JPH10284968A - Manufacture of crystal vibrator - Google Patents

Manufacture of crystal vibrator

Info

Publication number
JPH10284968A
JPH10284968A JP8695597A JP8695597A JPH10284968A JP H10284968 A JPH10284968 A JP H10284968A JP 8695597 A JP8695597 A JP 8695597A JP 8695597 A JP8695597 A JP 8695597A JP H10284968 A JPH10284968 A JP H10284968A
Authority
JP
Japan
Prior art keywords
frequency
plasma
adjustment
sputtering
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8695597A
Other languages
Japanese (ja)
Inventor
Hiroaki Uetake
宏明 植竹
Toshiyuki Shimizu
敏志 清水
Susumu Takigawa
進 滝川
Masaru Matsuyama
勝 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S I I QUARTZ TECHNO KK
Original Assignee
S I I QUARTZ TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S I I QUARTZ TECHNO KK filed Critical S I I QUARTZ TECHNO KK
Priority to JP8695597A priority Critical patent/JPH10284968A/en
Publication of JPH10284968A publication Critical patent/JPH10284968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve adhesive property to the base electrode film of a silver vapor depositing film, to simplify production process and, at the same time, to improve quality by utilizing a plasma so as to scrape a crystal vibrator chip electrode surface and adjusting a frequency and a temp. coefficient. SOLUTION: The specified position of the electrode film is scraped by the sputtering actuation of a plasma ion so as to adjust an oscillation frequency and the temp. coefficient. Sputtering speed and ion irradiating energy are controlled by the electric condition of a plasma source and the adjustment of vacuum pressure and a plasma generating gas flowrate and plasma sputtering is drastically superior in control property. Thus, adhesive property in the film is improved and an organic matter, etc., on the surface of the electrode film is removed by a sputtering actuation so as to be discharged. Besides, the frequency is not shifted in accordance with adjustment quantity. It is adequate that two holes for adjusting the temp. coefficient are hidden by a mask, etc., in frequency adjustment process by the complete linearity of the in-vacuum ion and mask aligning is facilitated compared with a vapor depositing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】GTカット水晶振動子の周波
数調整及び温度係数調整の方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting a frequency and a temperature coefficient of a GT-cut quartz resonator.

【0002】[0002]

【従来の技術】GTカット水晶振動子はその発振周波数
が2〜3MHzで、発振周波数の温度による変化が極め
て少ないことを特徴とする振動子であり、ファクシミ
リ、コンピュータ等の事務機器のほか携帯機器にも多く
用いられている。以下にGTカット水晶振動子の製造工
程について簡単に述べる。
2. Description of the Related Art GT-cut quartz oscillators have an oscillation frequency of 2 to 3 MHz, and have a very small change in oscillation frequency due to temperature. In addition to office equipment such as facsimile machines and computers, portable equipment. Is often used. Hereinafter, a manufacturing process of the GT-cut crystal resonator will be briefly described.

【0003】図5は、真空封止工程前のGTカット水晶
振動子及び電極膜が形成された水晶振動子チップをマウ
ントする台座の例である。本振動子はATカット振動子
のように単純な矩形とは異なり、チップ形状は複雑であ
るため、水晶ウエハからホトリソグラフィ技術を用いて
形成される。まず洗浄したウエハ表面に、電極材料であ
るクロムや金等を所定の膜厚でウエハの全面に形成した
後、水晶形状と電極形状にエッチングされる。1ケ1ケ
のチップに分離した後、チップはあらかじめリードには
んだづけされた台座に接着材でマウントされる。台座は
振動子に近い線膨張率を持つ絶縁性基板で、調整用の小
穴が6ケあいている。中央の2ケの穴が温度係数を調整
するための蒸着用の穴であり、周辺の4ケが周波数を調
整するための穴である。接着材をキュア(安定化処理)
した後に電極表面の所定の位置に台座の穴を通して、微
量の銀を蒸着法で付けて周波数調整及び温度係数を調整
する。本GTカット水晶振動子は、このように周波数を
調整する位置と温度係数を調整する位置が別々であるこ
とに一つの特徴を持っている。周波数調整後に真空加熱
ベーキングを行い、続いて真空封止を行う。エージング
後に電気的な特性を測定し選別を行う。
FIG. 5 shows an example of a pedestal on which a GT-cut quartz oscillator and a quartz oscillator chip on which an electrode film is formed before a vacuum sealing step are mounted. This vibrator is different from a simple rectangle like an AT-cut vibrator and has a complicated chip shape. Therefore, the vibrator is formed from a quartz crystal wafer by photolithography. First, chromium, gold, or the like, which is an electrode material, is formed in a predetermined thickness on the entire surface of the cleaned wafer surface, and then etched into a crystal shape and an electrode shape. After separation into individual chips, the chips are mounted on a pedestal that has been soldered to leads in advance with an adhesive. The pedestal is an insulating substrate having a linear expansion coefficient close to that of the vibrator, and has six small holes for adjustment. The two holes at the center are holes for vapor deposition for adjusting the temperature coefficient, and the four holes at the periphery are holes for adjusting the frequency. Cure adhesive (stabilization process)
After that, a small amount of silver is deposited by a vapor deposition method through a hole of the pedestal at a predetermined position on the electrode surface to adjust the frequency and the temperature coefficient. The GT-cut quartz resonator has one feature in that the position for adjusting the frequency and the position for adjusting the temperature coefficient are different from each other. After the frequency adjustment, vacuum heating baking is performed, and then vacuum sealing is performed. After aging, electrical characteristics are measured and sorting is performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来の周波数調整方法及び温度係数調整方法は次のような
課題がある。まず、銀の蒸着膜の下地電極膜に対する密
着性が問題になる。これは、電極表面に有機物等の汚染
があることが原因と推定される。たとえば、チップ形成
後から周波数調整や温度係数調整前までの経過時間が長
い場合や高湿度雰囲気にさらされる場合である。あるい
はキュア工程や真空加熱ベーキング時に治具類や接着材
から発生する揮発性有機物や真空排気系のオイル汚染等
が原因になる。密着性が劣ると当然ながら蒸着した銀が
電極表面からはがれ発振周波数や温度特性が大きくずれ
てしまう。
However, such conventional frequency adjustment methods and temperature coefficient adjustment methods have the following problems. First, the adhesion of the deposited silver film to the underlying electrode film becomes a problem. This is presumed to be due to contamination of the electrode surface with organic substances and the like. For example, there are cases where the elapsed time from chip formation to before frequency adjustment or temperature coefficient adjustment is long, or when exposed to a high humidity atmosphere. Alternatively, volatile organic substances generated from jigs and adhesives during the curing step or vacuum heating baking, oil contamination of the vacuum exhaust system, and the like may be caused. If the adhesion is inferior, naturally, the deposited silver is peeled off from the electrode surface, and the oscillation frequency and the temperature characteristic are largely shifted.

【0005】続いて、銀の蒸着後は必ず真空加熱ベーキ
ングを必要とするという問題がある。銀を蒸着する場合
は、常温での振動子の発振周波数をモニタしながら行う
ため振動子は特に加熱しない。従って、電極表面に到着
した蒸着銀粒子の表面マイグレーションの不足のため、
形成される銀の薄膜は非常に粗な膜であり、化学的にも
不安定である。従って緻密で安定な膜にするために真空
ベーキングが必ず必要である。このベーキングが必要で
あることが製造工程を長くし、かつ電極表面を有機物で
汚染させる原因の一つとなっている。
[0005] Then, there is a problem that vacuum heating baking is always required after silver deposition. In the case of depositing silver, the oscillator is not particularly heated because it is performed while monitoring the oscillation frequency of the oscillator at room temperature. Therefore, due to lack of surface migration of the deposited silver particles arriving at the electrode surface,
The formed silver thin film is a very coarse film and is chemically unstable. Therefore, vacuum baking is indispensable to obtain a dense and stable film. The necessity of this baking is one of the causes of lengthening the manufacturing process and contaminating the electrode surface with organic substances.

【0006】更に、銀の蒸着量に応じて真空加熱ベーキ
ング後の周波数シフト量が異なることである。周波数が
シフトする真の原因は現在のところ判明していないが、
銀の酸化や拡散現象等がその要因として推定されてい
る。また、温度係数調整後、周波数調整の前に台座の穴
を接着材等でふさぎキュアする工程が必要である。周波
数調整時に温度係数調整用の中央の列の2つの穴があい
ていると、この穴からも銀の蒸着が行われ所定の範囲に
設定した温度係数が変化してしまう。従って、温度係数
調整後にこの2つの穴はふさいでおく必要がある。蒸着
法で行う時にマスクで蒸着穴を隠すことができればこの
工程は不必要なのであるが、台座寸法が微小なためマス
クの機械的な位置合せが困難である。蒸着では、蒸着材
料の回り込み現象が起きるため精確な位置合せが必要で
あるからである。
Another problem is that the amount of frequency shift after vacuum heating and baking varies depending on the amount of silver deposited. The true cause of the frequency shift is currently unknown,
Oxidation and diffusion phenomena of silver and the like are estimated as the factors. Further, after the temperature coefficient adjustment and before the frequency adjustment, a step of closing the hole of the pedestal with an adhesive or the like and curing is required. If two holes in the center row for adjusting the temperature coefficient are open during frequency adjustment, silver is also deposited from this hole, and the temperature coefficient set in a predetermined range changes. Therefore, these two holes need to be closed after the temperature coefficient adjustment. This step is unnecessary if the evaporation holes can be concealed by a mask when performing the evaporation method, but mechanical positioning of the mask is difficult due to the small pedestal size. This is because in vapor deposition, a precise alignment is required because a wraparound phenomenon of the vapor deposition material occurs.

【0007】前述のように、ATカット水晶振動子の製
造工程に比較してベーキングの回数が多いことや接着材
のキュアが必要なことから、工程が長くなり工程内での
パーティクルや湿度の影響をより受けやすく、製造歩留
まりもバラツキが大きくなりやすい。以上に述べた蒸着
法による調整の他に、原理的には電極膜の一部をとって
調整を行う方法もある。例えば、音叉型水晶振動子にお
いては“レーザートリミング技術”として広く行われて
いる。レーザートリミング法は、レーザーが照射された
スポット位置の微少領域の電極材料を瞬時に蒸発させて
発振周波数を調整する方法である。しかしながら、この
方法は、表面と裏面の両方の電極膜を蒸発させてしまい
電極膜に穴があいたのと同じ状態になり、本振動子の場
合には適応出来ない。
As described above, since the number of times of baking and the necessity of curing the adhesive are required as compared with the manufacturing process of the AT-cut quartz resonator, the process becomes longer, and the influence of particles and humidity in the process is increased. And the manufacturing yield tends to vary widely. In addition to the adjustment by the vapor deposition method described above, there is also a method of performing adjustment by taking a part of the electrode film in principle. For example, in a tuning fork type crystal resonator, it is widely used as a “laser trimming technique”. The laser trimming method is a method of adjusting the oscillation frequency by instantaneously evaporating an electrode material in a minute area at a spot position irradiated with a laser. However, this method evaporates both the front and back electrode films, resulting in the same state as a hole in the electrode film, and is not applicable to the present vibrator.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、プラズマを発生させ、プラズマの中のイオンのスパ
ッタ作用で電極膜の特定の位置を削って発振周波数及び
温度係数を調整する。プラズマによるスパッタリングは
片側の電極膜を最表面から所定の深さまで削っていく方
式であるが、プラズマ源の電気的条件(アノード電圧、
エミッタ電流、引出電圧等)と真空圧及びプラズマ発生
用ガス流量を調節することで、スパッタリング速度及び
イオン照射エネルギを制御することが出来る。すなわ
ち、極めて制御性に優れている。この方法によれば、そ
の原理から膜の密着性という問題は起きない。電極膜表
面の有機物などはスパッタリング作用で容易にとれて排
気されてしまう。さらに、調整量に応じて周波数のシフ
トがおきるということがない。また、調整直後の真空加
熱ベーキングは必ずしも必要でなく、圧入後に行えば良
い。また、真空中のイオンの直線性から、温度係数調整
用の2ケの穴は、周波数調整工程でマスク等でかくすこ
とで良く、マスクの位置合わせが蒸着法に比較して容易
である。
In order to solve the above-mentioned problems, plasma is generated, and a specific position of an electrode film is cut by sputtering of ions in the plasma to adjust an oscillation frequency and a temperature coefficient. Sputtering by plasma is a method in which the electrode film on one side is shaved from the outermost surface to a predetermined depth, but the electrical conditions (anode voltage,
The sputtering speed and the ion irradiation energy can be controlled by adjusting the emitter current, the extraction voltage, etc.), the vacuum pressure, and the gas flow rate for plasma generation. That is, the controllability is extremely excellent. According to this method, the problem of film adhesion does not arise from the principle. Organic substances and the like on the surface of the electrode film are easily removed and exhausted by the sputtering action. Further, the frequency does not shift according to the adjustment amount. In addition, vacuum heating baking immediately after adjustment is not always necessary, and may be performed after press-fitting. Also, from the linearity of ions in vacuum, the two holes for adjusting the temperature coefficient may be covered with a mask or the like in the frequency adjustment step, and the alignment of the mask is easier than in the vapor deposition method.

【0009】[0009]

【発明の実施の形態】本発明を図面に基づいて説明す
る。 (実施例1)図1に周波数調整の一例を示す。発振周波
数は2.4MHzである。温度係数調整用の穴はマスク
で隠されている。プラズマ発生用ガスとしてアルゴンを
用いた。その流量は4.8sccmで、プロセス圧力は
2×10-4Torrである。同図によれば、イオン照射
開始後、約2秒は周波数の変化は無いが、その後は加工
量(周波数変化量)はイオン照射時間に比例している。
本条件の場合は、加工レートは約90Hz/秒であっ
た。この加工レートは蒸着法の場合とほぼ等しい。図2
は、温度係数調整の例を示す。周波数調整用の穴はマス
クでふさいである。温度係数の変化量は加工時間に依存
している。このように、台座の穴を通してイオン照射に
よる調整が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows an example of frequency adjustment. The oscillation frequency is 2.4 MHz. The hole for adjusting the temperature coefficient is hidden by the mask. Argon was used as a plasma generation gas. The flow rate is 4.8 sccm and the process pressure is 2 × 10 -4 Torr. According to the figure, the frequency does not change for about 2 seconds after the start of ion irradiation, but thereafter, the processing amount (frequency change amount) is proportional to the ion irradiation time.
Under these conditions, the processing rate was about 90 Hz / sec. This processing rate is almost equal to that of the vapor deposition method. FIG.
Shows an example of temperature coefficient adjustment. The holes for frequency adjustment are covered with a mask. The amount of change in the temperature coefficient depends on the processing time. Thus, adjustment by ion irradiation is possible through the hole of the pedestal.

【0010】(実施例2)本発明を実際に行うことが可
能な製造装置の例を示す。図3は周波数調整及び温度係
数調整を連続して行う装置の例である。図3の装置にお
いて、7は処理室、8はロード室、9はアンロード室で
ある。これら、3つの真空チャンバは真空排気系(1
0、11、12は、それぞれ、処理室、ロード室、アン
ロード室の真空排気系である)及びガス供給系(13、
14はプラズマ発生用で例えばアルゴンを用いる、1
5、16、17は置換用で例えば窒素を用いる)を持
つ。処理室は、2組のプラズマ源18、19、シャッタ
20、21、マスク22、23,搬送系24、周波数及
び共振抵抗値測定用治具25、26等から構成される。
27は、ネットワークアナライザで振動子の発振周波数
及び共振抵抗値を計測する。ワークはロード室8から入
り、搬送系24で処理室7に移動し、プラズマ源18
(温度係数調整用)で温度係数を所定の範囲に調整した
後、連続して右側にあるプラズマ源19(周波数調整
用)で周波数を調整する。シャッタ20、21はオープ
ン/クローズ動作をして、ワークに対してイオンの照射
の開始及び終了を決める。従って、シャッタは高速動作
が必要となる。調整が終了したワークは9のアンロード
室から取り出される。
(Embodiment 2) An example of a manufacturing apparatus capable of actually performing the present invention will be described. FIG. 3 shows an example of an apparatus for continuously performing frequency adjustment and temperature coefficient adjustment. In the apparatus shown in FIG. 3, reference numeral 7 denotes a processing chamber, 8 denotes a load chamber, and 9 denotes an unload chamber. These three vacuum chambers are evacuated (1
Reference numerals 0, 11, and 12 denote vacuum evacuation systems of a processing chamber, a load chamber, and an unload chamber, respectively, and a gas supply system (13,
14 is for generating plasma, for example, using argon.
5, 16, and 17 are used for substitution, for example, nitrogen is used). The processing chamber includes two sets of plasma sources 18 and 19, shutters 20 and 21, masks 22 and 23, transfer system 24, and jigs 25 and 26 for measuring frequency and resonance resistance.
27 is a network analyzer that measures the oscillation frequency and the resonance resistance value of the vibrator. The work enters from the load chamber 8, moves to the processing chamber 7 by the transfer system 24,
After adjusting the temperature coefficient to a predetermined range by (for temperature coefficient adjustment), the frequency is continuously adjusted by the plasma source 19 (for frequency adjustment) on the right side. The shutters 20, 21 perform open / close operations to determine the start and end of ion irradiation on the work. Therefore, the shutter needs to operate at high speed. The work whose adjustment has been completed is taken out of the unloading chamber 9.

【0011】尚、図1及び図2のデータはこの図3で示
したものと同様な装置で実験して得たものである。ま
た、図3で示した装置のアンロード室9と後工程の真空
封止工程をゲートバルブで結び、周波数調整後に真空を
破ること無く封止できれば、振動子は大気中の水分やパ
ーティクルの影響を極力避けることが可能であり、より
品質の優れた振動子の製造が可能になる。
The data shown in FIGS. 1 and 2 are obtained by performing experiments using the same apparatus as that shown in FIG. Also, if the unloading chamber 9 of the apparatus shown in FIG. 3 and the vacuum sealing process of the subsequent process are connected by a gate valve and sealed without breaking the vacuum after adjusting the frequency, the vibrator may be affected by moisture and particles in the atmosphere. Can be avoided as much as possible, and a vibrator with higher quality can be manufactured.

【0012】(実施例3)本発明を用いた別の適用例を
示す。図4に周波数調整及び温度係数調整を台座の穴を
用いず、これと反対側の電極表面にマスクを用いて行う
例を示した。図4において、1’は電極膜が形成された
水晶チップ、2’は台座、18’はプラズマ源、20’
はシャッタ、22’はマスクである。28は外側の容器
である。この様な方式にすると、台座2’を接着材等で
容器28に付けた後に、水晶振動子チップ1’のマウン
トと周波数及び温度係数の調整が可能である。組立工程
における工程の自由度が広がり、製造ラインの構成が容
易になる。
(Embodiment 3) Another application example using the present invention will be described. FIG. 4 shows an example in which the frequency adjustment and the temperature coefficient adjustment are performed using a mask on the electrode surface on the opposite side without using the hole of the pedestal. In FIG. 4, 1 'is a crystal chip on which an electrode film is formed, 2' is a pedestal, 18 'is a plasma source, 20'
Is a shutter and 22 'is a mask. 28 is an outer container. According to such a method, after the pedestal 2 'is attached to the container 28 with an adhesive or the like, the mounting of the crystal resonator chip 1' and the adjustment of the frequency and the temperature coefficient are possible. The degree of freedom in the assembling process is increased, and the configuration of the manufacturing line is facilitated.

【0013】[0013]

【発明の効果】本発明はプラズマのスパッタ作用でGT
カット振動子の周波数調整と温度係数調整を行うもので
ある。本発明により従来問題であった、蒸着膜の密着性
の問題、蒸着のたびに後工程としてベーキングを必要と
する問題、蒸着量に依存した周波数シフトの問題、台座
穴の接着材によるふさぎの手間等の諸問題を解決するこ
とができる。これにより、製造工程をより簡略しながら
同時により品質のすぐれたGTカット振動子が製造可能
である。
According to the present invention, GT is applied by sputtering of plasma.
The frequency adjustment and the temperature coefficient adjustment of the cut vibrator are performed. According to the present invention, there have been problems related to the adhesion of a deposited film, a problem that requires baking as a post-process for each deposition, a problem of a frequency shift depending on a deposition amount, and a trouble of closing a pedestal hole with an adhesive. And other problems can be solved. As a result, it is possible to manufacture a GT-cut resonator having higher quality while simplifying the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるGTカット水晶振動子の周波数調
整の例を示す図である。
FIG. 1 is a diagram showing an example of frequency adjustment of a GT-cut quartz resonator according to the present invention.

【図2】本発明によるGTカット水晶振動子の温度係数
調整の例を示す図である。
FIG. 2 is a diagram showing an example of temperature coefficient adjustment of a GT cut quartz crystal resonator according to the present invention.

【図3】本発明を実施するための製造装置を示す図であ
る。
FIG. 3 is a diagram showing a manufacturing apparatus for carrying out the present invention.

【図4】本発明によるGTカット水晶振動子の周波数及
び温度係数を調整において台座の穴を利用しない方法を
示す図である。
FIG. 4 is a diagram illustrating a method of adjusting a frequency and a temperature coefficient of a GT cut quartz crystal resonator according to the present invention without using a hole in a pedestal.

【図5】真空封止工程前のGTカット水晶振動子及び電
極膜が形成された振動子チップをマウントする台座を示
す図である。
FIG. 5 is a view showing a pedestal for mounting a GT-cut quartz crystal resonator and a resonator chip on which an electrode film is formed before a vacuum sealing step.

【符号の説明】[Explanation of symbols]

1 水晶振動子チップ(表面に電極膜が形成されてい
る) 1’ 水晶振動子チップ(表面に電極膜が形成されてい
る) 2 台座 2’ 台座 3 温度係数調整用穴(2ケ) 4 周波数調整用穴(4ケ) 5 接着材 6 プラグ 7 処理室 8 ロード室 9 アンロード室 10 処理室の真空排気系 11 ロード室の真空排気系 12 アンロード室の真空排気系 13 プラズマ発生用ガス(温度係数調整用) 14 プラズマ発生用ガス(周波数調整用) 15 置換用ガス(処理室用) 16 置換用ガス(ロード室用) 17 置換用ガス(アンロード室用) 18 プラズマ源(温度係数調整用) 18’ プラズマ源 19 プラズマ源(周波数調整用) 20 シャッタ(温度係数調整用) 20’ シャッタ 21 シャッタ(周波数調整用) 22 マスク(温度係数調整用) 22’ マスク 23 マスク(周波数調整用) 24 搬送系 25 計測用治具(温度係数調整用) 26 計測用治具(周波数調整用) 27 ネットワークアナライザ 28 容器
DESCRIPTION OF SYMBOLS 1 Quartz-crystal oscillator chip (The electrode film is formed on the surface) 1 'Quartz-crystal oscillator chip (The electrode film is formed on the surface) 2 Pedestal 2' Pedestal 3 Temperature coefficient adjustment holes (two) 4 Frequency Adjustment holes (4 pcs) 5 Adhesive 6 Plug 7 Processing chamber 8 Load chamber 9 Unload chamber 10 Vacuum exhaust system of processing chamber 11 Vacuum exhaust system of load chamber 12 Vacuum exhaust system of unload chamber 13 Plasma generating gas ( 14) Gas for plasma generation (for frequency adjustment) 15 Gas for replacement (for processing chamber) 16 Gas for replacement (for load chamber) 17 Gas for replacement (for unload chamber) 18 Plasma source (temperature coefficient adjustment) 18 'Plasma source 19 Plasma source (for frequency adjustment) 20 Shutter (for temperature coefficient adjustment) 20' Shutter 21 Shutter (for frequency adjustment) 22 Mask (for temperature coefficient adjustment) 22 ' Disc 23 Mask (for frequency adjustment) 24 Transport system 25 Measurement jig (for temperature coefficient adjustment) 26 Measurement jig (for frequency adjustment) 27 Network analyzer 28 Container

フロントページの続き (72)発明者 松山 勝 栃木県栃木市平井町1110番 株式会社エス アイアイ・クォーツテクノ内Continuation of front page (72) Inventor Masaru Matsuyama 1110 Hirai-cho, Tochigi-city, Tochigi Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 GTカット水晶振動子の周波数調整と温
度係数調整を行う製造方法において、プラズマを利用し
て水晶振動子チップの電極表面を削ることで調整を行う
ことを特徴とする製造方法
1. A manufacturing method for adjusting the frequency and temperature coefficient of a GT-cut quartz resonator, wherein the adjustment is performed by shaving the electrode surface of the quartz resonator chip using plasma.
【請求項2】 2つのプラズマ源を有し、第一のプラズ
マ源で水晶振動子チップ表面の電極表面を削り温度係数
を調整した後、連続して第二のプラズマ源で当振動子チ
ップの別領域の電極表面を削って周波数調整を行うこと
を特徴とする請求項1記載の水晶振動子の製造装置
2. A plasma source comprising two plasma sources, wherein the first plasma source cuts the electrode surface of the surface of the crystal resonator chip to adjust the temperature coefficient, and then the second plasma source continuously applies the same plasma chip to the resonator chip. 2. The crystal resonator manufacturing apparatus according to claim 1, wherein the frequency adjustment is performed by shaving the electrode surface in another region.
JP8695597A 1997-04-04 1997-04-04 Manufacture of crystal vibrator Pending JPH10284968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8695597A JPH10284968A (en) 1997-04-04 1997-04-04 Manufacture of crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8695597A JPH10284968A (en) 1997-04-04 1997-04-04 Manufacture of crystal vibrator

Publications (1)

Publication Number Publication Date
JPH10284968A true JPH10284968A (en) 1998-10-23

Family

ID=13901305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8695597A Pending JPH10284968A (en) 1997-04-04 1997-04-04 Manufacture of crystal vibrator

Country Status (1)

Country Link
JP (1) JPH10284968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479135B2 (en) 2009-09-14 2016-10-25 Murata Manufacturing Co., Ltd. Method for manufacturing piezoelectric vibration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479135B2 (en) 2009-09-14 2016-10-25 Murata Manufacturing Co., Ltd. Method for manufacturing piezoelectric vibration device

Similar Documents

Publication Publication Date Title
JP2001059899A (en) Manufacture of x-ray phosphor and substrate for forming the same
US5089293A (en) Method for forming a platinum resistance thermometer
US4454639A (en) Method for tuning piezoelectric resonators
JP3109060B2 (en) Surface acoustic wave device
US5419822A (en) Method for applying a thin adherent layer
JPH10284968A (en) Manufacture of crystal vibrator
US5345134A (en) Saw device and method of manufacture
US4477952A (en) Piezoelectric crystal electrodes and method of manufacture
US5869390A (en) Method for forming electrode on diamond for electronic devices
JP2001217677A (en) Tuning-fork type piezoelectric vibrating piece and its manufacturing method, its frequency adjusting process device, and tuning-fork type piezoelectric vibrator
EP0141487B1 (en) Method of manufacturing surface acoustic wave device
JPH06224677A (en) Frequency adjusting method for piezoelectric resonator
JPH1168501A (en) Crystal oscillator and its production
JP2995550B2 (en) Manufacturing method of crystal resonator element
AU584632B2 (en) Platinum resistance thermometer
JPH02303371A (en) Formation of electrode pattern on piezoelectric element for ultrasonic motor
JP3945103B2 (en) Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
JP3422724B2 (en) Frequency adjustment device for piezoelectric element
JP2009141825A (en) Method of adjusting frequency of crystal vibrator using atmospheric pressure plasma and apparatus used therefor
KR100495008B1 (en) Wafer level vacuum packaging method
JP3879346B2 (en) Piezoelectric vibrating piece frequency adjusting method and frequency adjusting processing apparatus
JPS59199038A (en) Method for forming insulative thin film
JP2001177363A (en) Frequency adjustment method for piezoelectric vibrator and piezoelectric vibration chip and processing unit for frequency adjustment
JPH03133101A (en) Platinum resistor and manufacture thereof
JP2631530B2 (en) Fine tuning method of frequency in surface acoustic wave device