JPH10285848A - Permanent magnet type motor - Google Patents

Permanent magnet type motor

Info

Publication number
JPH10285848A
JPH10285848A JP9101065A JP10106597A JPH10285848A JP H10285848 A JPH10285848 A JP H10285848A JP 9101065 A JP9101065 A JP 9101065A JP 10106597 A JP10106597 A JP 10106597A JP H10285848 A JPH10285848 A JP H10285848A
Authority
JP
Japan
Prior art keywords
slit
field magnet
magnet
coil
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9101065A
Other languages
Japanese (ja)
Inventor
Koji Kajimoto
浩二 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP9101065A priority Critical patent/JPH10285848A/en
Publication of JPH10285848A publication Critical patent/JPH10285848A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient, low cost permanent magnet type motor by preventing the generation of circulating current. SOLUTION: In a permanent magnet type motor equipped with a field magnet 2 comprising a ring magnet provided with a slit 21 parallel to an axial direction at one place on the circumference and an armature 3 having three-phase armature windings 4 oppositely through an air gap in the field magnet 2, the field magnet 2 is a divisor of the number of poles and is formed by a plurality of ring magnets 2a, 2b, 2c, 2d divided in an axial direction of the field magnet 2 by multiple of the number of slit positions as the multiple of the number of parallel circuits of each phase of armature winding 4, and the position of 21 slit is located at a position shifted uniformly by the number of slit positions in circumferential direction with the unmagnetized portion of the field magnet 2 as reference. Therefore, the same amount of distortion occurs in respective coils at the same time, the amount of magnetic flux interlinking with each coil becomes always equal, induced voltage occurred in every coil is all equal, and the circulating current is not generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、界磁にリング状の
永久磁石を用いた電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor using a ring-shaped permanent magnet as a field.

【0002】[0002]

【従来の技術】従来、永久磁石をフェライトなど焼結に
よってリング状に形成する場合、燒結時に円周方向とラ
ジアル方向の収縮率が異なるため、製造時に永久磁石の
中に内部応力が蓄積されて割れ易い。また、Nd−Fe
−B系のリングマグネットでは、周方向には温度上昇に
対して負の熱膨張係数を持っているため、電動機運転時
の温度上昇により、永久磁石に割れが生じることがあ
る。それで、リング状の永久磁石の割れを防止するため
に、永久磁石にあらかじめスリットを設けてある電動機
が開示されている(例えば、特開平6−86483号公
報)。すなわち、例えば図7(a)に示すように、回転
軸11に固定されたロータ1は、外周に界磁磁石2とし
てリングマグネット2Aが用いられている。リングマグ
ネット2Aはラジアル異方性円筒フェライト磁石からな
り、円周上の1か所に、あらかじめスリット21を設
け、それ以外は一体化されている。また、リングマグネ
ット2Aは円周方向に交互に異極になるように着磁され
ている。リングマグネット2Aの外周には空隙を介して
電機子3を構成する電機子鉄心31を設け、電機子鉄心
31には、図8に示すように、各相の単位コイルを並列
に接続したときの並列個数、すなわち並列回路数が4個
の三相(U相、V相、W相)の電機子巻線4(コイル4
a,4b,4c,4d)を巻回してある。この場合、磁
極上にスリット21を設けると、スリット21によって
ギャップ磁束密度が低下して、誘起電圧波形に歪みが生
じるので、スリット位置を磁極間の未着磁部分に配置し
て悪影響を低減している。
2. Description of the Related Art Conventionally, when a permanent magnet is formed into a ring shape by sintering ferrite or the like, the shrinkage in the circumferential direction differs from that in the radial direction during sintering. Easy to crack. Also, Nd-Fe
Since the -B ring magnet has a negative coefficient of thermal expansion with respect to the temperature rise in the circumferential direction, the permanent magnet may be cracked due to the temperature rise during operation of the motor. Therefore, in order to prevent the ring-shaped permanent magnet from cracking, there has been disclosed an electric motor in which a slit is provided in the permanent magnet in advance (for example, JP-A-6-86483). That is, for example, as shown in FIG. 7A, the rotor 1 fixed to the rotating shaft 11 uses a ring magnet 2A as the field magnet 2 on the outer periphery. The ring magnet 2A is made of a radially anisotropic cylindrical ferrite magnet, and a slit 21 is provided beforehand at one place on the circumference, and the other parts are integrated. Further, the ring magnet 2A is magnetized so that the polarity is alternately changed in the circumferential direction. An armature core 31 constituting the armature 3 is provided on the outer periphery of the ring magnet 2A via a gap, and the unit coils of each phase are connected to the armature core 31 in parallel as shown in FIG. A three-phase (U-phase, V-phase, W-phase) armature winding 4 (coil 4
a, 4b, 4c, 4d). In this case, if the slit 21 is provided on the magnetic pole, the gap 21 reduces the gap magnetic flux density and causes a distortion in the induced voltage waveform. Therefore, the slit position is arranged in a non-magnetized portion between the magnetic poles to reduce adverse effects. ing.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術では、スリット21による誘起電圧への悪影響を完全
になくすことができず、とくに、リングマグネット2A
にスキュー着磁を行う場合は、図7(b)に示すよう
に、磁極間の未着磁部分が斜めになるため、未着磁部分
にスリット21全体を完全に配置することが難しい。し
たがって、図9に示すように(三相のうち代表してU相
についてのみ示す)、誘起電圧波形に点線で示すように
歪みが生じるが、例えば一つのコイルbに歪みが生じて
いる時には他のコイルa,c,dには歪みがなというよ
うに、コイルによって誘起電圧波形が不均一になる。そ
のため、電機子巻線4の並列回路毎の電圧差による循環
電流が発生し、電動機効率が低下するという問題があっ
た。また、スリット21をスキューした未着磁部分に平
行に設けることも可能であるが、リングマグネット2A
のコストアップとなるという問題があった。本発明は、
循環電流の発生を防ぎ、効率の良い、低コストの永久磁
石形電動機を提供することを目的とするものである。
However, in the above-mentioned prior art, the adverse effect on the induced voltage due to the slit 21 cannot be completely eliminated.
When skew magnetizing is performed, as shown in FIG. 7B, the non-magnetized portion between the magnetic poles is oblique, and it is difficult to completely dispose the entire slit 21 in the non-magnetized portion. Therefore, as shown in FIG. 9 (represented only for the U-phase among the three phases), the induced voltage waveform is distorted as shown by the dotted line. The coils a, c, and d have non-uniform induced voltage waveforms, such as no distortion. Therefore, there is a problem that a circulating current is generated due to a voltage difference between the parallel circuits of the armature windings 4 and the motor efficiency is reduced. It is also possible to provide the slit 21 in parallel to the skewed unmagnetized portion, but the ring magnet 2A
There is a problem that the cost increases. The present invention
It is an object of the present invention to provide an efficient, low-cost permanent magnet type electric motor that prevents generation of a circulating current.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、円周上の1か所に軸方向に平行なスリッ
トを設けたリングマグネットからなる界磁磁石と、前記
界磁磁石に空隙を介して対向し三相の電機子巻線を有す
る電機子とを備えた永久磁石形電動機において、前記界
磁磁石は、前記界磁磁石の極数の約数で、かつ前記電機
子巻線の各相の並列回路数の倍数であるスリット位置数
の倍数だけ前記界磁磁石の軸方向に分割した複数のリン
グマグネットにより形成され、前記スリットの位置は前
記界磁磁石の未着磁部分を基準として前記スリット位置
数だけ円周方向に均等にずらした位置に配置されている
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a field magnet comprising a ring magnet provided with a slit parallel to the axial direction at one location on the circumference, and the field magnet described above. And an armature having three-phase armature windings facing each other with an air gap therebetween, wherein the field magnet is a divisor of the number of poles of the field magnet, and The field magnet is formed by a plurality of ring magnets divided in the axial direction of the field magnet by a multiple of the number of slit positions, which is a multiple of the number of parallel circuits of each phase of the winding, and the position of the slit is not magnetized by the field magnet. It is arranged at a position shifted evenly in the circumferential direction by the number of slit positions with reference to the portion.

【0005】[0005]

【発明の実施の形態】以下、本発明を図に示す実施例に
ついて説明する。図1は本発明の実施例を示す切断図で
ある。図において、1はロータ、11は回転軸、2はロ
ータ1の外周に設けられた界磁磁石で、分解した状態を
図2に示すように、軸方向に4分割されたラジアル異方
性円筒のNd−Fe−B系磁石で構成されたリングマグ
ネット2a,2b,2c,2dからなり、それぞれ円周
上の1か所に、あらかじめ、軸方向に平行にスリット2
1を設け、それ以外は一体化されている。また、各リン
グマグネット2a,2b,2c,2dは円周方向に交互
に異極になるように着磁されている。界磁磁石2の外周
には、空隙を介して電機子3を構成する固定子鉄心31
を設け、固定子鉄心31には三相(U,V,W相)の電
機子巻線4を巻回してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, 1 is a rotor, 11 is a rotating shaft, 2 is a field magnet provided on the outer periphery of the rotor 1, and a radially anisotropic cylinder divided into four parts in the axial direction as shown in FIG. Ring magnets 2a, 2b, 2c, and 2d composed of Nd-Fe-B-based magnets.
1 is provided, and the others are integrated. The ring magnets 2a, 2b, 2c, 2d are magnetized so as to have different polarities alternately in the circumferential direction. A stator core 31 constituting the armature 3 is provided on the outer periphery of the field magnet 2 through a gap.
And a three-phase (U, V, W phase) armature winding 4 is wound around the stator core 31.

【0006】ここで、1相あたりの電機子巻線4のコイ
ル数が4個(コイル4a,4b,4c,4d)で並列回
路数が4個、界磁磁石2の磁極数が8極の場合につい
て、界磁磁石2を軸方向に分割する分割数と、界磁磁石
2を形成するリングマグネット2a,2b,2c,2d
の着磁位置と、スリット21の位置との関係を、図3に
基づいて説明する。なお、三相の各相について、電機子
巻線4と界磁磁石2との関係は同じであるので、代表し
てU相について説明する。リングマグネット2a,2
b,2c,2dは軸方向に順次配列され、磁極はスキュ
ーされた状態に着磁されている。各リングマグネット2
a,2b,2c,2dのスリット21a,21b,21
c,21dは、極数の約数で、かつ電機子巻線の各相の
並列回路数の倍数であるスリット位置数だけ均等にずら
した位置に配置されている。したがって、界磁磁石を軸
方向に分割する分割数はスリット位置数の倍数とすれば
よい。この場合、並列回路数は4個、磁極数は8個であ
るので、スリット位置数は4となり、界磁磁石2は軸方
向に4分割されたリングマグネット2a,2b,2c,
2dに形成され、磁極の境界部の未着磁部分を基準とし
て、円周方向に順次90度ずらして配置してある。この
ような構成により、各コイル4a,4b,4c,4dの
誘起電圧波形は、図4(a)〜(d)に示すように、同
時にコイル4aはスリット21aの影響、コイル4bは
スリット21bの影響、コイル4cはスリット21cの
影響、コイル4dはスリット21dの影響を受けて、点
線で囲んで示すように歪む。しかし、同じ歪み量がそれ
ぞれのコイルに同時に発生するので、各コイルに鎖交す
る磁束量は常に等しくなり、各コイルに発生する誘起電
圧はすべて等しくなる。したがって、電機子巻線4の並
列回路内には循環電流は発生しない。
Here, the number of coils of the armature winding 4 per phase is four (coils 4a, 4b, 4c, 4d), the number of parallel circuits is four, and the number of magnetic poles of the field magnet 2 is eight. In the case, the number of divisions of the field magnet 2 in the axial direction and the ring magnets 2a, 2b, 2c, 2d forming the field magnet 2
The relationship between the magnetized position and the position of the slit 21 will be described with reference to FIG. Note that the relationship between the armature winding 4 and the field magnet 2 is the same for each of the three phases, so the U phase will be representatively described. Ring magnet 2a, 2
b, 2c and 2d are sequentially arranged in the axial direction, and the magnetic poles are magnetized in a skewed state. Each ring magnet 2
a, 2b, 2c, 2d slits 21a, 21b, 21
c and 21d are arranged at positions that are evenly shifted by the number of slit positions that is a divisor of the number of poles and a multiple of the number of parallel circuits of each phase of the armature winding. Therefore, the number of divisions into which the field magnet is divided in the axial direction may be a multiple of the number of slit positions. In this case, since the number of parallel circuits is four and the number of magnetic poles is eight, the number of slit positions is four, and the field magnet 2 is divided into four ring magnets 2a, 2b, 2c, and 4 in the axial direction.
2d, which are sequentially shifted by 90 degrees in the circumferential direction with respect to the non-magnetized portion at the boundary between the magnetic poles. With such a configuration, the induced voltage waveforms of the coils 4a, 4b, 4c, and 4d are simultaneously affected by the slit 21a and the coil 4b is affected by the slit 21b, as shown in FIGS. Influence, the coil 4c is affected by the slit 21c, and the coil 4d is affected by the slit 21d, and is distorted as indicated by a dotted line. However, since the same amount of distortion is simultaneously generated in each coil, the amount of magnetic flux linked to each coil is always equal, and the induced voltages generated in each coil are all equal. Therefore, no circulating current is generated in the parallel circuit of the armature windings 4.

【0007】図5は電機子巻線4のU相のコイル数が4
個(コイル4a,4b,4c,4d)で、コイル4aと
4bが直列に接続された組コイル4A、およびコイル4
cと4dが直列に接続された組みコイル4Bで構成され
たもので、組コイル4Aと4Bが並列に接続され、並列
回路数が2個、界磁磁石2の磁極数が8極の場合の、リ
ングマグネット2a,2b,2c,2dの着磁位置と、
スリット21の位置との関係を示す説明図である。この
場合、並列回路数は2個、磁極数は8個であるので、ス
リット位置数は2となり、それぞれ2個のリングマグネ
ット2a、2bおよび2c、2d毎に、二つのスリット
21a、21bとスリット21c、21dが、それぞれ
同じ磁極の境界部の未着磁部分を基準として、円周方向
に180度ずらして配置してある。このような構成によ
り、組コイル4Aおよび組コイル4Bの合成された誘起
電圧波形は、図6(a),(b)に点線で囲んで示すよ
うに歪みが発生する。すなわち、同時にコイル4aはス
リット21aの影響、コイル4cはスリット21cの影
響を受け、90度回転した後に同時にコイル4bはスリ
ット21bの影響、コイル4dはスリット21dの影響
を受けて歪む。しかし、同じ歪み量がそれぞれの組コイ
ルに同時に発生するので、各コイルに鎖交する磁束量は
常に等しくなり、各コイルに発生する誘起電圧はすべて
等しくなる。したがって、電機子巻線4の並列回路内に
は循環電流は発生しない。なお、上記循環電流が発生し
ないスリット位置数の条件は、実施例で示した極数や並
列回路数に限らず、極数の約数で、かつ電機子巻線の各
相の並列回路数の倍数であるスリット位置数だけ均等に
円周方向にずらした位置に配置されたものであればよ
い。
FIG. 5 shows that the number of U-phase coils of the armature winding 4 is four.
(Coil 4a, 4b, 4c, 4d), coil 4A in which coils 4a and 4b are connected in series, and coil 4A
c and 4d are composed of a set coil 4B connected in series. When the set coils 4A and 4B are connected in parallel, the number of parallel circuits is two, and the number of magnetic poles of the field magnet 2 is eight. The magnetization positions of the ring magnets 2a, 2b, 2c, 2d;
FIG. 4 is an explanatory diagram showing a relationship with a position of a slit 21. In this case, since the number of parallel circuits is two and the number of magnetic poles is eight, the number of slit positions is two, and two slits 21a, 21b and a slit are provided for each of the two ring magnets 2a, 2b and 2c, 2d. 21c and 21d are arranged at 180 degrees in the circumferential direction with reference to the unmagnetized portion at the boundary between the same magnetic poles. With such a configuration, a distortion is generated in the combined induced voltage waveform of the grouped coil 4A and the grouped coil 4B as shown by the dotted lines in FIGS. 6 (a) and 6 (b). That is, at the same time, the coil 4a is affected by the slit 21a, the coil 4c is affected by the slit 21c, and after rotating 90 degrees, the coil 4b is simultaneously affected by the slit 21b, and the coil 4d is affected by the slit 21d and distorted. However, since the same amount of distortion is simultaneously generated in each set coil, the amount of magnetic flux linked to each coil is always equal, and the induced voltages generated in each coil are all equal. Therefore, no circulating current is generated in the parallel circuit of the armature windings 4. The condition of the number of slit positions at which the circulating current is not generated is not limited to the number of poles and the number of parallel circuits shown in the embodiment, but is a divisor of the number of poles and the number of parallel circuits of each phase of the armature winding. What is necessary is just to arrange | position at the position shifted equally in the circumferential direction by the number of slit positions which are multiples.

【0008】[0008]

【発明の効果】以上述べたように、本発明によれば、円
周方向に一つのスリットを設けたリングマグネットを軸
方向に複数個配列して形成した界磁磁石を設け、各リン
グマグネットのスリットを円周方向に等分に配置するス
リット位置数を、界磁の磁極数の約数で、かつ電機子巻
線の各相の並列回路数の倍数になるようにしてあるの
で、同じ歪み量がそれぞれのコイルに同時に発生し、各
コイルに鎖交する磁束量は常に等しくなり、各コイルに
発生する誘起電圧はすべて等しくなる。また、スリット
の形状は軸方向に平行に設けることができるので、加工
が容易である。したがって、電機子巻線の並列回路内に
は循環電流は発生しないので、効率の良い、低コストの
永久磁石形電動機を提供できる効果がある。
As described above, according to the present invention, a field magnet formed by arranging a plurality of ring magnets provided with one slit in the circumferential direction in the axial direction is provided. Since the number of slit positions at which the slits are equally divided in the circumferential direction is set to be a divisor of the number of magnetic poles of the field and a multiple of the number of parallel circuits of each phase of the armature winding, the same distortion The amount is generated simultaneously in each coil, the amount of magnetic flux linked to each coil is always equal, and the induced voltages generated in each coil are all equal. Further, since the shape of the slit can be provided in parallel with the axial direction, processing is easy. Therefore, no circulating current is generated in the parallel circuit of the armature windings, so that an efficient and low-cost permanent magnet motor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を示す切断図である。FIG. 1 is a cutaway view showing an embodiment of the present invention.

【図2】 本発明の実施例のロータを分解した状態を示
す斜視図である。
FIG. 2 is a perspective view showing a state where the rotor of the embodiment of the present invention is disassembled.

【図3】 本発明の実施例を示す電機子巻線とロータの
展開図である。
FIG. 3 is a development view of an armature winding and a rotor showing the embodiment of the present invention.

【図4】 本発明の実施例の各コイルに発生する誘起電
圧波形を示す説明図である。
FIG. 4 is an explanatory diagram showing an induced voltage waveform generated in each coil according to the embodiment of the present invention.

【図5】 本発明の他の実施例を示す電機子巻線とロー
タの展開図である。
FIG. 5 is a development view of an armature winding and a rotor showing another embodiment of the present invention.

【図6】 本発明の他の実施例の各コイルに発生する誘
起電圧波形を示す説明図である。
FIG. 6 is an explanatory diagram showing an induced voltage waveform generated in each coil according to another embodiment of the present invention.

【図7】 従来例を示す切断図である。FIG. 7 is a cutaway view showing a conventional example.

【図8】 従来例を示す電機子巻線とロータの展開図で
ある。
FIG. 8 is a development view of an armature winding and a rotor showing a conventional example.

【図9】 従来例の各コイルに発生する誘起電圧波形を
示す説明図である。
FIG. 9 is an explanatory diagram showing an induced voltage waveform generated in each coil of the conventional example.

【符号の説明】[Explanation of symbols]

1:ロータ、11:回転軸、2:界磁磁石、2a,2
b,2c,2d:リングマグネット、21、21a,2
1b,21c,21d:スリット、3:電機子、31:
電機私鉄心、4:電機子巻線、、4a,4b,4c,4
d:コイル、4A,4B:組コイル、
1: rotor, 11: rotating shaft, 2: field magnet, 2a, 2
b, 2c, 2d: ring magnet, 21, 21a, 2
1b, 21c, 21d: slit, 3: armature, 31:
Electric private iron core, 4: armature winding, 4a, 4b, 4c, 4
d: coil, 4A, 4B: assembled coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円周上の1か所に軸方向に平行なスリッ
トを設けたリングマグネットからなる界磁磁石と、前記
界磁磁石に空隙を介して対向し三相の電機子巻線を有す
る電機子とを備えた永久磁石形電動機において、 前記界磁磁石は、前記界磁磁石の極数の約数で、かつ前
記電機子巻線の各相の並列回路数の倍数であるスリット
位置数の倍数だけ前記界磁磁石の軸方向に分割した複数
のリングマグネットにより形成され、前記スリットの位
置は前記界磁磁石の未着磁部分を基準として前記スリッ
ト位置数だけ円周方向に均等にずらした位置に配置され
ていることを特徴とする永久磁石形電動機。
1. A field magnet consisting of a ring magnet provided with a slit parallel to the axial direction at one place on the circumference, and a three-phase armature winding opposed to the field magnet via an air gap. Wherein the field magnet has a slit position that is a divisor of the number of poles of the field magnet and a multiple of the number of parallel circuits of each phase of the armature winding. It is formed by a plurality of ring magnets divided in the axial direction of the field magnet by a multiple of the number, and the positions of the slits are evenly distributed in the circumferential direction by the number of the slit positions with respect to the unmagnetized portion of the field magnet. A permanent magnet type electric motor which is arranged at a shifted position.
JP9101065A 1997-04-02 1997-04-02 Permanent magnet type motor Pending JPH10285848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101065A JPH10285848A (en) 1997-04-02 1997-04-02 Permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9101065A JPH10285848A (en) 1997-04-02 1997-04-02 Permanent magnet type motor

Publications (1)

Publication Number Publication Date
JPH10285848A true JPH10285848A (en) 1998-10-23

Family

ID=14290714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101065A Pending JPH10285848A (en) 1997-04-02 1997-04-02 Permanent magnet type motor

Country Status (1)

Country Link
JP (1) JPH10285848A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005883A (en) * 2010-11-15 2011-04-06 江门市瑞荣泵业有限公司 Self-control permanent magnet synchronous motor of well submersible pump
CN103219815A (en) * 2013-04-28 2013-07-24 广东正民高新磁电有限公司 Permanent magnet rotor
CN105932805A (en) * 2016-06-28 2016-09-07 无锡新大力电机有限公司 Mixed excitation permanent magnet synchronous motor rotor
CN107852047A (en) * 2015-07-31 2018-03-27 三菱电机株式会社 The rotor of electric rotating machine
CN109038898A (en) * 2018-10-11 2018-12-18 安徽同华新能源动力股份有限公司 Rotor
US10958119B2 (en) 2017-01-11 2021-03-23 Kabushiki Kaisha Toshiba Rotary electric machine, rotary electric machine system, and machine
CN112886741A (en) * 2021-03-25 2021-06-01 珠海格力电器股份有限公司 Rotor structure, permanent magnet synchronous motor and rotor structure assembling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005883A (en) * 2010-11-15 2011-04-06 江门市瑞荣泵业有限公司 Self-control permanent magnet synchronous motor of well submersible pump
CN103219815A (en) * 2013-04-28 2013-07-24 广东正民高新磁电有限公司 Permanent magnet rotor
CN107852047A (en) * 2015-07-31 2018-03-27 三菱电机株式会社 The rotor of electric rotating machine
CN107852047B (en) * 2015-07-31 2020-06-26 三菱电机株式会社 Rotor of rotating electric machine
CN105932805A (en) * 2016-06-28 2016-09-07 无锡新大力电机有限公司 Mixed excitation permanent magnet synchronous motor rotor
US10958119B2 (en) 2017-01-11 2021-03-23 Kabushiki Kaisha Toshiba Rotary electric machine, rotary electric machine system, and machine
CN109038898A (en) * 2018-10-11 2018-12-18 安徽同华新能源动力股份有限公司 Rotor
CN112886741A (en) * 2021-03-25 2021-06-01 珠海格力电器股份有限公司 Rotor structure, permanent magnet synchronous motor and rotor structure assembling method
CN112886741B (en) * 2021-03-25 2022-01-28 珠海格力电器股份有限公司 Rotor structure, permanent magnet synchronous motor and rotor structure assembling method

Similar Documents

Publication Publication Date Title
JP2695332B2 (en) Permanent magnet field type rotor
US5804904A (en) Brushless DC motor and a method of generation power therewith
US10714992B2 (en) Motor including plurality of rotor parts
JP2017163845A (en) Rotor and motor
JP2005045984A (en) Rotor for permanent magnet synchronous motor
JP3928297B2 (en) Electric motor and manufacturing method thereof
JP2003164085A (en) Rotating electric machine
JPH10285848A (en) Permanent magnet type motor
JP2004072820A (en) Magnetizing jig for rotor of ac motor, and manufacturing method using it
JP4823425B2 (en) DC motor
WO2018008475A1 (en) Motor
EP1209798A1 (en) Wound salient-pole type rotor for an electric machine
JP2017216855A (en) Rotary electric machine
JPH06319238A (en) Rotor for permanent magnet generator
JPH05161325A (en) Synchronous motor with a reduced cogging torque
US20200083766A1 (en) Rotor and motor using same
US20190363595A1 (en) Rotor and motor using same
JP5144923B2 (en) Rotating electric machine
JP4363600B2 (en) Smooth armature type 3-phase brushless motor
JP2001218436A (en) Permanent magnet motor
KR100515989B1 (en) Permanent magnet yoke of rotor for motor and generator
JP2015047054A (en) Rotor, stator, and motor
JP2912412B2 (en) Surface-facing motor
KR100548765B1 (en) Permanent magnet rotor
JP3259623B2 (en) Brushless motor