JPH102854A - Ripening degree determining apparatus for grain - Google Patents

Ripening degree determining apparatus for grain

Info

Publication number
JPH102854A
JPH102854A JP17422996A JP17422996A JPH102854A JP H102854 A JPH102854 A JP H102854A JP 17422996 A JP17422996 A JP 17422996A JP 17422996 A JP17422996 A JP 17422996A JP H102854 A JPH102854 A JP H102854A
Authority
JP
Japan
Prior art keywords
rice
grain
paddy
sensor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17422996A
Other languages
Japanese (ja)
Other versions
JP4117853B2 (en
Inventor
Harumitsu Toki
治光 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP17422996A priority Critical patent/JP4117853B2/en
Publication of JPH102854A publication Critical patent/JPH102854A/en
Application granted granted Critical
Publication of JP4117853B2 publication Critical patent/JP4117853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To compute ripening degree at high precision by carrying out the ripening degree judgment, which has conventionally been difficult, based on determination of the chlorophyll content for the chlorophyll contained in the surface of husk disappears during ripening process. SOLUTION: A ripening degree determining apparatus 1 comprises a light emitting part 11 as an electromagnetic wave radiating means to radiate electromagnetic waves with wavelength which chlorophy 11 characteristically absorbs, a light receiving part 12 as a reflected light wave receiving means to receive the reflected waves of the radiated electromagnetic waves, and a CPU 13 which measures the chlorophyll content based on the received light quantity of the reflected waves received by the light receiving part 12 and judges the ripening degree. The light emitting part 11 radiates electromagnetic waves to grains 14, the light receiving part 12 receives the reflected waves of the radiated electromagnetic waves, and the CPU 13 determines that a large quantity of chlorophy 11 is contained in the grains and grains are immature in the case the received light quantity of the reflected waves is low and that chlorophy 11 is a little and grains are mature in the case the received light quantity of the reflected waves is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、米や麦などの穀粒
に電磁波を照射して、その外皮表面が含む葉緑素(クロ
ロフィル)の含量を葉緑素固有の吸収帯波長の吸収量よ
り求め、これより穀粒の登熟度を測定する装置に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a method of irradiating grains such as rice and wheat with electromagnetic waves to determine the content of chlorophyll (chlorophyll) contained in the surface of the hull from the absorption amount of the chlorophyll-specific absorption band wavelength. More specifically, the present invention relates to a device for measuring the ripening degree of grains.

【0002】[0002]

【発明が解決しようとする課題】未熟な穀粒(青米)
は、脱穀しにくいし、選別の際には成熟した整粒に混入
しないよう注意を払う必要があるなど、その量の多寡は
コンバインの収穫作業に影響がある。本発明は、穀粒が
どの程度成熟しているかその登熟度を判定し、収穫作業
に役立てることを目的とする。
Problems to be Solved by the Invention Immature grains (blue rice)
It is difficult to thresh, and it is necessary to pay attention so that it does not mix into mature sizing at the time of sorting. An object of the present invention is to determine the degree of maturity of a grain and determine the degree of ripening of the grain so as to be useful for a harvesting operation.

【0003】本発明は、図1のグラフに示すように、籾
表面に含まれる葉緑素が登熟過程で消滅する現象に着目
し、従来困難であった籾の登熟度判定を葉緑素含量から
決定することにより、精度の高い登熟度を求めるもので
ある。
The present invention focuses on the phenomenon that chlorophyll contained in the surface of paddy disappears during the ripening process, as shown in the graph of FIG. 1, and determines the ripening degree of paddy, which was conventionally difficult, from the chlorophyll content. By doing so, a highly accurate ripening degree is obtained.

【0004】[0004]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0005】すなわち、葉緑素が固有に吸収する波長の
電磁波を穀粒に照射する電磁波照射手段と、穀粒に照射
した電磁波の反射波を受光する反射波受光手段と、前記
反射波の受光量から穀粒の葉緑素含量を測定する葉緑素
含量測定手段と、を備え、前記葉緑素含量から穀粒の登
熟度を判定することを特徴とする穀粒の登熟度判定装置
である。
That is, an electromagnetic wave irradiating means for irradiating a grain with an electromagnetic wave having a wavelength which chlorophyll inherently absorbs, a reflected wave light receiving means for receiving a reflected wave of the electromagnetic wave irradiated to the grain, and a light receiving amount of the reflected wave A chlorophyll content measuring means for measuring the chlorophyll content of the grain, wherein the ripening degree of the grain is determined from the chlorophyll content.

【0006】[0006]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】図2に、本発明を実施した穀粒の登熟度判
定装置の構成図を示す。登熟度判定装置1は、葉緑素が
固有に吸収する波長の電磁波を照射する電磁波照射手段
としての発光部11と、照射した電磁波の反射波を受光
する反射波受光手段としての受光部12と、受光部12
が受光した反射波の受光量から葉緑素含量を測定して登
熟度を判定するCPU13から構成される。
FIG. 2 shows a block diagram of a grain ripening degree judging apparatus embodying the present invention. The ripening degree determination device 1 includes a light emitting unit 11 as an electromagnetic wave irradiating unit that irradiates an electromagnetic wave having a wavelength that chlorophyll uniquely absorbs, a light receiving unit 12 as a reflected wave receiving unit that receives a reflected wave of the irradiated electromagnetic wave, Light receiving section 12
Comprises a CPU 13 which measures the chlorophyll content from the amount of received reflected waves to determine the degree of ripening.

【0008】本発明を実施した登熟度判定装置は以上の
ような構成で、発光部11は電磁波を穀粒14に照射
し、受光部12はその反射波を受光し、CPU13はそ
の反射波の受光量が少なければ穀粒14に葉緑素が多く
含まれ未熟と判定し、反射波の受光量が多ければ葉緑素
が少なく完熟と判定する。
The ripening degree judging device embodying the present invention has the above-described configuration. The light emitting unit 11 irradiates the kernel 14 with an electromagnetic wave, the light receiving unit 12 receives the reflected wave, and the CPU 13 transmits the reflected wave. If the amount of received light is small, it is determined that the grain 14 contains a large amount of chlorophyll and immature.

【0009】以下に本発明の穀粒の登熟度判定装置を利
用したコンバインの車速制御装置について説明する。こ
のコンバインは、図3のグラフに示すように、籾の登熟
度に比例してセンサ出力するセンサを有し、このセンサ
出力によってコンバインの最高車速を制御する。
The following describes a combine vehicle speed control apparatus using the grain ripening degree determination apparatus of the present invention. As shown in the graph of FIG. 3, the combine has a sensor that outputs a sensor in proportion to the ripening degree of the paddy, and controls the maximum vehicle speed of the combine based on the sensor output.

【0010】図4に示すフローチャートを参照して、こ
のコンバインの車速制御処理について説明する。処理を
開始すると(ステップ101)、まず、このセンサ出力
によって刈取搬送中の籾の登熟度を測定する(ステップ
102)。そして、測定した籾の登熟度からコンバイン
の最高車速VRを計算する(ステップ103)。次に、
コンバインの現在の車速VDを測定して(ステップ10
4)、VRとVDの大小を比較し(ステップ105)、
VRがVDより大きいか等しいときはコンバインの車速
を減速してエンジンの負荷を軽減する(ステップ10
6)。
Referring to a flowchart shown in FIG. 4, the vehicle speed control process of the combine will be described. When the process is started (step 101), first, the ripening degree of the paddy being harvested and conveyed is measured based on the sensor output (step 102). Then, the maximum vehicle speed VR of the combine is calculated from the measured ripening degree of the paddy (step 103). next,
Measure the current vehicle speed VD of the combine (step 10)
4) Compare the magnitude of VR and VD (step 105),
When VR is greater than or equal to VD, the vehicle speed of the combine is reduced to reduce the load on the engine (step 10).
6).

【0011】このコンバインは、刈取搬送中の籾の登熟
度を測定して未熟籾が多いと分かったときは車速を落と
す。このように、籾の登熟度合いから車速を制御するた
め、こぎ残しやエンジンの過負荷を防止できる。
In this combine, the vehicle speed is reduced when the degree of ripening of the paddy during reaping and transport is measured and it is found that there is much immature paddy. As described above, since the vehicle speed is controlled based on the degree of ripening of the paddy, it is possible to prevent the remaining of the sawing and the engine overload.

【0012】次に、本発明の穀粒の登熟度判定装置を利
用したコンバインの揺動回転数制御装置について説明す
る。このコンバインは、図5のグラフに示すように、籾
の登熟度に比例してセンサ出力するセンサを有し、この
センサ出力によって図6のグラフに示すように、未熟籾
の量に比例してコンバインの揺動回転数を上げるように
制御する。
Next, a description will be given of a combine swinging speed control apparatus using the grain ripening degree determination apparatus of the present invention. The combine has a sensor that outputs a sensor in proportion to the ripening degree of the paddy as shown in the graph of FIG. 5, and the sensor output is used in proportion to the amount of immature paddy as shown in the graph of FIG. Control to increase the swing rotation speed of the combine.

【0013】図7に、このコンバインの脱穀部の概略図
を示す。脱穀部2は、扱胴21で脱穀した籾を揺動部2
2で選別し、唐箕ファン23で藁くずなどを吹き飛ば
す。揺動部22で選別した籾は、一番らせん24aおよ
び二番らせん24bで貯留タンク(図示しない)へ移送
する。
FIG. 7 shows a schematic diagram of a threshing unit of the combine. The threshing unit 2 crushes the paddy threshed by the handling cylinder 21
Sort by 2 and blow away straw chips with Karino fan 23. The paddy selected by the swing unit 22 is transferred to a storage tank (not shown) by the first spiral 24a and the second spiral 24b.

【0014】図8に、このコンバインの揺動回転数制御
装置のブロック図を示す。揺動回転数制御装置3は、脱
穀した籾量を測定する脱穀籾量センサ31と、脱穀中の
籾に含まれる未熟米量を測定する未熟米籾センサ32
と、揺動回転数を測定する揺動回転センサ33をCPU
34の入力側に接続し、揺動回転数を調節する揺動回転
調節部35をCPU34の出力側に接続する。
FIG. 8 shows a block diagram of the swing rotation speed control device of the combine. The swing rotation speed control device 3 includes a threshing rice amount sensor 31 for measuring the amount of threshing rice and an immature rice paddy sensor 32 for measuring the amount of immature rice contained in the rice being threshed.
And a swing rotation sensor 33 for measuring the swing rotation speed by a CPU.
A swing rotation adjusting unit 35 for adjusting the swing rotation speed is connected to the input side of the CPU 34 and connected to the output side of the CPU 34.

【0015】図9に示すフローチャートを参照して、こ
のコンバインの揺動回転数制御処理について説明する。
処理を開始すると(ステップ201)、まず、脱穀籾量
センサ31の出力によって脱穀した籾量を測定し(ステ
ップ202)、次に、未熟米籾センサ32の出力によっ
て脱穀中の籾に含まれる未熟米量を測定する(ステップ
203)。そして、揺動回転センサ33の出力によって
揺動回転数を測定して適正な揺動回転数を計算し(ステ
ップ204)、揺動回転調節部35に適正な調整量を出
力する(ステップ205)。
Referring to a flowchart shown in FIG. 9, the swing rotational speed control process of the combine will be described.
When the process is started (step 201), first, the amount of threshed paddy is measured by the output of the threshing paddy amount sensor 31 (step 202), and then the immature contained in the threshing paddy is output by the output of the immature rice paddy sensor 32. The amount of rice is measured (step 203). Then, the swing rotation speed is measured based on the output of the swing rotation sensor 33 to calculate an appropriate swing rotation speed (step 204), and an appropriate adjustment amount is output to the swing rotation adjusting unit 35 (step 205). .

【0016】このコンバインは、脱穀中の籾に含まれる
未熟米量を測定し、未熟米量に応じて扱胴21下方の揺
動部22を早く回し、後方への送り速度を早めて送り能
力を増強する。これにより整粒米籾と未熟米籾の比重差
を利用して未熟米籾を遠くへ送り出し、手前の一番らせ
ん24aに青米が混入しないようにする。このように、
整粒米籾と未熟米籾を別々の貯留タンクや袋に分離する
ことによって、乾燥するときには整粒米籾だけを乾燥す
るなどして省エネルギー化を図ることができる。また、
未熟米が分離されるため、その後の籾摺作業が容易とな
る。さらに、早生籾など未熟米が多い場合にも、その中
から整粒籾を効率的に選別して収穫できるなどの効果を
奏する。
This combine measures the amount of immature rice contained in the rice being threshed, rapidly rotates the swinging portion 22 below the handling cylinder 21 according to the amount of immature rice, and increases the feed speed to the rear to increase the feed capacity. To increase. Thus, the unripe rice paddy is sent out by using the specific gravity difference between the sized rice paddy and the unripe rice paddy, so that blue rice is not mixed into the foremost spiral 24a. in this way,
By separating the sized rice paddy and the immature rice paddy into separate storage tanks and bags, energy saving can be achieved by drying only the sized rice paddy when drying. Also,
Since the immature rice is separated, the subsequent hulling work becomes easy. In addition, even when there are many immature rices such as early rice, there is an effect that the sized rice can be efficiently selected and harvested therefrom.

【0017】次に、本発明の穀粒の登熟度判定装置を利
用したコンバインの唐箕風量制御装置について説明す
る。このコンバインは、図10に示すように、籾の登熟
度に比例してセンサ出力する登熟度センサ26を揺動部
22の上部に取付け、この登熟度センサ26によって図
11のグラフに示すように、未熟籾の量に比例してコン
バインの唐箕回転数を上げるように制御する。なお、2
5は揺動部22で比重選別した未熟米籾を機外に排出す
る移送棚である。
Next, an apparatus for controlling the amount of Karin air of a combine using the apparatus for judging the degree of ripening of grains of the present invention will be described. In this combine, as shown in FIG. 10, a ripening sensor 26 which outputs a sensor in proportion to the ripening of the paddy is mounted on the upper part of the swinging unit 22, and the ripening sensor 26 changes the graph of FIG. As shown in the figure, control is performed so as to increase the rotation speed of the combine harvester in proportion to the amount of immature paddy. In addition, 2
Reference numeral 5 denotes a transfer shelf for discharging the immature rice hulls selected by the oscillating unit 22 out of the machine.

【0018】図12に、このコンバインの唐箕風量制御
装置のブロック図を示す。唐箕風量制御装置4は、脱穀
した籾量を測定する脱穀籾量センサ41と、脱穀中の籾
に含まれる未熟米量を測定する未熟米籾センサ42と、
唐箕回転数を測定する唐箕回転センサ43をCPU44
の入力側に接続し、唐箕回転数を調節する唐箕風量調節
部45をCPU44の出力側に接続する。
FIG. 12 is a block diagram of the Karino airflow control device of the combine. The Karino wind quantity control device 4 includes a threshing rice amount sensor 41 that measures the amount of threshing paddy, an immature rice paddy sensor 42 that measures the amount of immature rice contained in the paddy during threshing,
A CPU 44 controls a Karamin rotation sensor 43 for measuring the Karamin rotation speed.
, And a Karino air volume adjusting unit 45 for adjusting the Karino rotation speed is connected to the output side of the CPU 44.

【0019】図13に示すフローチャートを参照して、
このコンバインの唐箕風量制御処理について説明する。
処理を開始すると(ステップ301)、まず、脱穀籾量
センサ41の出力によって脱穀した籾量を測定し(ステ
ップ302)、次に、未熟米籾センサ42の出力によっ
て脱穀中の籾に含まれる未熟米量を測定する(ステップ
303)。そして、唐箕回転センサ43の出力によって
唐箕回転数を測定して適正な唐箕回転数を計算し(ステ
ップ304)、唐箕風量調節部45に適正な調整量を出
力する(ステップ305)。
Referring to the flowchart shown in FIG.
A description will now be given of the Karino wind quantity control process of the combine.
When the process is started (Step 301), first, the amount of threshed paddy is measured by the output of the threshing paddy amount sensor 41 (Step 302), and then, the immature contained in the threshing paddy by the output of the immature rice paddy sensor 42. The amount of rice is measured (step 303). Then, the Karamin rotation speed is measured by the output of the Karamin rotation sensor 43 to calculate an appropriate Karamin rotation speed (Step 304), and an appropriate adjustment amount is output to the Karamin air volume adjusting section 45 (Step 305).

【0020】このコンバインは、脱穀中の籾に含まれる
未熟米量を測定し、未熟米量に応じて扱胴21下方の唐
箕ファン23を早く回し、唐箕風量を増強する。これに
より、手前の一番らせん24aに青米が落ち込まないよ
うにする。従って、青米が一番らせん24aに落ち込ま
ないで機外に排出される分、刈取り面積を拡大すること
ができる。なお、青米を機外に排出しても芽が出ないの
で問題にはならない。
This combine measures the amount of immature rice contained in the paddy during threshing, and rotates the Karino fan 23 below the handling cylinder 21 quickly according to the amount of immature rice to increase the amount of Karomi air. This prevents blue rice from falling into the foremost spiral 24a. Therefore, the cutting area can be increased by the amount that blue rice is discharged outside the machine without falling into the first spiral 24a. It should be noted that even if blue rice is discharged outside the airplane, no buds will appear, so this is not a problem.

【0021】この整粒米籾と未熟米籾は別々の貯留タン
クや袋に分離することによって、乾燥するときには整粒
米籾だけを乾燥するなどして省エネルギー化を図ること
ができる。また、未熟米が分離されるため、その後の籾
摺作業が容易(ロールを圧接する必要がない、選別が安
定するなど)となる。さらに、早生籾など未熟米が多い
場合にも、その中から整粒籾を効率的に選別して収穫で
きるなどの効果を奏する。
By separating the sized rice paddy and the unripe rice paddy into separate storage tanks and bags, energy saving can be achieved by drying only the sized rice paddy when drying. In addition, since the unripe rice is separated, the subsequent hulling work becomes easy (there is no need to press the rolls, the sorting becomes stable, etc.). In addition, even when there are many immature rices such as early rice, there is an effect that the sized rice can be efficiently selected and harvested therefrom.

【0022】次に、水分による電磁波の吸収を利用し
て、生籾の籾殻が破損し内部の玄米が露出した損傷米を
検出する損傷米検出装置について説明する。図14に、
この損傷米検出装置の構成図を示す。損傷米検出装置5
は、損傷米センサ51から水分が吸収する波長を含む電
磁波52を照射し、その反射波53を受光して選別、搬
送中の生籾54によって吸収された電磁波の量を測定す
る。
Next, a damaged rice detecting apparatus for detecting damaged rice in which rice hulls are broken and brown rice inside is exposed using absorption of electromagnetic waves by moisture will be described. In FIG.
1 shows a configuration diagram of the damaged rice detection device. Damaged rice detection device 5
Irradiates an electromagnetic wave 52 containing a wavelength that water absorbs from a damaged rice sensor 51, receives a reflected wave 53 thereof, measures the amount of the electromagnetic wave absorbed by the raw rice 54 being sorted and conveyed.

【0023】図15に、生籾の籾殻が破損し内部の玄米
が露出した損傷米を示す。生籾55の籾殻が破損した部
分56は、内部の玄米が露出するため水分が吸収する波
長を含む電磁波52の反射波53の受光量は減少する。
損傷米センサ51は、図16のグラフに示すように、こ
の電磁波52の反射波53の受光量が減少して検出水分
が増えるに比例してセンサ出力する。
FIG. 15 shows damaged rice in which the rice husks of the raw rice were broken and the brown rice inside was exposed. In the portion 56 where the rice hulls of the raw rice 55 are damaged, the amount of light received by the reflected wave 53 of the electromagnetic wave 52 including the wavelength absorbed by moisture is reduced because the brown rice inside is exposed.
As shown in the graph of FIG. 16, the damaged rice sensor 51 outputs a sensor output in proportion to the decrease in the amount of the reflected wave 53 of the electromagnetic wave 52 and the increase in the detected moisture.

【0024】この損傷米検出装置は以上のような構成
で、損傷米センサ51は生籾54に照射した電磁波52
の反射波53の受光量が少なければ、生籾54の内部の
玄米が露出して水分を多く吸収する損傷米と判定する。
This damaged rice detecting device is configured as described above, and the damaged rice sensor 51 detects the electromagnetic wave 52 radiated on the raw rice 54.
If the amount of light received by the reflected wave 53 is small, it is determined that the brown rice inside the raw rice 54 is exposed and absorbs a large amount of water, and is damaged rice.

【0025】コンバインによる選別、搬送などの収穫作
業中、特に早生(高水分籾)などに損傷が発生しやすい
が、従来のコンバインでは籾の損傷を検出することがで
きなかった。この損傷米検出装置によれば、籾の状態に
かかわらず損傷米の発生状況を精度良く検出することが
可能となり、脱穀回転制御や車速制御と連動させること
によって損傷米の発生を防止して最適な刈取り作業を行
うことができる。また、籾の損傷が少ないため、後工程
の乾燥、籾摺、保存における品質の低下も防止できる。
During harvesting operations such as sorting and transporting by combine, damage is particularly likely to occur in early birth (high-moisture paddy) and the like, but the conventional combine has not been able to detect damage to paddy. According to this damaged rice detection device, it is possible to accurately detect the occurrence of damaged rice irrespective of the state of paddy, and to prevent the generation of damaged rice by linking with threshing rotation control and vehicle speed control to optimize Reaping work can be performed. In addition, since the damage to the paddy is small, it is possible to prevent a decrease in quality in drying, hulling, and storage in the subsequent steps.

【0026】次に、この損傷米検出装置を利用して、脱
穀回転数を制御するコンバインについて説明する。図1
7に示すように、このコンバインの脱穀部は損傷米セン
サ51を一番らせん24aの上部に取付け、脱粒後の籾
の損傷度合を測定して回転センサ27で脱穀回転数を測
定し、無段プーリ28で脱穀回転数を調節して脱粒後の
籾の損傷が大きければ脱穀回転数を落とす。
Next, a combine for controlling the threshing speed by using the damaged rice detecting apparatus will be described. FIG.
As shown in FIG. 7, in the threshing part of this combine, the damaged rice sensor 51 is attached to the upper part of the first spiral 24a, the degree of damage to the paddy after threshing is measured, the rotation sensor 27 is used to measure the threshing speed, and The threshing speed is adjusted by the pulley 28, and if the damage of the paddy after threshing is large, the threshing speed is reduced.

【0027】図18に示すフローチャートを参照して、
このコンバインの脱穀回転数制御処理について説明す
る。処理を開始すると(ステップ401)、まず、タイ
マーをセットして(ステップ402)、タイムアップか
どうかを判定し(ステップ403)、タイムアップでな
ければ、損傷米センサ51の損傷割込みがあるかどうか
を判定し(ステップ404)、損傷割込みがあればカウ
ンタをインクリメントする(ステップ405)。タイム
アップであれば、カウンタの値から損傷率を計算した後
(ステップ406)、回転センサ27の出力によって脱
穀回転数を測定する(ステップ407)。そして、損傷
率が一定値以下かどうかを判定し(ステップ408)、
一定値以下でなければ無段プーリ28を調節して脱穀回
転数を下げる(ステップ409)。
Referring to the flowchart shown in FIG.
The threshing speed control process of the combine will be described. When the process is started (step 401), first, a timer is set (step 402), and it is determined whether or not time is up (step 403). Is determined (step 404), and if there is a damage interrupt, the counter is incremented (step 405). If the time is up, the damage rate is calculated from the value of the counter (Step 406), and the threshing speed is measured by the output of the rotation sensor 27 (Step 407). Then, it is determined whether the damage rate is equal to or less than a certain value (step 408),
If not, the stepless pulley 28 is adjusted to lower the threshing speed (step 409).

【0028】コンバインの収穫作業中に籾は脱穀、選
別、搬送されてグレンタンク等に集められるが、その中
で脱穀部における籾の損傷の割合が最も多いと考えられ
る。このコンバインは、脱粒後の籾の損傷度合を測定
し、これによって脱穀回転数を制御する。従って、脱穀
による損傷の無いきれいな籾を収穫することができる。
また、籾殻に損傷がないため後工程(乾燥、籾摺、流
通)における品質の低下を防止することができる。
During the harvesting of the combine, the paddy is threshed, sorted, transported and collected in a Glen tank or the like. Among them, it is considered that the rate of damage to the paddy in the threshing section is the highest. This combine measures the degree of damage to the paddy after threshing, thereby controlling the threshing speed. Therefore, it is possible to harvest clean rice without damage due to threshing.
Further, since there is no damage to the rice husks, it is possible to prevent a decrease in quality in the post-process (drying, hulling, distribution).

【0029】次に、脱穀後の穀粒が流れる速さを測定す
る粒速センサについて説明する。図19に、この粒速セ
ンサの構成図を示す。粒速センサ6は、発光部61から
音波または電磁波を照射し、その反射波を受光部62で
受光する。そして、その反射強度の経時的変化を周波数
解析し、これによって得られる基本振動または低次の高
周波振動のピーク周波数から移動穀粒63の速度を検出
する。
Next, a grain speed sensor for measuring the speed at which the grain after threshing flows will be described. FIG. 19 shows a configuration diagram of this particle speed sensor. The particle speed sensor 6 emits a sound wave or an electromagnetic wave from the light emitting unit 61, and the reflected wave is received by the light receiving unit 62. Then, the temporal analysis of the reflection intensity is frequency-analyzed, and the speed of the moving kernel 63 is detected from the peak frequency of the fundamental vibration or the low-order high-frequency vibration obtained thereby.

【0030】発光部61は、速度に対して変動する音波
または電磁波を移動穀粒層63の表面あるいは裏面に照
射する。この場合、X線は移動穀粒層63を透過するの
で不可である。
The light emitting unit 61 irradiates a sound wave or an electromagnetic wave which varies with the speed to the front surface or the back surface of the moving grain layer 63. In this case, X-rays pass through the moving kernel layer 63 and are not possible.

【0031】図20のグラフに示すように、移動穀粒層
63の面に音波または電磁波を照射すると、反射波の基
本振動または低次の高周波振動のピーク値と移動穀粒層
63の速度は明瞭に相関を示す。この反射波のうちの低
い周波数を抽出して一定時間における強度変化を周波数
解析すると、図21のグラフに示す低速(4.9cm/
秒)の穀粒は最初のピークが410mHzで次のピーク
まで295mHzあり、図22のグラフに示す高速(1
0cm/秒)の穀粒は最初のピークが820mHzで次
のピークまでが600mHzある。従って、反射波のピ
ーク値の違いによって、移動穀粒の速度を検出すること
ができる。
As shown in the graph of FIG. 20, when the surface of the moving grain layer 63 is irradiated with a sound wave or an electromagnetic wave, the peak value of the fundamental vibration or low-order high-frequency vibration of the reflected wave and the speed of the moving grain layer 63 are reduced. The correlation is clearly shown. When a low frequency is extracted from the reflected waves and the intensity change over a certain period of time is subjected to frequency analysis, a low speed (4.9 cm /
The second peak has a peak of 410 mHz and a peak of 295 mHz until the next peak.
(0 cm / sec), the first peak is 820 mHz and the next peak is 600 mHz. Therefore, the speed of the moving kernel can be detected based on the difference in the peak value of the reflected wave.

【0032】図23に、この粒速センサ6の受光部62
のブロック図を示す。受光部62は、受光センサ62a
の出力を増幅部62bで増幅して周波数分析部62cに
入力し、反射強度の経時的変化を周波数解析し、これに
よって得られる基本振動または低次の高周波振動のピー
ク周波数を求める。そして、その基本振動または低次の
高周波振動のピーク周波数をCPU62dに入力して移
動穀粒の速度を検出する。
FIG. 23 shows a light receiving section 62 of the particle speed sensor 6.
FIG. The light receiving section 62 includes a light receiving sensor 62a.
Is amplified by the amplifying unit 62b and input to the frequency analyzing unit 62c, where the temporal change of the reflection intensity is frequency-analyzed, and the peak frequency of the fundamental vibration or the low-order high-frequency vibration obtained thereby is obtained. Then, the peak frequency of the fundamental vibration or the low-order high-frequency vibration is input to the CPU 62d to detect the speed of the moving kernel.

【0033】この粒速センサ6は、移動穀粒層63の面
に光を照射し、その反射光の一定時間における強度変化
を周波数解析して移動穀粒層63の速度を検出する。従
って、移動穀粒層63の粒速を精度良く測定することが
できる。また、層厚を検出するセンサと組合せると穀粒
量の検出ができるので、籾摺機やコンバインの制御にも
利用できる。
The grain speed sensor 6 irradiates the surface of the moving grain layer 63 with light, and detects the speed of the moving grain layer 63 by performing frequency analysis on the intensity change of the reflected light over a certain period of time. Therefore, the grain speed of the moving grain layer 63 can be accurately measured. In addition, since the amount of grain can be detected when combined with a sensor that detects the layer thickness, it can be used for controlling a huller or a combine.

【0034】次に、この粒速センサを利用したコンバイ
ンの唐箕風量調節装置について説明する。図24のグラ
フに示すように、穀粒水分が多くなると穀粒群の移動速
度は遅くなり、穀粒水分と穀粒群の移動速度との間には
負の相関があると考えられる。穀粒群の移動速度が遅く
なると、図25に示す脱穀部2の選別室が詰り気味にな
るので、このときは唐箕風量を増大する必要がある。
Next, a description will be given of a combine mining air volume adjusting device using the particle speed sensor. As shown in the graph of FIG. 24, as the grain moisture increases, the moving speed of the grain group decreases, and it is considered that there is a negative correlation between the grain moisture and the moving speed of the grain group. When the moving speed of the grain group is reduced, the sorting room of the threshing unit 2 shown in FIG. 25 tends to be clogged, and in this case, it is necessary to increase the amount of Karamin air.

【0035】この唐箕風量調節装置は、脱穀部2の選別
室の穀粒群の通過経路中に粒速センサ6を取付け、穀粒
群の移動速度を検出する。そして、穀粒群の移動速度が
低速の場合は唐箕風量を増大する。従って、穀粒水分が
多くなって選別室が詰り気味になると、唐箕風量が増大
するので脱穀作業をよりスムーズに行うことができる。
The Karino air quantity adjusting device is equipped with a grain speed sensor 6 in the passage of the grain group in the sorting room of the threshing unit 2 to detect the moving speed of the grain group. Then, when the moving speed of the grain group is low, the amount of Karamin wind is increased. Therefore, when the grain moisture is increased and the sorting room is becoming slightly clogged, the amount of Karamin increases and the threshing operation can be performed more smoothly.

【0036】[0036]

【発明の効果】従来、脱穀や選別などの収穫作業の際、
穀粒がどの程度成熟しているかが分からなかったため、
コンバインのエンジンが過負荷になったり、整粒に青米
が混入する選別不良を生じたり、不都合が多かったが、
本発明では、穀粒の外皮表面に含まれる葉緑素が登熟過
程で消滅する現象に着目して葉緑素含量から穀粒の登熟
度判定を決定するので、籾の登熟程度を高い精度で測定
することができ、これによって収穫作業を適正に行うこ
とができるという効果を奏する。
Conventionally, during harvesting operations such as threshing and sorting,
Because we didn't know how mature the grains were,
There were many inconveniences, such as overloading the combine engine, poor selection of blue rice mixed with sizing, and so on.
In the present invention, the ripening degree judgment of the grain is determined from the chlorophyll content by focusing on the phenomenon that chlorophyll contained in the outer skin surface of the grain disappears during the ripening process, so that the ripening degree of the paddy is measured with high accuracy. Therefore, the harvesting operation can be performed properly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】籾表面の葉緑素含量と反射波輝度の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the chlorophyll content of a paddy surface and the reflected wave luminance.

【図2】本発明を実施した穀粒の登熟度判定装置の構成
図である。
FIG. 2 is a configuration diagram of a grain ripening degree determination device embodying the present invention.

【図3】籾の登熟度とセンサ出力の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the ripening degree of rice and the sensor output.

【図4】コンバインの車速制御処理のフローチャートで
ある。
FIG. 4 is a flowchart of combine speed control processing.

【図5】籾表面の葉緑素含量とセンサ出力の関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between chlorophyll content of paddy surface and sensor output.

【図6】未熟米量とコンバインの揺動回転数の関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the amount of immature rice and the swing rotation speed of the combine.

【図7】コンバインの脱穀部の概略図である。FIG. 7 is a schematic diagram of a threshing unit of the combine.

【図8】コンバインの揺動回転制御装置のブロック図で
ある。
FIG. 8 is a block diagram of a swing rotation control device of the combine.

【図9】コンバインの揺動回転制御処理のフローチャー
トである。
FIG. 9 is a flowchart of combine swing rotation control processing.

【図10】コンバインの脱穀部の概略図である。FIG. 10 is a schematic view of a threshing unit of the combine.

【図11】未熟米量とコンバインの唐箕回転数の関係を
示すグラフである。
FIG. 11 is a graph showing the relationship between the amount of unripe rice and the number of rotations of the combine mino.

【図12】コンバインの唐箕風量制御装置のブロック図
である。
FIG. 12 is a block diagram of a combine mining air volume control device.

【図13】コンバインの唐箕風量制御処理のフローチャ
ートである。
FIG. 13 is a flowchart of a combine mining air volume control process.

【図14】損傷米検出装置の構成図である。FIG. 14 is a configuration diagram of a damaged rice detection device.

【図15】損傷米の概略図である。FIG. 15 is a schematic view of damaged rice.

【図16】検出水分とセンサ出力の関係を示すグラフで
ある。
FIG. 16 is a graph showing a relationship between detected moisture and a sensor output.

【図17】コンバインの脱穀部の概略図である。FIG. 17 is a schematic view of a threshing unit of the combine.

【図18】コンバインの脱穀回転数制御処理のフローチ
ャートである。
FIG. 18 is a flowchart of combine threshing speed control processing.

【図19】粒速センサの構成図である。FIG. 19 is a configuration diagram of a particle speed sensor.

【図20】周波数と穀粒速度の関係を示すグラフであ
る。
FIG. 20 is a graph showing the relationship between frequency and kernel speed.

【図21】低速穀粒の反射波の一定時間における強度変
化を示すグラフである。
FIG. 21 is a graph showing a change in intensity of a reflected wave of a low-speed kernel over a certain period of time.

【図22】高速穀粒の反射波の一定時間における強度変
化を示すグラフである。
FIG. 22 is a graph showing a change in intensity of a reflected wave of a high-speed kernel over a certain period of time.

【図23】粒速センサの受光部のブロック図である。FIG. 23 is a block diagram of a light receiving unit of the particle speed sensor.

【図24】穀粒速度と穀物水分の関係を示すグラフであ
る。
FIG. 24 is a graph showing the relationship between grain speed and grain moisture.

【図25】コンバインの脱穀部の概略図である。FIG. 25 is a schematic view of a threshing unit of the combine.

【符号の説明】[Explanation of symbols]

1 登熟度判定装置 11 発光部 12 受光部 13 CPU 14 穀粒 2 脱穀部 21 扱胴 22 揺動部 23 唐箕ファン 24 らせん 25 移送棚 26 登熟度センサ 27 回転センサ 28 無段プーリ 3 揺動回転制御装置 31 脱穀籾量センサ 32 未熟米籾センサ 33 揺動回転センサ 34 CPU 35 揺動回転調節部 4 唐箕風量制御装置 41 脱穀籾量センサ 42 未熟米籾センサ 43 唐箕回転センサ 44 CPU 45 唐箕風量調節部 5 損傷米検出装置 51 損傷米センサ 52 電磁波 53 反射波 54 生籾 6 粒速センサ 61 発光部 62 受光部 63 移動穀粒 REFERENCE SIGNS LIST 1 ripening degree judging device 11 light emitting section 12 light receiving section 13 CPU 14 kernel 2 threshing section 21 handling cylinder 22 swinging section 23 Karino fan 24 spiral 25 transfer shelf 26 ripening degree sensor 27 rotation sensor 28 stepless pulley 3 swing Rotation control device 31 Threshing paddy amount sensor 32 Immature rice paddy sensor 33 Oscillating rotation sensor 34 CPU 35 Oscillating rotation adjusting unit 4 Karamin air quantity control device 41 Threshing paddy amount sensor 42 Immature rice paddy sensor 43 Karamin rotation sensor 44 CPU 45 Karamin air quantity Adjusting unit 5 Damaged rice detection device 51 Damaged rice sensor 52 Electromagnetic wave 53 Reflected wave 54 Raw rice 6 Grain speed sensor 61 Light emitting unit 62 Light receiving unit 63 Moving kernel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 葉緑素が固有に吸収する波長の電磁波を
穀粒に照射する電磁波照射手段と、 穀粒に照射した電磁波の反射波を受光する反射波受光手
段と、 前記反射波の受光量から穀粒の葉緑素含量を測定する葉
緑素含量測定手段と、を備え、 前記葉緑素含量から穀粒の登熟度を判定することを特徴
とする穀粒の登熟度判定装置。
1. An electromagnetic wave irradiating means for irradiating a grain with an electromagnetic wave having a wavelength which chlorophyll inherently absorbs, a reflected wave light receiving means for receiving a reflected wave of the electromagnetic wave irradiated on the grain, and a light receiving amount of the reflected wave. A chlorophyll content measuring means for measuring the chlorophyll content of the grain, wherein the ripening degree of the grain is determined from the chlorophyll content.
JP17422996A 1996-06-13 1996-06-13 Combine speed control device Expired - Fee Related JP4117853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17422996A JP4117853B2 (en) 1996-06-13 1996-06-13 Combine speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17422996A JP4117853B2 (en) 1996-06-13 1996-06-13 Combine speed control device

Publications (2)

Publication Number Publication Date
JPH102854A true JPH102854A (en) 1998-01-06
JP4117853B2 JP4117853B2 (en) 2008-07-16

Family

ID=15974987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17422996A Expired - Fee Related JP4117853B2 (en) 1996-06-13 1996-06-13 Combine speed control device

Country Status (1)

Country Link
JP (1) JP4117853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786871A1 (en) * 1998-12-07 2000-06-09 Ulice PROCESS FOR MONITORING A CEREAL CULTURE
EP1110445A1 (en) * 1999-12-21 2001-06-27 Unilever Plc Method of assessing maturity of vining peas during harvesting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786871A1 (en) * 1998-12-07 2000-06-09 Ulice PROCESS FOR MONITORING A CEREAL CULTURE
WO2000034772A1 (en) * 1998-12-07 2000-06-15 Ulice Method for monitoring plant growth in field crops
EP1110445A1 (en) * 1999-12-21 2001-06-27 Unilever Plc Method of assessing maturity of vining peas during harvesting

Also Published As

Publication number Publication date
JP4117853B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP2002262649A (en) Combine harvester
Andrews et al. Effects of combine operating parameters on harvest loss and quality in rice
JPH102854A (en) Ripening degree determining apparatus for grain
JP2016140282A (en) Harvesting system of combine
JP3713889B2 (en) Lodging determination device such as combine
JP2005065546A (en) Thresher
JPH11271251A (en) Moisture detecting device and combine having it
JP2001161156A (en) Flow measuring instrument for to-be-treated granular object such as grain
JPH1175514A (en) Screening control apparatus for thresher
JP3690004B2 (en) Boundary detection method between head and heel of cereal
JP2003019440A (en) Device for controlling impeller revolution number of husking sorter
JPH0425941Y2 (en)
JP3728795B2 (en) Shattered paddy detection equipment for threshing equipment
JP3433541B2 (en) Threshing equipment
JP2896392B2 (en) Threshing equipment
JP3663656B2 (en) Combine control device
CN117983338A (en) Shelling and purifying process for reducing breakage of grains
JP2855523B2 (en) Threshing equipment
JP2741165B2 (en) Threshing equipment
JPS62263418A (en) Apparatus for measuring flow rate of granular article such as grain to be treated
JPH11114436A (en) Automatic control method in hulling selector by belt transmission
CN115372355A (en) White cap detection equipment
JPH04247244A (en) Device for adjusting light quantity of hulling rate sensor for rice-hulling and screening machine
JPS63313524A (en) Winnowing device of combine
JP3282213B2 (en) Combine threshing wind separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060731

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees