JPH10284507A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH10284507A
JPH10284507A JP9086394A JP8639497A JPH10284507A JP H10284507 A JPH10284507 A JP H10284507A JP 9086394 A JP9086394 A JP 9086394A JP 8639497 A JP8639497 A JP 8639497A JP H10284507 A JPH10284507 A JP H10284507A
Authority
JP
Japan
Prior art keywords
formed
high
sic substrate
layer
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9086394A
Other languages
Japanese (ja)
Other versions
JP3047852B2 (en
Inventor
Yasuhito Kumabuchi
Hiroyuki Masato
Toshimichi Ota
順道 太田
宏幸 正戸
康仁 熊渕
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP9086394A priority Critical patent/JP3047852B2/en
Priority claimed from CN 98101070 external-priority patent/CN1131548C/en
Publication of JPH10284507A publication Critical patent/JPH10284507A/en
Application granted granted Critical
Publication of JP3047852B2 publication Critical patent/JP3047852B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of greatly enhancing high-power output of a transmission amplifier part while controlling the temperature-induced deterioration of low noise characteristics of a receiving amplifier to a minimum.
SOLUTION: An Al(x)In(y)Ga(1-x-y)N(0≤x,y≤1) epitaxial film 11 is formed on an SiC substrate 10. A high power output amplifier part 15 is formed within, the SiC substrate 10. A low noise amplifier part 16 is formed in the epitaxial film 11. High power output is realized by forming the high power output amplifier part within the SiC substrate. At the same time, an ultra-high-power output type reception-transmission integrated MMIC is realized by integrally forming the low noise amplifier part utilizing the high electron mobility of GaN material which can be epitaxially grown, on the SiC.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は高周波デバイス、特に高出力特性と低雑音特性が要求される情報通信用送受信アンプの構造に関するものである。 The present invention relates to relates to a structure of a high frequency device, information communication transceiver amplifier, especially a high output characteristics and low noise characteristics are required.

【0002】 [0002]

【従来の技術】近年、小型化・高性能化された携帯電話の普及が急速に進んでいる。 In recent years, the spread of miniaturization and high performance cell phone is rapidly progressing. この進歩に大きく貢献した技術として、高性能な電池の開発と、高性能な電界効果型トランジスタ、特に砒化ガリウム(GaAs)MES As greatly contributed to technology this progress, development of high-performance battery, high-performance field-effect transistor, particularly gallium arsenide (GaAs) MES
FETの開発がある。 There is a development of the FET. デバイスとしてのGaAsMES GaAsMES as a device
FETは、低電圧動作・高利得・高効率・低雑音・低歪み等の高周波特性に関して優れた性能を発揮し、携帯端末の送受信アンプとして活躍している。 FET is excellent performance with respect to high-frequency characteristics such as low voltage operation, high gain, high efficiency, low noise and low distortion are active as receiving amplifier of the portable terminal. 最近では技術の進歩とともに、従来のハイブリッド構成に対して、1チップ上に低雑音受信アンプ部と高出力送信アンプ部との全てを形成する一体型MMIC(Microwave With the advancement of technology in recent years, the conventional hybrid configuration, 1 integrated MMIC to form all of the low-noise receiver amplifier portion and high output transmission amplifier section on a chip (Microwave
Monolithic IC)も開発されている。 Monolithic IC) has also been developed. この構造を有する従来の送受信アンプの構成を、以下図面を参照しながら説明する。 The configuration of a conventional transmitting and receiving amplifier having the structure will be described with reference to the drawings.

【0003】図3は、従来の送受信アンプ一体型MMI [0003] FIG. 3 is a conventional transmission and reception amplifier integrated MMI
Cを示す構成図である。 Is a block diagram showing the C. 図3において、30はGaAs 3, 30 designates a GaAs
基板であり、基板30には、高出力アンプ部35および低雑音アンプ部36とが形成されている。 A substrate, the substrate 30, and the high output amplifier unit 35 and the low noise amplifier unit 36 ​​are formed. 高出力アンプ部35は大きなゲート幅を有するGaAsMESFET High power amplifier 35 GaAsMESFET having a large gate width
で構成され、低雑音アンプ部36は、小さなゲート幅を有するGaAsMESFETで構成されている(例えば、K.FUJIMOTOら、「A high per In the configuration, a low noise amplifier unit 36 ​​is constituted by GaAsMESFET having a small gate width (e.g., K.FUJIMOTO et al., "A high per
formance GaAs MMIC transc formance GaAs MMIC transc
eiver for personal handy eiver for personal handy
phone system(PHS)」、25th E phone system (PHS) ", 25th E
uropean Microwave Confere uropean Microwave Confere
nce、Proceedings、vol. nce, Proceedings, vol. 2、pp. 2, pp.
926−930、1995など)。 Such as 926-930,1995).

【0004】 [0004]

【発明が解決しようとする課題】しかしながら上記のような構成では、GaAs基板30の低い熱伝導率(約0.5W/cmK)の影響で、高出力アンプ部のさらなる高出力化を図ると、基板温度が上昇し、GaAsの高い電子移動度(約6000cm・cm/Vs)を活かした低雑音アンプ部の雑音特性が劣化するという問題が生じるため、数Wから数百Wといった高出力タイプの一体型MMICは、GaAsでは実現不可能であった。 In the [0005] However, as the above-described configuration, the influence of low thermal conductivity of the GaAs substrate 30 (about 0.5 W / cmK), the achieving further higher output of the high output amplifier unit, substrate temperature increases, a problem that noise characteristics of the low-noise amplifier unit which utilizes GaAs high electron mobility (approximately 6000cm · cm / Vs) is degraded occurs, several W several hundred W such high output type integrated MMIC was not feasible in GaAs.

【0005】本発明は上記問題点に鑑み、受信アンプ部の低雑音特性の温度劣化を最小限に抑えつつ、送信アンプ部の飛躍的な高出力化を可能にする半導体装置を提供するものである。 [0005] The present invention has been made in view of the above problems, while minimizing the temperature deterioration of the low noise characteristic of the receiving amplifier unit, it is provided a semiconductor device which enables dramatic higher output of the transmission amplifier section is there.

【0006】 [0006]

【課題を解決するための手段】上記問題点を解決するために本発明では、SiC基板と、前記SiC基板上に形成されたAl(x)In(y)Ga(1−x−y)N In the present invention in order to solve the above problems SUMMARY OF THE INVENTION, and the SiC substrate, the formed SiC substrate Al (x) In (y) Ga (1-x-y) N
(0≦x,y≦1)からなるエピタキシャル膜と、前記SiC基板に形成されたパワーアンプ部と、前記エピタキシャル膜に形成された低雑音アンプ部とを有する半導体装置とする。 To (0 ≦ x, y ≦ 1) and the epitaxial film made of a power amplifier portion which is formed on the SiC substrate, a semiconductor device having a low noise amplifier portion formed in the epitaxial layer.

【0007】また、SiC基板と、前記SiC基板上に形成され、かつSiCに格子整合するAl(x)In Further, SiC substrate and the formed on a SiC substrate, and is lattice-matched to SiC Al (x) In
(y)Ga(1−x−y)N(0≦x,y≦1)からなる第一のエピタキシャル膜と、前記第一のエピタキシャル膜上に形成されたAl(x)In(y)Ga(1−x (Y) Ga (1-x-y) N (0 ≦ x, y ≦ 1) and the first epitaxial film composed of the formed on the first epitaxial layer Al (x) In (y) Ga (1-x
−y)N(0≦x,y≦1)からなる第二のエピタキシャル膜と、前記SiC基板上に形成され、かつ上記第一のエピタキシャル膜をFETのショットキ−層とするパワーアンプ部と、前記第二のエピタキシャル膜上に形成された低雑音アンプ部とを有する半導体装置とする。 A power amplifier unit a layer, - a second epitaxial layer made of -y) N (0 ≦ x, y ≦ 1), wherein formed on a SiC substrate, and the first epitaxial layer of FET Schottky a semiconductor device having a low-noise amplifier section formed on the second epitaxial film.

【0008】本発明は上記の構成により、SiC上にアンプ部を形成し、エピタキシャル膜(たとえばGaN系半導体材料)上に低雑音アンプ部を形成するので、Si The present invention According to the above-described configuration, the amplifier unit is formed on SiC, because it forms a low-noise amplifier section on the epitaxial layer (e.g. GaN-based semiconductor material), Si
Cの高い熱伝導率(約4.9W/cmK)と、GaN系材料の高い電子移動度(約1000cm・cm/Vs) C high thermal conductivity (about 4.9 W / cmK) and a high GaN-based material electron mobility (approximately 1000cm · cm / Vs)
を同時に活かせるため、高出力送受信一体型MMICが可能である。 For Ikaseru simultaneously, we are capable of high output transceiver integrated MMIC.

【0009】また、高出力用材料としてのSiCは、G [0009] In addition, as SiC of a high output for the material, G
aAsよりも約10倍も絶縁破壊電界が大きいため、デバイスの耐圧向上・動作電圧向上を可能にし、上記熱伝導率の効果とともにGaAsの数十倍の高出力化が可能である。 For even breakdown electric field of about 10 times is larger than the GaAs, enabling improvement in breakdown voltage and operation voltage increase of the device, it is possible to high output several tens of times of GaAs with the effect of the thermal conductivity.

【0010】さらに、GaN系材料は、現在単結晶基板が存在しないためにサファイア基板上などに形成されているが、本発明のSiC基板上に形成することも可能であるため、良好な結晶性が得られる。 Furthermore, GaN-based material has been formed such as the current on the sapphire substrate to the single crystal substrate is not present, since it is also possible to form the SiC substrate of the present invention, good crystallinity It is obtained. 加えて、GaN系材料も、SiCと同様にワイドギャップ半導体であるため、使用可能温度が高くかつリーク電流などの温度に対する増加量も小さいため、かなり高い温度域においても低雑音特性を維持できる。 In addition, GaN-based materials also because it is similarly wide gap semiconductor and SiC, since the amount of increase with respect to temperature, such as high and the leakage current usable temperature is also small, can maintain a low noise characteristic at fairly high temperature range.

【0011】 [0011]

【発明の実施の形態】以下本発明の一実施例の電界効果型トランジスタについて、図面を参照しながら説明する。 For field effect transistor of one embodiment of the DETAILED DESCRIPTION OF THE INVENTION Hereinafter the present invention will be described with reference to the drawings.

【0012】(実施の形態1)図1は、本発明の第1の構成による送受信一体MMICを示す構成図である。 [0012] (Embodiment 1) FIG. 1 is a configuration diagram showing a first transceiver integrated MMIC by the configuration of the present invention. 図1において、10はSiC基板である。 1, 10 is a SiC substrate. SiC基板10 SiC substrate 10
上に、Al(x)In(y)Ga(1−x−y)N(0 Above, Al (x) In (y) Ga (1-x-y) N (0
≦x,y≦1)の混晶材料を用いてエピタキシャル膜1 ≦ x, epitaxial film 1 using a mixed crystal material of y ≦ 1)
1が形成されている。 1 is formed. 具体的には、SiC基板10上に、n型GaN層11bからなるチャネル層、およびアンドープAl0.2Ga0.8N層11aからなるショットキー層が形成されている。 Specifically, on the SiC substrate 10, the channel layer made of n-type GaN layer 11b, and a Schottky layer of undoped Al0.2Ga0.8N layer 11a is formed. GaN層11aの上には、ゲート電極16s、ソース電極16g、ドレイン電極16d On the GaN layer 11a, the gate electrode 16s, the source electrode 16g, a drain electrode 16d
を有するMESFETが形成され、このFETが低雑音用のアンプ部16となっており、ゲート幅は小さい。 MESFET having is formed, the FET has become an amplifier 16 for low noise, the gate width is small.

【0013】15は高出力アンプ部で、SiC基板10 [0013] 15 is a high-output amplifier section, SiC substrate 10
内に、n+ソース層、n+ドレイン層、nチャネル層が形成され、大きなゲート幅を有するSiCMESFET Within, n + source layer, n + drain layer, n-channel layer is formed, SiC MESFET having a large gate width
で構成されている。 In is configured. ソース層、ドレイン層、チャネル層は、シリコンのイオン注入により形成している。 Source layer, the drain layer, the channel layer is formed by ion implantation of silicon.

【0014】このように、高出力用のMESFETをS [0014] In this way, the MESFET for high-output S
iC基板に形成することにより、SiCの高い熱伝導率を利用できるので、高出力が可能なアンプ部を形成できる。 By forming the iC substrate, it is possible to utilize the high thermal conductivity of SiC, it can form an amplifier unit capable of high output. また、Al(x)In(y)Ga(1−x−y)N Also, Al (x) In (y) Ga (1-x-y) N
(0≦x,y≦1)であらわされるGaN系半導体にF (0 ≦ x, y ≦ 1) on the GaN based semiconductor represented by F
ETを形成できるため、この材料のもつ高い電子移動度(約1000cm・cm/Vs)を活かせるので、雑音特性のよい低雑音アンプ部を形成できる。 Because it can form the ET, since Ikaseru high electron mobility with of this material (about 1000cm · cm / Vs), it forms a good noise characteristic low noise amplifier unit.

【0015】なお、高出力アンプ部15のSiCMES [0015] It should be noted, SiCMES of the high-output amplifier section 15
FETの替わりに、さらに動作電圧を高くできるSiC SiC can be increased in place of the FET, the further operating voltage
MOSFETを用いることも可能である。 It is also possible to use MOSFET. また、上記低雑音アンプ部のGaN系MESFETの替わりに、さらに電子移動度を高くできるAlGaN/InGaNのヘテロ構造FETを用いることも可能である。 Further, instead of GaN-based MESFET of the low noise amplifier unit, it is also possible to further use a heterostructure FET of AlGaN / InGaN that can increase the electron mobility. このときは、In0.2Ga0.8N層をチャネル層とし、Al0.2G At this time, a channel layer In0.2Ga0.8N layer, Al0.2G
a0.8N層をバリア層とした構造となり、図4のようになる。 Becomes the structure a0.8N layer and the barrier layer, is shown in FIG.

【0016】図4は、低雑音アンプ部46のヘテロ接合FETを含む構造断面図である。 [0016] Figure 4 is a structural cross-sectional view including a heterojunction FET of the low noise amplifier unit 46. 高出力アンプ部15 High-output amplifier section 15
は、図1の構成と同じである。 Is the same as that of FIG. SiC基板10上に、アンドープAl0.2Ga0.8N層41、アンドープI On the SiC substrate 10, an undoped Al0.2Ga0.8N layer 41, an undoped I
n0.1Ga0.9N層42、アンドープAl0.2G n0.1Ga0.9N layer 42, an undoped Al0.2G
a0.8N層43が形成され、ダブルヘテロ構造となっている。 a0.8N layer 43 is formed, it has a double heterostructure. AlGaN43上には、シリコンデルタドープ層を含む、アンドープGaN層44からなるショットキー層が形成され、この層の上に、ゲート電極46g、ソース電極46s、ドレイン電極46dが形成されている。 On AlGaN43 comprises silicon delta-doped layer, is the Schottky layer is formed of undoped GaN layer 44, on top of this layer, the gate electrode 46 g, the source electrode 46s, the drain electrode 46d are formed.

【0017】この構造により、井戸層に電子を閉じ込めることができるので、さらに、移動度を高めたヘテロF [0017] With this structure, it is possible to confine electrons in the well layer, further, hetero F with enhanced mobility
ETとすることができ、雑音特性も向上する。 Can be with ET, also improved noise characteristics.

【0018】(実施の形態2)図2は、本発明の第2の構成による送受信一体MMICを示す構成図である。 [0018] (Embodiment 2) FIG. 2 is a block diagram showing a transceiver integrated MMIC according to a second configuration of the present invention. 図2において、20はSiC基板である。 2, 20 is a SiC substrate. 基板20上にはアンドープAl0.2Ga0.8N層からなる第一エピタキシャル膜21が成長されている。 On the substrate 20 first epitaxial layer 21 made of undoped Al0.2Ga0.8N layer is grown. AlGaN層21は、S AlGaN layer 21, S
iC基板には、格子整合しないが、SiC基板20上に格子整合するように組成を選択した、Al(x)In The iC substrate, but is not lattice-matched, and selecting the composition such that lattice matching on the SiC substrate 20, Al (x) In
(y)Ga(1−x−y)N(0≦x,y≦1)の混晶材料を用いて形成してもよい。 (Y) Ga (1-x-y) N (0 ≦ x, y ≦ 1) may be formed using a mixed crystal material.

【0019】22は第二エピタキシャル膜で、エピタキシャル膜21上に、Al(x)In(y)Ga(1−x [0019] 22 in the second epitaxial layer, on the epitaxial film 21, Al (x) In (y) Ga (1-x
−y)N(0≦x,y≦1)の混晶材料を用いて形成されている。 -y) N (0 ≦ x, and is formed by using a mixed crystal material of y ≦ 1). 具体的には、基板20上に、アンドープGa Specifically, on the substrate 20, an undoped Ga
N層22b、n型Al0.2Ga0.8N層22aが形成されている。 N layer 22b, n-type Al0.2Ga0.8N layer 22a is formed.

【0020】第2のエピタキシャル膜22には、低雑音アンプ部26が形成されている。 [0020] The second epitaxial layer 22, a low noise amplifier unit 26 are formed. 低雑音アンプ26は、 Low-noise amplifier 26,
n型AlGaN層22aをチャネル層としたMESFE MESFE the n-type AlGaN layer 22a and the channel layer
Tであり、小さなゲート幅を有している。 A T, has a smaller gate width.

【0021】一方、高出力アンプ部25にはヘテロ接合FETが形成されており、SiC基板20およびAlG Meanwhile, the high-output amplifier section 25 is formed with a heterojunction FET, SiC substrate 20 and AlG
aN層21からなる第一エピタキシャル膜21内に形成されている。 It is formed on the first epitaxial layer 21 made of aN layer 21. AlGaN21とSiC基板20との界面をキャリアが走行する。 The interface between AlGaN21 and SiC substrate 20 is the carrier travels.

【0022】高出力アンプ部25では、SiCよりもさらに大きなバンドギャップが実現できるAl(x)In [0022] In the high output amplifier unit 25, SiC can be realized larger bandgap further than Al (x) In
(y)Ga(1−x−y)N材料を用いているので、絶縁破壊電圧が改善されている。 (Y) because of the use of Ga (1-x-y) N materials, the dielectric breakdown voltage is improved. またGaN系/SiCヘテロ構造により電子移動度も改善されており、実施形態1に比べて、利得や効率といった高周波パワーデバイス特性が向上している。 Also been improved electron mobility by GaN-based / SiC heterostructure, as compared with the embodiment 1, the high frequency power device characteristics such as the gain and efficiency is improved.

【0023】さらに実施形態1と同様に、低雑音アンプ部のGaN系MESFETの替わりに、さらに電子移動度を高くできるAlGaN/InGaN等のヘテロ構造FETを用いることも可能である。 [0023] Similar to the further embodiment 1, instead of the GaN-based MESFET of the low-noise amplifier unit, it is also possible to further use a heterostructure FET of AlGaN / InGaN or the like which can enhance the electron mobility.

【0024】 [0024]

【発明の効果】以上のように本発明による半導体装置は、GaAsの約10倍の高い熱伝導率と絶縁破壊電圧を有するSiC基板に高出力アンプ部を形成することによって、数十倍の高出力化を実現し、同時にSiC上にエピタキシャル成長可能なGaN系材料の高い電子移動度を活かした低雑音アンプ部を一体形成することによって、従来不可能であった超高出力型の送受信一体MMI The semiconductor device according to the present invention as described above, according to the present invention, by forming a high-output amplifier section to SiC substrate having a breakdown voltage of about 10 times higher thermal conductivity of GaAs, several tens of times higher It achieves output, at the same time by integrally forming a low noise amplifier unit which utilizes a high electron mobility can be epitaxially grown GaN material on SiC, transceiver integrated MMI ultra high-output has been conventionally impossible
Cを実現している。 It is realized C. 特に低雑音アンプ部をワイドギャップ半導体であるGaN系材料での実現により、高い使用環境温度においても低雑音特性が発揮されるので、今後さらに需要が拡大するマルチメディア社会の通信用デバイスのニーズを担うことができる。 In particular the realization of a low noise amplifier unit in GaN-based material is a wide-gap semiconductor, the low noise characteristic is exhibited even at high ambient temperature, the needs of the communication device of the multimedia society to expand further demand in the future it can play.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の送受信一体MMICの構成断面図 Configuration sectional view of a transceiver integrated MMIC of the present invention; FIG

【図2】本発明の送受信一体MMICの構成断面図 Configuration sectional view of a transceiver integrated MMIC of the present invention; FIG

【図3】従来のMMICの構成断面図 [Figure 3] configuration sectional view of a conventional MMIC

【図4】本発明の送受信一体MMICの構成断面図 Configuration sectional view of a transceiver integrated MMIC of the present invention; FIG

【符号の説明】 DESCRIPTION OF SYMBOLS

10,20 SiC基板 11 エピタキシャル膜 15,25,35 高出力アンプ部 16,26,36 低雑音アンプ部 21 第一エピタキシャル膜 22 第二エピタキシャル膜 30 GaAs基板 10, 20 SiC substrate 11 the epitaxial layer 15, 25, 35 high-power amplifier unit 16, 26, 36 low-noise amplifier unit 21 first epitaxial layer 22 second epitaxial layer 30 GaAs substrate

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 SiC基板と、 前記SiC基板上に形成されたAl(x)In(y)G 1. A SiC substrate and, formed in said SiC substrate Al (x) In (y) G
    a(1−x−y)N(0≦x,y≦1)からなるエピタキシャル膜と、 前記SiC基板に形成されたパワーアンプ部と、 前記エピタキシャル膜に形成された低雑音アンプ部とを有し、前記パワーアンプ部と、前記低雑音アンプ部とが同一基板上に形成されている半導体装置。 Yes an epitaxial film composed of a (1-x-y) N (0 ≦ x, y ≦ 1), a power amplifier portion which is formed on the SiC substrate, and a low noise amplifier portion formed in the epitaxial layer and, a semiconductor device and the power amplifier part, and the said low-noise amplifier section are formed on the same substrate.
  2. 【請求項2】 エピタキシャル膜に、AlGaN障壁層とInGaN井戸層を含む低雑音アンプ部とする請求項1に記載の半導体装置。 To 2. The epitaxial film, a semiconductor device according to claim 1, the low noise amplifier unit comprising an AlGaN barrier layer and the InGaN well layer.
  3. 【請求項3】 SiC基板と、 前記SiC基板上に形成され、かつSiCに格子整合するAl(x)In(y)Ga(1−x−y)N(0≦ 3. A SiC substrate, wherein formed on the SiC substrate, and Al (x) In (y) Ga (1-x-y) N (0 ≦ lattice-matched to SiC
    x,y≦1)からなる第一のエピタキシャル膜と、 前記第一のエピタキシャル膜上に形成されたAl(x) x, y ≦ 1) and the first epitaxial film made of the first epitaxial film on the formed Al (x)
    In(y)Ga(1−x−y)N(0≦x,y≦1)からなる第二のエピタキシャル膜と、 前記SiC基板上に形成され、かつ上記第一のエピタキシャル膜をFETのショットキ−層とするパワーアンプ部と、 前記第二のエピタキシャル膜上に形成された低雑音アンプ部とを有し、 前記パワーアンプ部と、前記低雑音アンプ部とが同一基板上に形成されている半導体装置。 In (y) Ga (1-x-y) N (0 ≦ x, y ≦ 1) and a second epitaxial film composed of, formed on the SiC substrate, and the first epitaxial film FET Schottky - a power amplifier unit to the layer, and a low-noise amplifier section formed on the second epitaxial layer, and the power amplifier part, and the said low-noise amplifier section are formed on the same substrate semiconductor device.
JP9086394A 1997-04-04 1997-04-04 Semiconductor device Expired - Fee Related JP3047852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9086394A JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9086394A JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device
CN 98101070 CN1131548C (en) 1997-04-04 1998-04-01 Semiconductor device
US09/000,544 US6110813A (en) 1997-04-04 1998-04-03 Method for forming an ohmic electrode
US09/400,192 US6274889B1 (en) 1997-04-04 1999-09-21 Method for forming ohmic electrode, and semiconductor device

Publications (2)

Publication Number Publication Date
JPH10284507A true JPH10284507A (en) 1998-10-23
JP3047852B2 JP3047852B2 (en) 2000-06-05

Family

ID=13885668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9086394A Expired - Fee Related JP3047852B2 (en) 1997-04-04 1997-04-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3047852B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282091A (en) * 2000-06-27 2004-10-07 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005526384A (en) * 2002-03-25 2005-09-02 クリー インコーポレイテッドCree Inc. Doped iii-v nitride material, as well as microelectronic devices and device precursor structures comprising it
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
WO2006050403A2 (en) * 2004-10-28 2006-05-11 Nitronex Corporation Gallium nitride/silicon based monolithic microwave integrated circuit
JP2010109322A (en) * 2008-09-30 2010-05-13 Fuji Electric Systems Co Ltd Gallium nitride semiconductor device and its production method
KR20110002033A (en) * 2008-03-19 2011-01-06 크리, 인코포레이티드 Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver
US8502235B2 (en) 2003-03-03 2013-08-06 Cree, Inc. Integrated nitride and silicon carbide-based devices
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589001B2 (en) 1999-03-17 2009-09-15 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7115486B2 (en) 1999-03-17 2006-10-03 Mitsubishi Cable Industries Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7504324B2 (en) 1999-03-17 2009-03-17 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
JP2004282091A (en) * 2000-06-27 2004-10-07 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005526384A (en) * 2002-03-25 2005-09-02 クリー インコーポレイテッドCree Inc. Doped iii-v nitride material, as well as microelectronic devices and device precursor structures comprising it
JP4916090B2 (en) * 2002-03-25 2012-04-11 クリー インコーポレイテッドCree Inc. Doped III-V nitride materials and microelectronic devices and device precursor structures containing the same
US8502235B2 (en) 2003-03-03 2013-08-06 Cree, Inc. Integrated nitride and silicon carbide-based devices
WO2006050403A3 (en) * 2004-10-28 2006-09-14 Nitronex Corp Gallium nitride/silicon based monolithic microwave integrated circuit
WO2006050403A2 (en) * 2004-10-28 2006-05-11 Nitronex Corporation Gallium nitride/silicon based monolithic microwave integrated circuit
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
KR20110002033A (en) * 2008-03-19 2011-01-06 크리, 인코포레이티드 Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP2011514689A (en) * 2008-03-19 2011-05-06 クリー インコーポレイテッドCree Inc. Integrated device based on nitride and silicon carbide, and method of manufacturing an integrated device based on nitride
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
JP2010109322A (en) * 2008-09-30 2010-05-13 Fuji Electric Systems Co Ltd Gallium nitride semiconductor device and its production method
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver
US8952846B2 (en) 2010-10-15 2015-02-10 Fujitsu Limited Electronic apparatus, method of making the same, and transceiving device

Also Published As

Publication number Publication date
JP3047852B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
Mishra et al. AlGaN/GaN HEMTs-an overview of device operation and applications
Kunihiro et al. Experimental evaluation of impact ionization coefficients in GaN
US6555851B2 (en) High electron mobility transistor
JP4445257B2 (en) AlGaN / GaN high electron mobility transistor having gate contact on GaN-based cap segment and method for fabricating the same
US6274889B1 (en) Method for forming ohmic electrode, and semiconductor device
EP1638147B1 (en) III-V nitride semiconductor device and method for fabricating the same
JP3372470B2 (en) Nitride iii-v compound semiconductor device
US7816707B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
US7956383B2 (en) Field effect transistor
US7875914B2 (en) Switch mode power amplifier using mis-HEMT with field plate extension
US8513672B2 (en) Wafer precursor prepared for group III nitride epitaxial growth on a composite substrate having diamond and silicon carbide layers, and semiconductor laser formed thereon
US7161194B2 (en) High power density and/or linearity transistors
KR100441469B1 (en) High speed ge channel heterostructures for field effect devices
Mishra et al. GaN-based RF power devices and amplifiers
US6429467B1 (en) Heterojunction field effect transistor
Moon et al. Gate-recessed AlGaN-GaN HEMTs for high-performance millimeter-wave applications
US7863649B2 (en) Nitride semiconductor device and method for fabricating the same
Simin et al. Large periphery high-power AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors on SiC with oxide-bridging
US7544963B2 (en) Binary group III-nitride based high electron mobility transistors
US7105868B2 (en) High-electron mobility transistor with zinc oxide
JP2007505501A (en) Wide band gap transistor device with field plate
Wu et al. Very-high power density AlGaN/GaN HEMTs
US20090121775A1 (en) Transistor and method for operating the same
JP5292716B2 (en) Compound semiconductor device
US20040021152A1 (en) Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees