹脂板の表
面に微生物膜が形成されることにより微生物膜法と称す
る。この微生物膜を形成した樹脂板を通水可能な隙間を
有しながら多段に積層して樹脂モジュールPMを形成す
る。この樹脂モジュールPMを反応槽R内に装填し、原
水OWを過酸化水素(H22 )を添加しながら樹脂モ
ジュールPM内に通水させ、原水OWが微生物膜と接触
しながら排水が脱色され、また同時に排水中に含まれる
難分解性物質が白色腐朽菌により酸化分解されてゆく。
ブロワーBおよび曝気装置Sの作用は第1図と同様であ
る。
FIG. 2 shows an actual wastewater treatment system using the microbial membrane method. The white rot fungus adjusted to the surface of the resin plate by drainage is immobilized using a known immobilization technique. That is, a microbial membrane is formed on the surface of the resin plate, which is referred to as a microbial membrane method. The resin modules PM having the microbial membrane formed thereon are stacked in multiple stages while having a gap through which water can pass. The resin module PM is loaded into the reaction tank R, and the raw water OW is passed through the resin module PM while adding hydrogen peroxide (H 2 O 2 ). At the same time, the hardly decomposable substances contained in the wastewater are oxidatively decomposed by white rot fungi.
The operations of the blower B and the aerator S are the same as those in FIG.

【0026】分解物の含まれる中間水IWは沈殿池PP
に送液され、この沈殿池PP内にて分解物等の固形物が
沈降する。清澄な上澄液は処理水TWとして処理水タン
ク(図示省略)に送液される。
The intermediate water IW containing the decomposed product is supplied to the sedimentation basin PP
And solids such as decomposed products settle in the settling basin PP. The clear supernatant is sent to a treated water tank (not shown) as treated water TW.

【0027】図3は固定化微生物法による実排水処理方
式を示す。微生物を固定化する方法として、不溶性担体
に微生物を結合する担体結合法、微生物同士を試薬を用
いて架橋結合する架橋法および高分子ゲルの微細な網目
の中や半透性ポリマーの皮膜内に微生物を封入する包括
法が存する。図3においては、水溶性高分子ゲル内部に
白色腐朽菌を封入固定した包括法が用いられている。
FIG. 3 shows an actual wastewater treatment system using the immobilized microorganism method. As a method for immobilizing microorganisms, there are a carrier binding method in which microorganisms are bonded to an insoluble carrier, a cross-linking method in which microorganisms are cross-linked with each other using a reagent, and in a fine network of a polymer gel or in a semipermeable polymer film. There are inclusive methods for encapsulating microorganisms. In FIG. 3, an inclusive method in which white rot fungi are enclosed and fixed inside a water-soluble polymer gel is used.

【0028】固定化微生物FMを反応槽R内の混合液M
W内に浮遊させ、原水OW中の有色物質を脱色分解する
と共に他の難分解性物質も同時に酸化分解する。過酸化
水素(H22 )は反応槽Rの入口部に添加されてい
る。ブロワーBおよび曝気装置Sの作用は図1と同様で
ある。分解後、中間水IWは沈殿池PPに送液され、分
解物や固定化微生物等の固形成分を沈降させた後、清澄
な上澄液が処理水TWとして処理水タンク(図示省略)
に送出される。
The immobilized microorganism FM is mixed with the mixed solution M in the reaction vessel R.
It floats in W, decolorizes and decomposes the colored substances in the raw water OW, and simultaneously oxidizes and decomposes other hardly decomposable substances. Hydrogen peroxide (H 2 O 2 ) is added to the inlet of the reaction vessel R. The operations of the blower B and the aerator S are the same as those in FIG. After the decomposition, the intermediate water IW is sent to a sedimentation basin PP to settle solid components such as decomposed products and immobilized microorganisms, and then a clear supernatant liquid is treated water TW as a treated water tank (not shown).
Sent to

【0029】[0029]

【実施例】コリオラス・ヒルストゥスIFO4917株
を主菌とする白色腐朽菌の反応槽に過酸化水素を添加し
た脱色例を以下に示す。使用した排水は下水汚泥を熱処
理後脱水した脱水機分離液で、表1に示すように原液
A,Bの2種類につき実施し、その色度は3400,3
750であった。なお、色度は次のようにして求められ
た。排水を0.5M酢酸ナトリウム緩衝液で適宜希釈し
た後、波長A465mmを用いて試料の吸光度を測定
し、白金−コバルト法に従って色度を次式により算出し
た。 色度=(試料の吸光度)×希釈倍率×1000/0.2
72
EXAMPLE An example of decolorization in which hydrogen peroxide was added to a reaction vessel for white rot fungi whose main bacterium was Coriolus hilutus IFO4917 was shown below. The wastewater used was a dehydrator separation liquid obtained by heat treatment and dehydration of sewage sludge. As shown in Table 1, two kinds of undiluted liquids A and B were used.
750. The chromaticity was determined as follows. After appropriately diluting the waste water with a 0.5 M sodium acetate buffer, the absorbance of the sample was measured using a wavelength of A465 mm, and the chromaticity was calculated according to the platinum-cobalt method by the following equation. Chromaticity = (absorbance of sample) × dilution magnification × 1000 / 0.2
72

【0030】[0030]

【表1】 [Table 1]

【0031】この分離液で白色腐朽菌、具体的にはコリ
オラス・ヒルストゥスIFO4917株を主体とした白
色腐朽菌を馴致し、この馴致した菌を用いて前記分離液
を図1の活性汚泥法により連続処理した。即ち、白色腐
朽菌をまずGPY培地に接種し、25℃で4日間培養し
た。この菌体を分離液で更に7日間培養して馴致した。
この馴致した菌体を種菌として、図1の活性汚泥法にて
反応槽内をDO2mg/l、水温25℃に維持した。表
1に示される様に処理水と分離液の色度から、過酸化水
素を添加した場合の除去率は95%近い数値が得られ、
十分な色度除去能が確認された。過酸化水素を添加しな
い場合の除去率が約75%であるから、過酸化水素の添
加により除去能は20%増大したことになる。なお、炭
素源としてはエタノールを用い、過酸化水素の添加量は
2mg/lであった。
The separated liquid is used to acclimate white rot fungi, specifically, white rot fungi mainly composed of Coriolus hilutus IFO4917 strain, and the separated liquid is continuously purified by the activated sludge method shown in FIG. Processed. That is, the white rot fungus was first inoculated into a GPY medium and cultured at 25 ° C. for 4 days. The cells were further cultured in the separated solution for 7 days to adjust.
Using the adapted cells as seed cells, the inside of the reaction tank was maintained at DO 2 mg / l and a water temperature of 25 ° C. by the activated sludge method shown in FIG. As shown in Table 1, from the chromaticity of the treated water and the separated liquid, the removal rate when hydrogen peroxide was added was close to 95%.
Sufficient chromaticity removal ability was confirmed. Since the removal rate without adding hydrogen peroxide was about 75%, the removal ability was increased by 20% by adding hydrogen peroxide. In addition, ethanol was used as a carbon source, and the addition amount of hydrogen peroxide was 2 mg / l.

【0032】本発明は上記実施態様および実施例に限定
されるものではなく、本発明の技術的思想を逸脱しない
範囲における種々の変形例、設計変更等をその技術的範
囲に包含するものである。
The present invention is not limited to the above-described embodiments and examples, but encompasses various modifications and design changes within the technical scope thereof without departing from the technical idea of the present invention. .

【0033】[0033]

【発明の効果】本発明ではカビ菌の一種である白色腐朽
菌という特殊な微生物を利用し、しかも外部から過酸化
水素を添加することにより、従来の生物処理法では得ら
れなかった排水の色度除去を可能とし、同時に難分解性
物質の分解除去を達成したものである。また、物理化学
的処理に頼っていた従来技術と比較すると、極めて安価
にしかも大幅なエネルギー削減効果を有する排水の処理
方法を提供できる。
Industrial Applicability The present invention utilizes a special microorganism called white rot fungus, which is a kind of fungi, and furthermore, by adding hydrogen peroxide from the outside, the color of the wastewater which cannot be obtained by the conventional biological treatment method. This makes it possible to remove the hardly decomposable substances at the same time. In addition, compared with the conventional technology that relies on physicochemical treatment, it is possible to provide a wastewater treatment method that is extremely inexpensive and has a significant energy reduction effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】活性汚泥法による実排水処理方式の構成図であ
る。
FIG. 1 is a configuration diagram of an actual wastewater treatment system using an activated sludge method.

【図2】微生物膜法による実排水処理方式の構成図であ
る。
FIG. 2 is a configuration diagram of an actual wastewater treatment system using a microorganism membrane method.

【図3】固定化微生物法による実排水処理方式の構成図
である。
FIG. 3 is a configuration diagram of an actual wastewater treatment system using an immobilized microorganism method.

【符号の説明】[Explanation of symbols]

B…ブロワー、FS…固形成分、FM…固定化微生物、
IW…中間水、MW…混合水、MS…膜分離装置、OW
…原水、P…ポンプ、PP…沈殿池、PW…樹脂モジュ
ール、R…反応槽、S…曝気装置、TW…処理水、H2
2 …過酸化水素。
B: blower, FS: solid component, FM: immobilized microorganism,
IW: Intermediate water, MW: Mixed water, MS: Membrane separation device, OW
... raw, P ... pumps, PP ... sedimentation, PW ... resin module, R ... reactor, S ... aerator, TW ... treated water, H 2
O 2 ... hydrogen peroxide.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 3/12 C02F 3/12 V ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 3/12 C02F 3/12 V

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 処理対象となる排水で予め白色腐朽菌を
培養しながら馴致する工程と、この馴致された白色腐朽
菌を実排水が流入する反応槽に添加する工程と、この反
応槽に外部から過酸化水素を添加して、前記白色腐朽菌
が生成する過酸化水素分解酵素を利用して実排水中の有
色物質および難分解性物質を酸化分解する工程とからな
る過酸化水素を利用した排水の脱色および難分解性物質
の処理方法。
1. A step of acclimating white rot fungi while cultivating white rot fungi in advance in a wastewater to be treated, a step of adding the adjusted white rot fungi to a reaction tank into which actual wastewater flows, and And hydrogen peroxide from the step of oxidatively decomposing colored substances and hardly decomposable substances in actual wastewater using hydrogen peroxide decomposing enzymes generated by the white rot fungus. A method for decolorizing wastewater and treating hardly decomposable substances.
【請求項2】 前記白色腐朽菌がコリオラス・ヒルスト
ゥス(Coriolus hirsutus)である請
求項1に記載の処理方法。
2. The method according to claim 1, wherein the white rot fungus is Coriolus hirstus.
【請求項3】 前記白色腐朽菌を反応槽に添加する工程
で、活性汚泥法を用いる請求項1または2に記載の処理
方法。
3. The treatment method according to claim 1, wherein the step of adding the white rot fungi to the reaction tank uses an activated sludge method.
【請求項4】 前記白色腐朽菌を反応槽に添加する工程
で、まず白色腐朽菌を吸着固定した微生物膜を作成し、
この微生物膜を反応槽内に配置する請求項1または2に
記載の処理方法。
4. In the step of adding the white rot fungi to a reaction tank, first, a microbial membrane on which the white rot fungi are adsorbed and fixed is prepared,
The method according to claim 1, wherein the microorganism membrane is disposed in a reaction tank.
【請求項5】 前記白色腐朽菌を反応槽に添加する工程
で、まず白色腐朽菌の固定化微生物を作成し、この固定
化微生物を反応槽内に懸濁させた請求項1または2に記
載の処理方法。
5. The method according to claim 1, wherein in the step of adding the white rot fungi to the reaction vessel, first, immobilized microorganisms of the white rot fungi are prepared, and the immobilized microorganisms are suspended in the reaction vessel. Processing method.
【請求項6】 前記反応槽で処理された排水を膜分離装
置に導入し、白色腐朽菌等の固形成分と清澄な処理水に
分離する請求項1ないし5に記載の処理方法。
6. The treatment method according to claim 1, wherein the wastewater treated in the reaction tank is introduced into a membrane separation device, and separated into solid components such as white rot fungi and clear treated water.
【請求項7】 前記反応槽で処理された排水を沈殿池に
導入し、白色腐朽菌等の固形成分と清澄な処理水に分離
する請求項1ないし5に記載の処理方法。
7. The treatment method according to claim 1, wherein the wastewater treated in the reaction tank is introduced into a sedimentation basin to separate solid components such as white rot fungi and clear treated water.
【請求項8】 前記反応槽を多段に設ける請求項1ない
し7に記載の処理方法。
8. The processing method according to claim 1, wherein the reaction vessels are provided in multiple stages.
【請求項9】 送気ブロアにより反応槽を曝気する請求
項1ないし8に記載の処理方法。
9. The processing method according to claim 1, wherein the reaction tank is aerated by an air blower.
JP9722297A 1997-04-15 1997-04-15 Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide Expired - Fee Related JP3354432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9722297A JP3354432B2 (en) 1997-04-15 1997-04-15 Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9722297A JP3354432B2 (en) 1997-04-15 1997-04-15 Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH10286589A true JPH10286589A (en) 1998-10-27
JP3354432B2 JP3354432B2 (en) 2002-12-09

Family

ID=14186617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9722297A Expired - Fee Related JP3354432B2 (en) 1997-04-15 1997-04-15 Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3354432B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131199A (en) * 2009-12-25 2011-07-07 Mimaki Engineering Co Ltd Wastewater treatment method and apparatus
JP2013534861A (en) * 2010-06-24 2013-09-09 リッチコア ライフサイエンシーズ プライベート リミテッド Method and composition for rapid treatment of wastewater
JP2015009214A (en) * 2013-06-28 2015-01-19 パナソニックIpマネジメント株式会社 Hydrogen peroxide-containing effluent treatment apparatus and treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131199A (en) * 2009-12-25 2011-07-07 Mimaki Engineering Co Ltd Wastewater treatment method and apparatus
JP2013534861A (en) * 2010-06-24 2013-09-09 リッチコア ライフサイエンシーズ プライベート リミテッド Method and composition for rapid treatment of wastewater
JP2015009214A (en) * 2013-06-28 2015-01-19 パナソニックIpマネジメント株式会社 Hydrogen peroxide-containing effluent treatment apparatus and treatment method
TWI656100B (en) * 2013-06-28 2019-04-11 日商松下知識產權經營股份有限公司 Hydrogen peroxide-containing drainage treatment device and treatment method

Also Published As

Publication number Publication date
JP3354432B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
Mugdha et al. Enzymatic treatment of wastewater containing dyestuffs using different delivery systems
Assadi et al. Anaerobic–aerobic sequencing batch reactor treating azo dye containing wastewater: effect of high nitrate ions and salt
Arous et al. Innovative biological approaches for contaminants of emerging concern removal from wastewater: a mini-review
CA2394359C (en) Method and installation for treating effluents, comprising an additional treatment of the sludge by ozonisation
Hanafiah et al. Ability of Ganoderma lucidum mycelial pellets to remove ammonia and organic matter from domestic wastewater
Zhu et al. Depolymerization and conversion of waste-activated sludge to value-added bioproducts by fungi
Ong et al. Comparative study on the biodegradation of mixed remazol dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing batch reactors
Lin et al. Insight investigation of the on-site activated sludge reduction induced by metabolic uncoupler: Effects of 2, 6-dichlorophenol on soluble microbial products, microbial activity, and environmental impact
JP3354432B2 (en) Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide
JP2005169304A (en) Method of treating high concentration colored organic waste water
Jimenez et al. Mathematical modelling of aerobic degradation of vinasses with Penicillium decumbens
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
JP2001162297A (en) Method and apparatus for treating organic waste water
JPH10286588A (en) Decoloration wastewater and treatment method of hardly decomposable substance
Vaigan et al. Aerobic sequencing batch reactor system with granular activated carbon for the treatment of wastewater containing a reactive dye
Kamat et al. Bioremediation of industrial effluent containing reactive dyes
Saglam et al. Bioremediation applications with fungi
Elshafei et al. Biodecolorization of six synthetic dyes by Pleurotus ostreatus ARC280 laccase in presence and absence of hydroxybenzotriazole (HBT)
RU2209186C2 (en) Method of biologically treating waste waters to remove toxic organics
Patel et al. Challenges of Distillery Effluent Treatment and its Bioremediation Using Microorganism: A Review
JP3917380B2 (en) Sewage treatment method using microorganisms that decompose hardly decomposable substances
KR910006526B1 (en) Waste water purifying agent using microorganism
Rajmohan et al. 2 recent advancements and perspectives on biological degradation of Azo Dye
Elizaryev et al. Biological approaches to the purification of textile wastewater
Khan et al. Biodegradation of phenol by aerobic granulation technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees