JPH10282000A - Enzyme activity measurement - Google Patents

Enzyme activity measurement

Info

Publication number
JPH10282000A
JPH10282000A JP9341097A JP9341097A JPH10282000A JP H10282000 A JPH10282000 A JP H10282000A JP 9341097 A JP9341097 A JP 9341097A JP 9341097 A JP9341097 A JP 9341097A JP H10282000 A JPH10282000 A JP H10282000A
Authority
JP
Japan
Prior art keywords
absorbance
enzyme activity
absorbancy
points
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9341097A
Other languages
Japanese (ja)
Inventor
Masaru Shichiji
優 七字
Taizo Yokose
泰三 横瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP9341097A priority Critical patent/JPH10282000A/en
Publication of JPH10282000A publication Critical patent/JPH10282000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect and reject an abnormal value for attaining accurate measured results by sequentially-calculating an gradient between respective photometry points in reacting process to obtain respective relative values, and comparing them with preset permissible values for confirmation of the linearity of a change in an absorption value. SOLUTION: In this enzyme activity measurement, such as GOT, which permits enzyme to react in a container disposed on a rotating disc and obtains the enzyme activity by the change of absorbancy, absorbancy measuring is conducted at a prescribed number of photometry points of a reaction time course. Gradient (absorbancy variance per unit-hour) is computed sequentially from the photometry point lm where calculation preset as analysis parameter is started, through points lm+1 , lm+2 ,..., the point ln where the calculation is completed. A relative value is calculated by a prescribed method for respective calculated gradients, and comparative discrimination with permissible value preset arbitrarily is conducted. By rejecting the absorbancy at the point which is discriminated to be abnormal compared with the permissible value, and obtaining absorbancy changing speed by the method of least squares from remaining data, it is possible to calculate the enzyme activity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酵素活性測定法に関
する。
[0001] The present invention relates to a method for measuring enzyme activity.

【0002】[0002]

【従来の技術】生化学検査における酵素活性測定法は、
特開昭57−33956 号,特開昭58−4918号公報などで示さ
れるように、目的の酵素に関与する一連の反応における
反応物質の一種の減少量を吸光度の減少としてとらえて
酵素の活性を求める吸光度減少法と、目的の酵素に関与
する一連の反応における反応物質の一種の増加量を吸光
度の減少としてとらえて酵素の活性を求める吸光度増加
法に大別される。減少法における測定系をGOTを例に
して測定法の原理を以下に説明する。
2. Description of the Related Art Enzyme activity measurement methods in biochemical tests are based on:
As shown in JP-A-57-33956 and JP-A-58-4918, the activity of an enzyme is determined by reducing the amount of one of the reactants in a series of reactions involving the target enzyme as a decrease in absorbance. And a method of increasing the absorbance of an enzyme by determining the activity of the enzyme by regarding the increase in a kind of reactant in a series of reactions involving the target enzyme as a decrease in the absorbance. The principle of the measurement method will be described below by taking GOT as an example of the measurement system in the reduction method.

【0003】GOTの測定原理 [0003] GOT measurement principle

【0004】すなわち、GOTの活性を求めるための吸
光度減少法の測定原理は、反応物質の一連であるNAD
Hの減少量を340nmでの吸光度減少法として測定
し、その減少速度から目的酵素の活性値を求める。次に
実際に測定した例を図2のGOTの反応タイムコースで説
明する。被検試料および試薬を分注した光学セルを兼ね
た反応容器が回転して光度計の光軸を通過する度に、主
波長340nm,副波長405nmの吸光度を計測す
る。続いて分析パラメータで設定した測光ポイント(l
〜m)の中で最小二乗法により傾き(NADH→NAD
+ に変化する速度:単位時間当たりの吸光度の変化量)
を求め、その値に検量係数を乗じてGOTの活性値を求
める。すなわち、GOTの例のように酵素活性測定法は
吸光度の変化する速度を最小二乗法により求める方法の
ため、以下のようなチェック機能が設けられている。一
つは測光ポイント間の最初の数ポイント傾きと最後の数
ポイントの傾きを比較し、吸光度の減少あるいは増加反
応の速度が直線的に進んでいるかを確認する機能であ
り、もう一つは吸光度の限界値を設定して酵素活性が高
い場合に反応が飽和状態に達しているかを確認する機能
である。
[0004] That is, the measurement principle of the absorbance reduction method for determining the activity of GOT is based on a series of reactants, NAD.
The amount of decrease in H is measured as a method of decreasing absorbance at 340 nm, and the activity value of the target enzyme is determined from the decrease rate. Next, an example of actual measurement will be described with reference to a GOT reaction time course in FIG. Each time the reaction container serving as the optical cell into which the test sample and the reagent are dispensed rotates and passes through the optical axis of the photometer, the absorbance at the main wavelength of 340 nm and the sub wavelength of 405 nm is measured. Subsequently, the photometry point (l
~ M) by the method of least squares (NADH → NAD)
Rate of change to + : change in absorbance per unit time)
, And the value is multiplied by a calibration coefficient to determine the GOT activity value. That is, as in the case of the GOT, the enzyme activity measurement method is a method for determining the rate of change in absorbance by the least squares method, and thus has the following check function. One is a function that compares the slope of the first few points and the slope of the last few points between photometric points, and checks whether the rate of decrease or increase in absorbance is progressing linearly. Is a function to check whether the reaction has reached a saturated state when the enzyme activity is high by setting the limit value of

【0005】この方法によってチェックしたにもかかわ
らず不具合な測定結果が発生した一例を図3に示す。図
3(a)および図3(b)は反応液中にごみが入り1ポ
イントだけ吸光度が高くなった時のタイムコースの例で
あり、図3(c)は光源であるハロゲンランプが劣化し
吸光度がばらついている時のタイムコースの例である。
(a)は装置の直線性のチェックによりデータアラーム
が生じるが、(b)および(c)の場合には、明らかに
異常なタイムコースであるが正常と判断し間違った測定
結果を出力してしまった例である。これは従来技術にお
ける反応直線性のチェックが測光ポイントの最初の数ポ
イント傾きと最後の数ポイントの傾きしか確認してして
いなかったために生じたと言える。また、チェックする
ときの傾きは最小二乗法により求めているため吸光度の
ばらつきかたによって(c)の例のように異常であるに
もかかわらず正常と判断してしまう。それゆえ、不正確
な測定結果を招いた。
[0005] Fig. 3 shows an example in which a defective measurement result is generated despite checking by this method. 3 (a) and 3 (b) are examples of a time course when dust enters the reaction solution and the absorbance increases only at one point, and FIG. 3 (c) shows the deterioration of the halogen lamp as the light source. It is an example of a time course when the absorbance varies.
In (a), a data alarm is generated by checking the linearity of the device, but in (b) and (c), although the time course is clearly abnormal, it is determined to be normal and an incorrect measurement result is output. This is an example. This can be said to have occurred because the check of the linearity of the reaction in the prior art only checked the slope of the first few points and the slope of the last few points of the photometry point. In addition, since the slope at the time of checking is obtained by the least square method, it is determined that the light is normal despite abnormalities as in the example of FIG. Therefore, it resulted in inaccurate measurement results.

【0006】[0006]

【発明が解決しようとする課題】すなわち、従来の酵素
活性測定法では、測光ポイント間の最初の数ポイント傾
きと最後の数ポイントの傾きを比較して吸光度の減少あ
るいは増加反応の速度が直線的に進んでいるかを確認し
ていたため、測光ポイント間の吸光度の異常を的確に検
出できていなかった。そのため、不正確な測定結果を招
いた。
That is, in the conventional enzyme activity measurement method, the slope of the first several points between the photometric points and the slope of the last several points are compared, and the rate of decrease or increase in the absorbance is linear. It was not possible to accurately detect abnormalities in absorbance between photometric points because it was confirmed whether or not the process had proceeded. This resulted in inaccurate measurement results.

【0007】本発明の目的は吸光度の減少あるいは増加
反応の速度が直線的になっているかどうかを的確に確認
することで、異常な吸光度を検出,棄却することで正し
い測定結果を得、生化学検査の作業効率の向上を図るこ
とにある。
It is an object of the present invention to accurately confirm whether the rate of decrease or increase in absorbance is linear, to detect and reject abnormal absorbance to obtain correct measurement results, An object of the present invention is to improve inspection work efficiency.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は以下の技術手段を用いる。
In order to achieve the above object, the present invention uses the following technical means.

【0009】(1)各測光ポイント間(lm 〜ln )で
の傾きを、lm とlm+1 の傾き,lmとlm+2 の傾き,
…,lm とln の傾き,lm+1 とlm+2 の傾き,…,l
m+1とln の傾き、と順次演算する機能を設ける。
[0009] (1) the inclination of between the metering point (l m to l n), the slope of l m and l m + 1, the slope of l m and l m + 2,
..., the slope between l m and l n, the slope between l m + 1 and l m + 2 , ..., l
the inclination of the m + 1 and l n, and sequentially providing the function of calculating.

【0010】(2)それぞれ演算した傾きについて相対
値を演算する機能を設け、任意に設定した許容値と比較
判定を行う。
(2) A function of calculating a relative value for each calculated slope is provided, and a comparison is made with an arbitrarily set allowable value.

【0011】(3)(2)によって異常が検出された場
合に、その測光ポイントにおける吸光度を棄却する機能
を設ける。
(3) When an abnormality is detected by (2), a function is provided for rejecting the absorbance at the photometry point.

【0012】(4)正常な測光ポイントにおける吸光度
が、任意に設定した測光ポイント数以下の場合にデータ
アラームを出力する機能を設ける。
(4) A function is provided for outputting a data alarm when the absorbance at a normal photometry point is equal to or less than an arbitrarily set number of photometry points.

【0013】(5)正常な測光ポイントにおける吸光度
が、任意に設定した測光ポイント数以上の場合に最小二
乗法により傾きを求め、目的酵素の酵素活性値を演算す
る機能を設ける。
(5) When the absorbance at a normal photometry point is equal to or more than an arbitrarily set number of photometry points, a function is provided for calculating a slope by the least squares method and calculating an enzyme activity value of a target enzyme.

【0014】[0014]

【発明の実施の形態】本発明を用いた自動化学分析装置
の一実施例を図1に示す。本装置は複数のサンプルカッ
プ1が架設できるサンプルディスク2,試料を所定量採
取するサンプルプローブ3を備えたサンプリング機構
4,複数の試薬分注を行う試薬ピペッティング機構5
a,5bおよび試薬ディスク6a,6b,複数の直接測
光用反応容器7を保持した反応ディスク8,攪拌機構9
a,9b,反応容器洗浄機構10,光度計11,機構系
全体の制御を行わせるための中央処理装置(マイクロコ
ンピュータ)12などを主要に構成されている。複数の
反応容器を保持した反応ディスク8は、1サイクル毎に
半回転+1反応容器を回転させ一時停止する動作の制御
が行われる。すなわち、1サイクル毎の停止時に反応デ
ィスク8の反応容器7は反時計方向に1反応容器分ずつ
に進行した形で停止する。光度計11は複数の検知器を
有する多波長光度計が用いられており、光源ランプ13
と相対し反応ディスク8が回転状態にあるとき反応容器
7の列が光源ランプ13からの光束14を通過するよう
に構成されている。光束14の位置と試料吐出位置15
の間には反応容器洗浄機構10が配備されている。さら
に波長を選択するマルチプレクサ16,対数変換増幅器
17,A/D変換器18,プリンタ19,CRT20,
試薬分注機構駆動回路21などから構成され、これらは
いずれもインターフェース22を経て中央処理装置12
に接続されている。この中央処理装置は機構系全体の制
御を含めた装置全体の制御と濃度あるいは酵素活性値演
算などのデータ処理も行う。この構成における動作原理
を以下に説明する。
FIG. 1 shows an embodiment of an automatic chemical analyzer using the present invention. The apparatus comprises a sample disk 2 on which a plurality of sample cups 1 can be mounted, a sampling mechanism 4 having a sample probe 3 for collecting a predetermined amount of sample, and a reagent pipetting mechanism 5 for dispensing a plurality of reagents.
a, 5b, reagent disks 6a, 6b, a reaction disk 8 holding a plurality of direct photometric reaction vessels 7, a stirring mechanism 9
a, 9b, a reaction vessel cleaning mechanism 10, a photometer 11, a central processing unit (microcomputer) 12 for controlling the entire mechanical system, and the like. The reaction disk 8 holding a plurality of reaction vessels is controlled to perform a half-rotation + 1 rotation of the reaction vessel every cycle to temporarily stop the reaction vessel. That is, at the time of stopping for each cycle, the reaction vessels 7 of the reaction disk 8 are stopped in such a manner that they have advanced counterclockwise one reaction vessel at a time. As the photometer 11, a multi-wavelength photometer having a plurality of detectors is used.
When the reaction disk 8 is in a rotating state, the rows of the reaction vessels 7 pass through the light beam 14 from the light source lamp 13. Position of light beam 14 and sample discharge position 15
Between them, a reaction vessel cleaning mechanism 10 is provided. Further, a multiplexer 16 for selecting a wavelength, a logarithmic conversion amplifier 17, an A / D converter 18, a printer 19, a CRT 20,
It comprises a reagent dispensing mechanism driving circuit 21 and the like, all of which are connected via an interface 22 to the central processing unit 12.
It is connected to the. This central processing unit also performs control of the entire apparatus including control of the entire mechanical system and data processing such as concentration or enzyme activity value calculation. The operation principle of this configuration will be described below.

【0015】操作パネル23にあるスタートスイッチを
押すと反応容器洗浄機構10により反応容器7の洗浄が
開始され、さらに水ブランクの測定が行われる。この値
は反応容器7で以後測定される吸光度の基準となる。反
応ディスク8の1サイクルの動作、すなわち、反回転+
1反応容器をさせて一時停止する動作の繰り返しにより
試料吐出位置15まで進むと、サンプルカップ1はサン
プリング位置に移動する。同様に二つの試薬ディスク6
a,6bも試薬ピペッティング位置に移動する。この間
にサンプリング機構4が動作し、サンプルカップ1か
ら、例えば分析項目Aの試料量をサンプルプローブ3で
吸引しその後、反応容器7に吐出する。一方、試薬ピペ
ッティング機構はサンプリング機構が反応容器7に試料
の吐出を行っているとき、試薬ピペッティング機構5a
が動作を開始し試薬ディスク6aに架設した分析項目A
の第一試薬を試薬プローブ24aによって吸引する。つ
いで試薬プローブ24aは反応容器7上に移動して吸引
した試薬を吐出した後、プローブ洗浄槽でプローブの内
壁と外壁が洗浄され、次の分析項目Bの第一試薬分注に
備える。第一試薬添加後に測光が開始される。測光は反
応ディスク8の回転時、反応容器7が光束14を横切っ
たときに行われる。第一試薬が添加されてから反応ディ
スクが2回転+2反応容器分回転すると攪拌機構8aが
作動して試料と試薬を攪拌する。反応容器7が試料分注
位置から25回転+25反応容器分回転した位置、すな
わち、第二試薬分注位置まで進むと第二試薬が試薬プロ
ーブ24bから添加され、その後、攪拌機構8bにより攪
拌が行われる。反応ディスク8によって反応容器7は次
々と光束14を横切りその都度吸光度が測定される。こ
れらの吸光度は10分の反応時間において計50回の測
光が行われる。測光を終えた反応容器7は反応容器洗浄
機構10より洗浄され次の試料の測定に備える。測定し
た吸光度は中央処理装置12で濃度あるいは酵素活性値
に換算されプリンタ19から分析結果が出力される。
When the start switch on the operation panel 23 is pressed, the washing of the reaction vessel 7 is started by the reaction vessel washing mechanism 10, and the water blank is measured. This value serves as a reference for the absorbance measured in the reaction vessel 7 thereafter. One cycle of operation of the reaction disk 8, ie, anti-rotation +
When the process proceeds to the sample discharge position 15 by repeating the operation of causing one reaction container to temporarily stop, the sample cup 1 moves to the sampling position. Similarly, two reagent disks 6
a and 6b also move to the reagent pipetting position. During this time, the sampling mechanism 4 operates, and for example, the sample amount of the analysis item A is sucked from the sample cup 1 by the sample probe 3 and then discharged to the reaction container 7. On the other hand, when the sampling mechanism is discharging the sample to the reaction container 7, the reagent pipetting mechanism 5a
Starts operation and analysis item A installed on reagent disk 6a
Is aspirated by the reagent probe 24a. Next, the reagent probe 24a moves onto the reaction container 7 and discharges the sucked reagent. Then, the inner wall and the outer wall of the probe are washed in the probe washing tank to prepare for the next reagent B of the next analysis item B. Photometry is started after the addition of the first reagent. The photometry is performed when the reaction disk 8 rotates and the reaction container 7 crosses the light flux 14. When the reaction disk rotates 2 rotations + 2 reaction vessels after the addition of the first reagent, the stirring mechanism 8a operates to stir the sample and the reagent. When the reaction container 7 has been rotated from the sample dispensing position by 25 rotations + 25 reaction containers, that is, to the second reagent dispensing position, the second reagent is added from the reagent probe 24b, and thereafter, stirring is performed by the stirring mechanism 8b. Will be The reaction disk 8 traverses the light beam 14 one after another by means of the reaction disk 8 and the absorbance is measured each time. These absorbances are measured 50 times in total in a reaction time of 10 minutes. After the photometry, the reaction vessel 7 is washed by the reaction vessel washing mechanism 10 and is ready for the next sample measurement. The measured absorbance is converted into a concentration or an enzyme activity value by the central processing unit 12, and the analysis result is output from the printer 19.

【0016】この動作で、吸光度を計測し、図4に示す
例のように分析パラメータとして設定した演算を開始す
る測光ポイントlm からlm+1 ,lm+2 ,lm+3 ,…
…,演算を終了する測光ポイントln 間で順次傾き(単
位時間当たりの吸光度の変化量)を演算する。まず開始
ポイントのlポイントとlm+1 ポイントの傾きを演
算しΔA1を求める、続いてlm とlm+2 (ΔA2),
m とlm+3 (ΔA3),lm とlm+4 (ΔA4),
…,lm とln (ΔAn)の傾きを演算する。さらにl
m+1 とlm+2(ΔB1),lm+1 とlm+3(ΔB2),l
m+1 とlm+4(ΔB3),…,lm+1 とln (ΔXn)の
傾きを演算する。すなわち、lm ポイントからln ポイ
ントまで順々に傾きを算出する。続いてそれぞれ演算し
た傾きについて相対値(ΔA2/ΔA1,ΔA3/ΔA
1,ΔA4/ΔA1,…ΔAn/ΔA1,…,ΔXn/
ΔX1)を演算し、任意に設定した許容値と比較判定を
行う。GOTの測光ポイント30〜40で行った実施例
を表1に示す。
[0016] In this operation, the absorbance is measured, l m + 1 from the metering point l m to initiate operation set as analysis parameter as in the example shown in FIG. 4, l m + 2, l m + 3, ...
.., The slope (the amount of change in absorbance per unit time) is sequentially calculated between the photometric points l n at which the calculation ends. First calculating the gradient of l m points and l m + 1 points of the starting point seeking .DELTA.A1, followed by l m and l m + 2 (ΔA2),
l m and l m + 3 (ΔA3), l m and l m + 4 (ΔA4),
.., And the slope of l m and l n (ΔAn) is calculated. Further l
m + 1 and l m + 2 (ΔB1), l m + 1 and l m + 3 (ΔB2), l
The slopes of m + 1 and l m + 4 (ΔB3),..., l m + 1 and l n (ΔXn) are calculated. That is, calculates an inclination in sequence from l m point to l n points. Subsequently, relative values (ΔA2 / ΔA1, ΔA3 / ΔA) are calculated for the calculated slopes.
1, ΔA4 / ΔA1,... ΔAn / ΔA1,.
ΔX1) is calculated, and a comparison is made with an arbitrarily set allowable value. Table 1 shows examples performed at photometering points 30 to 40 of the GOT.

【0017】[0017]

【表1】 [Table 1]

【0018】相対比の許容値を仮に0.8〜1.2とする
と37ポイント,39ポイントが異常であることが判断
できる。それから、37ポイント,39ポイントの吸光
度を棄却して最小二乗法により傾き(NADH→NAD
+ に変化する速度)を求め、その値に検量係数を乗じて
GOTの活性値を求める。本発明により、従来検出でき
なかった異常な吸光度を検出し、かつ、その吸光度を棄
却することにより、正しい測定結果を得られ、生化学検
査の作業効率の向上が図ることができる。
If the allowable value of the relative ratio is assumed to be 0.8 to 1.2, it can be determined that 37 points and 39 points are abnormal. Then, the absorbance at 37 points and 39 points is rejected, and the slope (NADH → NAD) is calculated by the least squares method.
( Rate of change to + ) is obtained, and the value is multiplied by a calibration coefficient to obtain the GOT activity value. According to the present invention, by detecting an abnormal absorbance which cannot be detected conventionally and rejecting the absorbance, a correct measurement result can be obtained and the working efficiency of a biochemical test can be improved.

【0019】[0019]

【発明の効果】以上のように、反応過程上の各測光ポイ
ント間における傾きを順次求め、予め設定した許容値と
比較判定を行うことにより、異常な吸光度を検出し、か
つ、異常な吸光度が検出された場合にその測光ポイント
の吸光度を棄却して吸光度の変化量を演算することによ
り、正しい測定結果を得られ、生化学検査の作業効率の
向上が図ることができる。
As described above, the slope between each photometric point in the reaction process is sequentially obtained, and the comparison with a predetermined allowable value is performed to detect the abnormal absorbance and to detect the abnormal absorbance. When the detection is detected, the absorbance at the photometric point is rejected and the amount of change in the absorbance is calculated, so that a correct measurement result can be obtained and the work efficiency of the biochemical test can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における自動化学分析装置の一実施例を
示す説明図。
FIG. 1 is an explanatory view showing one embodiment of an automatic chemical analyzer according to the present invention.

【図2】GOTにおける例を示す特性図。FIG. 2 is a characteristic diagram showing an example in GOT.

【図3】GOTにおける不具合例を示す特性図。FIG. 3 is a characteristic diagram showing an example of a failure in GOT.

【図4】本発明における傾きの求め方の一例を示す説明
図。
FIG. 4 is an explanatory diagram showing an example of a method of obtaining a tilt in the present invention.

【符号の説明】[Explanation of symbols]

1…サンプルカップ、2…サンプルディスク、3…サン
プルプローブ、4…サンプリング機構、5…試薬ピペッ
ティング機構、6…試薬ディスク。
DESCRIPTION OF SYMBOLS 1 ... Sample cup, 2 ... Sample disk, 3 ... Sample probe, 4 ... Sampling mechanism, 5 ... Reagent pipetting mechanism, 6 ... Reagent disk.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円形のディスクに配置した複数個の反応容
器中に検体と試薬を分注して反応液を形成し、上記ディ
スクが回転して上記反応容器が光度計の光路を通過する
のに伴って上記反応液の吸光度を測定する自動化学分析
装置において、上記検体の反応過程上の各測光ポイント
間における吸光度の変化量を順次求め、予め設定した許
容値と比較判定を行い、異常な吸光度を検出することを
特徴とする酵素活性測定法。
A reaction solution is formed by dispensing a sample and a reagent into a plurality of reaction vessels arranged on a circular disk, and the disk rotates to pass the reaction vessel through an optical path of a photometer. In an automatic chemical analyzer that measures the absorbance of the reaction solution in accordance with the above, the amount of change in absorbance between each photometric point in the reaction process of the sample is sequentially obtained, and a comparison with a preset allowable value is performed, and abnormal determination is performed. A method for measuring enzyme activity, comprising detecting absorbance.
【請求項2】請求項1において、異常な吸光度が検出さ
れた場合にその吸光度を棄却する機能を設けて、残りの
吸光度から傾きを求め、酵素活性を求める酵素活性測定
法。
2. An enzyme activity measuring method according to claim 1, wherein a function is provided for rejecting an abnormal absorbance when an abnormal absorbance is detected, and a slope is determined from the remaining absorbance to determine an enzyme activity.
JP9341097A 1997-04-11 1997-04-11 Enzyme activity measurement Pending JPH10282000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9341097A JPH10282000A (en) 1997-04-11 1997-04-11 Enzyme activity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9341097A JPH10282000A (en) 1997-04-11 1997-04-11 Enzyme activity measurement

Publications (1)

Publication Number Publication Date
JPH10282000A true JPH10282000A (en) 1998-10-23

Family

ID=14081537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9341097A Pending JPH10282000A (en) 1997-04-11 1997-04-11 Enzyme activity measurement

Country Status (1)

Country Link
JP (1) JPH10282000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095754A (en) * 2013-01-25 2014-08-04 삼성전자주식회사 Test apparatus of fluidic sample and test method of fluidic sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095754A (en) * 2013-01-25 2014-08-04 삼성전자주식회사 Test apparatus of fluidic sample and test method of fluidic sample

Similar Documents

Publication Publication Date Title
EP0355849B1 (en) Method and apparatus for automatic measurement of fluorescence
US5478750A (en) Methods for photometric analysis
US5083283A (en) Method of determining calibration curve and apparatus using calibaration curve
US4252536A (en) Method and system for measuring blood coagulation time
JP4006203B2 (en) Precision analysis method for automatic analyzer and chemical analysis method
US7842509B2 (en) Blood analyzer and blood analyzing method
JPH07280814A (en) Automatic specimen inspection system
EP0087466B1 (en) Method and apparatus for detecting sample fluid
US20090017544A1 (en) Automatic analyzer and analysis method using the same
JPH07119768B2 (en) Dicecrete automatic analysis method
JPH04130248A (en) Biochemical automatic analyzer
US7169357B2 (en) Automatic chemical analyzer
JP2000105239A (en) Biochemical automatic analyzer
JPS61218949A (en) Automatic analyzing instrument
JP5373573B2 (en) Automatic analyzer and light source lamp replacement method for automatic analyzer
JP4825442B2 (en) Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer
JPH1090275A (en) Automatic chemical analyzer
JPH10282000A (en) Enzyme activity measurement
JPS6327661B2 (en)
JPS6125064A (en) Automatic chemical analyzer
JP2604043B2 (en) Automatic analyzer
JP2508115B2 (en) Automatic biochemical analyzer
JPH01134234A (en) Automatic chemical analyzer
JPH0554067B2 (en)
JPH09101311A (en) Automatic chemical analyzer