JPH10284507A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH10284507A
JPH10284507A JP9086394A JP8639497A JPH10284507A JP H10284507 A JPH10284507 A JP H10284507A JP 9086394 A JP9086394 A JP 9086394A JP 8639497 A JP8639497 A JP 8639497A JP H10284507 A JPH10284507 A JP H10284507A
Authority
JP
Japan
Prior art keywords
epitaxial film
sic substrate
sic
layer
low noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9086394A
Other languages
Japanese (ja)
Other versions
JP3047852B2 (en
Inventor
Toshimichi Ota
順道 太田
Hiroyuki Masato
宏幸 正戸
Yasuhito Kumabuchi
康仁 熊渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9086394A priority Critical patent/JP3047852B2/en
Priority to CN98101070A priority patent/CN1131548C/en
Priority to US09/000,544 priority patent/US6110813A/en
Publication of JPH10284507A publication Critical patent/JPH10284507A/en
Priority to US09/400,192 priority patent/US6274889B1/en
Application granted granted Critical
Publication of JP3047852B2 publication Critical patent/JP3047852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of greatly enhancing high-power output of a transmission amplifier part while controlling the temperature-induced deterioration of low noise characteristics of a receiving amplifier to a minimum. SOLUTION: An Al(x)In(y)Ga(1-x-y)N(0<=x,y<=1) epitaxial film 11 is formed on an SiC substrate 10. A high power output amplifier part 15 is formed within, the SiC substrate 10. A low noise amplifier part 16 is formed in the epitaxial film 11. High power output is realized by forming the high power output amplifier part within the SiC substrate. At the same time, an ultra-high-power output type reception-transmission integrated MMIC is realized by integrally forming the low noise amplifier part utilizing the high electron mobility of GaN material which can be epitaxially grown, on the SiC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高周波デバイス、特
に高出力特性と低雑音特性が要求される情報通信用送受
信アンプの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency device, and more particularly to a structure of a transmitting / receiving amplifier for information communication requiring high output characteristics and low noise characteristics.

【0002】[0002]

【従来の技術】近年、小型化・高性能化された携帯電話
の普及が急速に進んでいる。この進歩に大きく貢献した
技術として、高性能な電池の開発と、高性能な電界効果
型トランジスタ、特に砒化ガリウム(GaAs)MES
FETの開発がある。デバイスとしてのGaAsMES
FETは、低電圧動作・高利得・高効率・低雑音・低歪
み等の高周波特性に関して優れた性能を発揮し、携帯端
末の送受信アンプとして活躍している。最近では技術の
進歩とともに、従来のハイブリッド構成に対して、1チ
ップ上に低雑音受信アンプ部と高出力送信アンプ部との
全てを形成する一体型MMIC(Microwave
Monolithic IC)も開発されている。この
構造を有する従来の送受信アンプの構成を、以下図面を
参照しながら説明する。
2. Description of the Related Art In recent years, miniaturized and high-performance mobile phones have been rapidly spreading. Technologies that have greatly contributed to this advance include the development of high-performance batteries and high-performance field-effect transistors, particularly gallium arsenide (GaAs) MES.
There is the development of FET. GaAs MES as device
FETs exhibit excellent performance with respect to high-frequency characteristics such as low-voltage operation, high gain, high efficiency, low noise, and low distortion, and are being used as transmission / reception amplifiers for mobile terminals. Recently, with the advance of technology, an integrated MMIC (Microwave) that forms both a low-noise receiving amplifier section and a high-output transmitting amplifier section on one chip with respect to the conventional hybrid configuration has been developed.
Monolithic IC) has also been developed. The configuration of a conventional transmission / reception amplifier having this structure will be described below with reference to the drawings.

【0003】図3は、従来の送受信アンプ一体型MMI
Cを示す構成図である。図3において、30はGaAs
基板であり、基板30には、高出力アンプ部35および
低雑音アンプ部36とが形成されている。高出力アンプ
部35は大きなゲート幅を有するGaAsMESFET
で構成され、低雑音アンプ部36は、小さなゲート幅を
有するGaAsMESFETで構成されている(例え
ば、K.FUJIMOTOら、「A high per
formance GaAs MMIC transc
eiver for personal handy
phone system(PHS)」、25th E
uropean Microwave Confere
nce、Proceedings、vol.2、pp.
926−930、1995など)。
FIG. 3 shows a conventional transmission / reception amplifier integrated MMI.
It is a block diagram showing C. In FIG. 3, reference numeral 30 denotes GaAs.
A high-output amplifier 35 and a low-noise amplifier 36 are formed on the substrate 30. The high output amplifier 35 is a GaAs MESFET having a large gate width.
, And the low-noise amplifier 36 is formed of a GaAs MESFET having a small gate width (for example, K. FUJIMOTO et al., “A high per
performance GaAs MMIC transsc
ever for personal handy
phone system (PHS) ", 25th E
european Microwave Confere
nce, Proceedings, vol. 2, pp.
926-930, 1995).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、GaAs基板30の低い熱伝導率(約
0.5W/cmK)の影響で、高出力アンプ部のさらな
る高出力化を図ると、基板温度が上昇し、GaAsの高
い電子移動度(約6000cm・cm/Vs)を活かし
た低雑音アンプ部の雑音特性が劣化するという問題が生
じるため、数Wから数百Wといった高出力タイプの一体
型MMICは、GaAsでは実現不可能であった。
However, in the above-described configuration, when the GaAs substrate 30 has a low thermal conductivity (approximately 0.5 W / cmK), it is necessary to further increase the output of the high-output amplifier. Since the substrate temperature rises and the noise characteristics of the low-noise amplifier part utilizing the high electron mobility (about 6000 cm · cm / Vs) of GaAs deteriorates, a high output type of several W to several hundred W is generated. Integrated MMICs were not feasible with GaAs.

【0005】本発明は上記問題点に鑑み、受信アンプ部
の低雑音特性の温度劣化を最小限に抑えつつ、送信アン
プ部の飛躍的な高出力化を可能にする半導体装置を提供
するものである。
The present invention has been made in view of the above problems, and provides a semiconductor device capable of dramatically increasing the output of a transmission amplifier while minimizing the temperature degradation of the low noise characteristic of the reception amplifier. is there.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに本発明では、SiC基板と、前記SiC基板上に形
成されたAl(x)In(y)Ga(1−x−y)N
(0≦x,y≦1)からなるエピタキシャル膜と、前記
SiC基板に形成されたパワーアンプ部と、前記エピタ
キシャル膜に形成された低雑音アンプ部とを有する半導
体装置とする。
In order to solve the above-mentioned problems, the present invention provides a SiC substrate and an Al (x) In (y) Ga (1-xy) N formed on the SiC substrate.
A semiconductor device includes an epitaxial film (0 ≦ x, y ≦ 1), a power amplifier formed on the SiC substrate, and a low noise amplifier formed on the epitaxial film.

【0007】また、SiC基板と、前記SiC基板上に
形成され、かつSiCに格子整合するAl(x)In
(y)Ga(1−x−y)N(0≦x,y≦1)からな
る第一のエピタキシャル膜と、前記第一のエピタキシャ
ル膜上に形成されたAl(x)In(y)Ga(1−x
−y)N(0≦x,y≦1)からなる第二のエピタキシ
ャル膜と、前記SiC基板上に形成され、かつ上記第一
のエピタキシャル膜をFETのショットキ−層とするパ
ワーアンプ部と、前記第二のエピタキシャル膜上に形成
された低雑音アンプ部とを有する半導体装置とする。
A SiC substrate and Al (x) In formed on the SiC substrate and lattice-matched to SiC.
(Y) a first epitaxial film made of Ga (1-xy) N (0 ≦ x, y ≦ 1); and Al (x) In (y) Ga formed on the first epitaxial film. (1-x
-Y) a second epitaxial film made of N (0 ≦ x, y ≦ 1), and a power amplifier formed on the SiC substrate and using the first epitaxial film as a Schottky layer of the FET; And a low-noise amplifier formed on the second epitaxial film.

【0008】本発明は上記の構成により、SiC上にア
ンプ部を形成し、エピタキシャル膜(たとえばGaN系
半導体材料)上に低雑音アンプ部を形成するので、Si
Cの高い熱伝導率(約4.9W/cmK)と、GaN系
材料の高い電子移動度(約1000cm・cm/Vs)
を同時に活かせるため、高出力送受信一体型MMICが
可能である。
According to the present invention, an amplifier section is formed on SiC and a low-noise amplifier section is formed on an epitaxial film (for example, a GaN-based semiconductor material).
High thermal conductivity of C (about 4.9 W / cmK) and high electron mobility of GaN-based material (about 1000 cm · cm / Vs)
, A high-output integrated MMIC is possible.

【0009】また、高出力用材料としてのSiCは、G
aAsよりも約10倍も絶縁破壊電界が大きいため、デ
バイスの耐圧向上・動作電圧向上を可能にし、上記熱伝
導率の効果とともにGaAsの数十倍の高出力化が可能
である。
Further, SiC as a material for high output is G
Since the breakdown electric field is about ten times larger than aAs, the breakdown voltage and the operating voltage of the device can be improved, and the output of several tens of times higher than that of GaAs can be achieved together with the effect of the thermal conductivity.

【0010】さらに、GaN系材料は、現在単結晶基板
が存在しないためにサファイア基板上などに形成されて
いるが、本発明のSiC基板上に形成することも可能で
あるため、良好な結晶性が得られる。加えて、GaN系
材料も、SiCと同様にワイドギャップ半導体であるた
め、使用可能温度が高くかつリーク電流などの温度に対
する増加量も小さいため、かなり高い温度域においても
低雑音特性を維持できる。
Further, although a GaN-based material is formed on a sapphire substrate or the like because a single crystal substrate does not currently exist, it is possible to form a GaN-based material on a SiC substrate of the present invention. Is obtained. In addition, since the GaN-based material is also a wide-gap semiconductor like SiC, it has a high usable temperature and a small increase in temperature, such as leak current, so that low noise characteristics can be maintained even in a considerably high temperature range.

【0011】[0011]

【発明の実施の形態】以下本発明の一実施例の電界効果
型トランジスタについて、図面を参照しながら説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A field effect transistor according to one embodiment of the present invention will be described below with reference to the drawings.

【0012】(実施の形態1)図1は、本発明の第1の
構成による送受信一体MMICを示す構成図である。図
1において、10はSiC基板である。SiC基板10
上に、Al(x)In(y)Ga(1−x−y)N(0
≦x,y≦1)の混晶材料を用いてエピタキシャル膜1
1が形成されている。具体的には、SiC基板10上
に、n型GaN層11bからなるチャネル層、およびア
ンドープAl0.2Ga0.8N層11aからなるショットキ
ー層が形成されている。GaN層11aの上には、ゲー
ト電極16s、ソース電極16g、ドレイン電極16d
を有するMESFETが形成され、このFETが低雑音
用のアンプ部16となっており、ゲート幅は小さい。
(Embodiment 1) FIG. 1 is a configuration diagram showing a transmission / reception integrated MMIC according to a first configuration of the present invention. In FIG. 1, reference numeral 10 denotes a SiC substrate. SiC substrate 10
On top, Al (x) In (y) Ga (1-xy) N (0
≦ x, y ≦ 1)
1 is formed. Specifically, on the SiC substrate 10, a channel layer made of the n-type GaN layer 11b and a Schottky layer made of the undoped Al0.2Ga0.8N layer 11a are formed. On the GaN layer 11a, a gate electrode 16s, a source electrode 16g, and a drain electrode 16d
Is formed, and this FET serves as the low-noise amplifier 16 and has a small gate width.

【0013】15は高出力アンプ部で、SiC基板10
内に、n+ソース層、n+ドレイン層、nチャネル層が
形成され、大きなゲート幅を有するSiCMESFET
で構成されている。ソース層、ドレイン層、チャネル層
は、シリコンのイオン注入により形成している。
Reference numeral 15 denotes a high-output amplifier, which is a SiC substrate 10
Inside, an n + source layer, an n + drain layer, and an n-channel layer are formed, and a SiC MESFET having a large gate width
It is composed of The source layer, the drain layer, and the channel layer are formed by ion implantation of silicon.

【0014】このように、高出力用のMESFETをS
iC基板に形成することにより、SiCの高い熱伝導率
を利用できるので、高出力が可能なアンプ部を形成でき
る。また、Al(x)In(y)Ga(1−x−y)N
(0≦x,y≦1)であらわされるGaN系半導体にF
ETを形成できるため、この材料のもつ高い電子移動度
(約1000cm・cm/Vs)を活かせるので、雑音
特性のよい低雑音アンプ部を形成できる。
As described above, the MESFET for high output is S
By forming on the iC substrate, the high thermal conductivity of SiC can be used, so that an amplifier unit capable of high output can be formed. Also, Al (x) In (y) Ga (1-xy) N
GaN-based semiconductor represented by (0 ≦ x, y ≦ 1)
Since ET can be formed, the high electron mobility (about 1000 cm · cm / Vs) of this material can be utilized, so that a low-noise amplifier having good noise characteristics can be formed.

【0015】なお、高出力アンプ部15のSiCMES
FETの替わりに、さらに動作電圧を高くできるSiC
MOSFETを用いることも可能である。また、上記低
雑音アンプ部のGaN系MESFETの替わりに、さら
に電子移動度を高くできるAlGaN/InGaNのヘ
テロ構造FETを用いることも可能である。このとき
は、In0.2Ga0.8N層をチャネル層とし、Al0.2G
a0.8N層をバリア層とした構造となり、図4のように
なる。
It should be noted that the SiCMEs of the high-output amplifier 15
SiC that can further increase operating voltage instead of FET
It is also possible to use a MOSFET. Also, instead of the GaN-based MESFET in the low noise amplifier section, it is possible to use an AlGaN / InGaN heterostructure FET that can further increase the electron mobility. In this case, the In0.2Ga0.8N layer is used as the channel layer, and the Al0.2G0.8N layer is used.
FIG. 4 shows a structure in which the a0.8N layer is a barrier layer.

【0016】図4は、低雑音アンプ部46のヘテロ接合
FETを含む構造断面図である。高出力アンプ部15
は、図1の構成と同じである。SiC基板10上に、ア
ンドープAl0.2Ga0.8N層41、アンドープI
n0.1Ga0.9N層42、アンドープAl0.2G
a0.8N層43が形成され、ダブルヘテロ構造となっ
ている。AlGaN43上には、シリコンデルタドープ
層を含む、アンドープGaN層44からなるショットキ
ー層が形成され、この層の上に、ゲート電極46g、ソ
ース電極46s、ドレイン電極46dが形成されてい
る。
FIG. 4 is a structural sectional view of the low noise amplifier section 46 including the heterojunction FET. High output amplifier 15
Is the same as the configuration in FIG. Undoped Al0.2Ga0.8N layer 41, undoped I
n0.1Ga0.9N layer 42, undoped Al0.2G
An a0.8N layer 43 is formed to have a double hetero structure. A Schottky layer composed of an undoped GaN layer 44 including a silicon delta-doped layer is formed on AlGaN 43, and a gate electrode 46g, a source electrode 46s, and a drain electrode 46d are formed on this layer.

【0017】この構造により、井戸層に電子を閉じ込め
ることができるので、さらに、移動度を高めたヘテロF
ETとすることができ、雑音特性も向上する。
According to this structure, electrons can be confined in the well layer.
ET can be used, and the noise characteristics are also improved.

【0018】(実施の形態2)図2は、本発明の第2の
構成による送受信一体MMICを示す構成図である。図
2において、20はSiC基板である。基板20上には
アンドープAl0.2Ga0.8N層からなる第一エピタキシ
ャル膜21が成長されている。AlGaN層21は、S
iC基板には、格子整合しないが、SiC基板20上に
格子整合するように組成を選択した、Al(x)In
(y)Ga(1−x−y)N(0≦x,y≦1)の混晶
材料を用いて形成してもよい。
(Embodiment 2) FIG. 2 is a configuration diagram showing a transmission / reception integrated MMIC according to a second configuration of the present invention. In FIG. 2, reference numeral 20 denotes a SiC substrate. On the substrate 20, a first epitaxial film 21 made of an undoped Al0.2Ga0.8N layer is grown. The AlGaN layer 21 is made of S
Al (x) In which is not lattice-matched to the iC substrate but whose composition is selected so as to lattice-match to the SiC substrate 20.
(Y) It may be formed using a mixed crystal material of Ga (1-xy) N (0 ≦ x, y ≦ 1).

【0019】22は第二エピタキシャル膜で、エピタキ
シャル膜21上に、Al(x)In(y)Ga(1−x
−y)N(0≦x,y≦1)の混晶材料を用いて形成さ
れている。具体的には、基板20上に、アンドープGa
N層22b、n型Al0.2Ga0.8N層22aが形成され
ている。
Reference numeral 22 denotes a second epitaxial film, on which an Al (x) In (y) Ga (1-x
-Y) It is formed using a mixed crystal material of N (0 ≦ x, y ≦ 1). Specifically, on the substrate 20, undoped Ga
An N layer 22b and an n-type Al0.2Ga0.8N layer 22a are formed.

【0020】第2のエピタキシャル膜22には、低雑音
アンプ部26が形成されている。低雑音アンプ26は、
n型AlGaN層22aをチャネル層としたMESFE
Tであり、小さなゲート幅を有している。
In the second epitaxial film 22, a low-noise amplifier 26 is formed. The low noise amplifier 26
MESFE using n-type AlGaN layer 22a as a channel layer
T, which has a small gate width.

【0021】一方、高出力アンプ部25にはヘテロ接合
FETが形成されており、SiC基板20およびAlG
aN層21からなる第一エピタキシャル膜21内に形成
されている。AlGaN21とSiC基板20との界面
をキャリアが走行する。
On the other hand, a heterojunction FET is formed in the high-output amplifier section 25, and the SiC substrate 20 and the AlG
The first epitaxial film 21 is formed in the aN layer 21. Carriers travel on the interface between AlGaN 21 and SiC substrate 20.

【0022】高出力アンプ部25では、SiCよりもさ
らに大きなバンドギャップが実現できるAl(x)In
(y)Ga(1−x−y)N材料を用いているので、絶
縁破壊電圧が改善されている。またGaN系/SiCヘ
テロ構造により電子移動度も改善されており、実施形態
1に比べて、利得や効率といった高周波パワーデバイス
特性が向上している。
In the high-power amplifier 25, Al (x) In which can realize a band gap larger than that of SiC is used.
(Y) Since the Ga (1-xy) N material is used, the dielectric breakdown voltage is improved. The electron mobility is also improved by the GaN-based / SiC heterostructure, and high-frequency power device characteristics such as gain and efficiency are improved as compared with the first embodiment.

【0023】さらに実施形態1と同様に、低雑音アンプ
部のGaN系MESFETの替わりに、さらに電子移動
度を高くできるAlGaN/InGaN等のヘテロ構造
FETを用いることも可能である。
Further, similarly to the first embodiment, it is also possible to use a heterostructure FET such as AlGaN / InGaN which can further increase the electron mobility, instead of the GaN-based MESFET in the low noise amplifier.

【0024】[0024]

【発明の効果】以上のように本発明による半導体装置
は、GaAsの約10倍の高い熱伝導率と絶縁破壊電圧
を有するSiC基板に高出力アンプ部を形成することに
よって、数十倍の高出力化を実現し、同時にSiC上に
エピタキシャル成長可能なGaN系材料の高い電子移動
度を活かした低雑音アンプ部を一体形成することによっ
て、従来不可能であった超高出力型の送受信一体MMI
Cを実現している。特に低雑音アンプ部をワイドギャッ
プ半導体であるGaN系材料での実現により、高い使用
環境温度においても低雑音特性が発揮されるので、今後
さらに需要が拡大するマルチメディア社会の通信用デバ
イスのニーズを担うことができる。
As described above, the semiconductor device according to the present invention has a high power amplifier section formed on a SiC substrate having a thermal conductivity and a dielectric breakdown voltage about 10 times higher than that of GaAs. An ultra-high output type integrated transmission / reception MMI, which was impossible in the past, by integrally forming a low-noise amplifier unit utilizing the high electron mobility of a GaN-based material that can be epitaxially grown on SiC while realizing output.
C is realized. In particular, the realization of a low-noise amplifier using a GaN-based material, which is a wide-gap semiconductor, enables low-noise characteristics to be exhibited even at a high operating temperature. Can carry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の送受信一体MMICの構成断面図FIG. 1 is a cross-sectional view of the configuration of a transmission / reception integrated MMIC of the present invention.

【図2】本発明の送受信一体MMICの構成断面図FIG. 2 is a sectional view of the configuration of a transmission / reception integrated MMIC of the present invention.

【図3】従来のMMICの構成断面図FIG. 3 is a sectional view of the configuration of a conventional MMIC.

【図4】本発明の送受信一体MMICの構成断面図FIG. 4 is a cross-sectional view of a configuration of a transmission / reception integrated MMIC of the present invention.

【符号の説明】[Explanation of symbols]

10,20 SiC基板 11 エピタキシャル膜 15,25,35 高出力アンプ部 16,26,36 低雑音アンプ部 21 第一エピタキシャル膜 22 第二エピタキシャル膜 30 GaAs基板 10, 20 SiC substrate 11 Epitaxial film 15, 25, 35 High-power amplifier 16, 26, 36 Low-noise amplifier 21 First epitaxial film 22 Second epitaxial film 30 GaAs substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiC基板と、 前記SiC基板上に形成されたAl(x)In(y)G
a(1−x−y)N(0≦x,y≦1)からなるエピタ
キシャル膜と、 前記SiC基板に形成されたパワーアンプ部と、 前記エピタキシャル膜に形成された低雑音アンプ部とを
有し、前記パワーアンプ部と、前記低雑音アンプ部とが
同一基板上に形成されている半導体装置。
1. An SiC substrate, and an Al (x) In (y) G formed on the SiC substrate.
an epitaxial film made of a (1-xy) N (0 ≦ x, y ≦ 1); a power amplifier formed on the SiC substrate; and a low noise amplifier formed on the epitaxial film. A semiconductor device in which the power amplifier section and the low noise amplifier section are formed on the same substrate.
【請求項2】 エピタキシャル膜に、AlGaN障壁層
とInGaN井戸層を含む低雑音アンプ部とする請求項
1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the epitaxial film is a low-noise amplifier including an AlGaN barrier layer and an InGaN well layer.
【請求項3】 SiC基板と、 前記SiC基板上に形成され、かつSiCに格子整合す
るAl(x)In(y)Ga(1−x−y)N(0≦
x,y≦1)からなる第一のエピタキシャル膜と、 前記第一のエピタキシャル膜上に形成されたAl(x)
In(y)Ga(1−x−y)N(0≦x,y≦1)か
らなる第二のエピタキシャル膜と、 前記SiC基板上に形成され、かつ上記第一のエピタキ
シャル膜をFETのショットキ−層とするパワーアンプ
部と、 前記第二のエピタキシャル膜上に形成された低雑音アン
プ部とを有し、 前記パワーアンプ部と、前記低雑音アンプ部とが同一基
板上に形成されている半導体装置。
3. An SiC substrate, and Al (x) In (y) Ga (1-xy) N (0 ≦) formed on the SiC substrate and lattice-matched to SiC.
x, y ≦ 1), and Al (x) formed on the first epitaxial film.
A second epitaxial film made of In (y) Ga (1-xy) N (0 ≦ x, y ≦ 1); and a first epitaxial film formed on the SiC substrate and Schottky of the FET. A power amplifier section as a layer, and a low noise amplifier section formed on the second epitaxial film, wherein the power amplifier section and the low noise amplifier section are formed on the same substrate. Semiconductor device.
JP9086394A 1997-04-04 1997-04-04 Semiconductor device Expired - Fee Related JP3047852B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9086394A JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device
CN98101070A CN1131548C (en) 1997-04-04 1998-04-01 Ohmic electrode forming method and semiconductor device
US09/000,544 US6110813A (en) 1997-04-04 1998-04-03 Method for forming an ohmic electrode
US09/400,192 US6274889B1 (en) 1997-04-04 1999-09-21 Method for forming ohmic electrode, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9086394A JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10284507A true JPH10284507A (en) 1998-10-23
JP3047852B2 JP3047852B2 (en) 2000-06-05

Family

ID=13885668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9086394A Expired - Fee Related JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3047852B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208755A (en) * 1999-01-19 2000-07-28 Matsushita Electronics Industry Corp Field effect transistor and its manufacture
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
JP2004282091A (en) * 2000-06-27 2004-10-07 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005526384A (en) * 2002-03-25 2005-09-02 クリー インコーポレイテッド Doped III-V nitride materials and microelectronic devices and device precursor structures containing the same
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
WO2006050403A2 (en) * 2004-10-28 2006-05-11 Nitronex Corporation Gallium nitride/silicon based monolithic microwave integrated circuit
JP2010109322A (en) * 2008-09-30 2010-05-13 Fuji Electric Systems Co Ltd Gallium nitride semiconductor device and its production method
KR20110002033A (en) * 2008-03-19 2011-01-06 크리, 인코포레이티드 Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver
US8502235B2 (en) 2003-03-03 2013-08-06 Cree, Inc. Integrated nitride and silicon carbide-based devices
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208755A (en) * 1999-01-19 2000-07-28 Matsushita Electronics Industry Corp Field effect transistor and its manufacture
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7589001B2 (en) 1999-03-17 2009-09-15 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7115486B2 (en) 1999-03-17 2006-10-03 Mitsubishi Cable Industries Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7504324B2 (en) 1999-03-17 2009-03-17 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
JP2004282091A (en) * 2000-06-27 2004-10-07 Matsushita Electric Ind Co Ltd Semiconductor device
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
JP4916090B2 (en) * 2002-03-25 2012-04-11 クリー インコーポレイテッド Doped III-V nitride materials and microelectronic devices and device precursor structures containing the same
JP2005526384A (en) * 2002-03-25 2005-09-02 クリー インコーポレイテッド Doped III-V nitride materials and microelectronic devices and device precursor structures containing the same
US8502235B2 (en) 2003-03-03 2013-08-06 Cree, Inc. Integrated nitride and silicon carbide-based devices
WO2006050403A2 (en) * 2004-10-28 2006-05-11 Nitronex Corporation Gallium nitride/silicon based monolithic microwave integrated circuit
WO2006050403A3 (en) * 2004-10-28 2006-09-14 Nitronex Corp Gallium nitride/silicon based monolithic microwave integrated circuit
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US10680126B2 (en) 2007-04-09 2020-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
KR20110002033A (en) * 2008-03-19 2011-01-06 크리, 인코포레이티드 Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP2011514689A (en) * 2008-03-19 2011-05-06 クリー インコーポレイテッド Integrated device based on nitride and silicon carbide, and method of manufacturing an integrated device based on nitride
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
JP2010109322A (en) * 2008-09-30 2010-05-13 Fuji Electric Systems Co Ltd Gallium nitride semiconductor device and its production method
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver
US8952846B2 (en) 2010-10-15 2015-02-10 Fujitsu Limited Electronic apparatus, method of making the same, and transceiving device

Also Published As

Publication number Publication date
JP3047852B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP3047852B2 (en) Semiconductor device
US10439059B2 (en) High-linearity transistors
Wu et al. Bias dependent microwave performance of AlGaN/GaN MODFET's up to 100 V
US6914273B2 (en) GaN-type enhancement MOSFET using hetero structure
Micovic et al. GaN double heterojunction field effect transistor for microwave and millimeterwave power applications
Micovic et al. GaN/AlGaN high electron mobility transistors with fτ of 110 GHz
JP2001217257A (en) Semiconductor device and its manufacturing method
US7355215B2 (en) Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
Streit et al. High-gain W band pseudomorphic InGaAs power HEMTs
JP2014107566A (en) Group iii-nitride-based transistor with gate dielectric including fluoride- or chloride-based compound
Chen et al. Dual-gate AlGaN/GaN modulation-doped field-effect transistors with cut-off frequencies f T> 60 GHz
Kuzuhara et al. High‐voltage rf operation of AlGaN/GaN heterojunction FETs
JP2000349095A (en) Semiconductor device and its manufacture, power amplifier, and wireless communication device
Ueda et al. GaN transistors for power switching and millimeter-wave applications
Hsin et al. Device characteristics of the GaN/InGaN-doped channel HFETs
JP2000349096A (en) Compound field effect transistor and its manufacture
JP2004241711A (en) Semiconductor device
Ueda et al. Current status on GaN-based RF-power devices
Satoh et al. A 68% PAE power pHEMT for K-band satellite communication system
Kuzuhara et al. GaAs-based high-frequency and high-speed devices
Gaska et al. Novel high power AlGaN/GaN HFETs on SiC substrates
Lu et al. Single-voltage-supply operation of Ga/sub 0.51/In/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As insulated-gate FETs for power application
Ishida et al. 200 W GaAs-based MODFET power amplifier for W-CDMA base stations
Harrouche et al. GaN‐based HEMTs for millimeter‐wave applications
Iwata et al. 7 mm gate width power heterojunction FETs for Li-ion battery operated personal digital cellular phones

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees