JPH10281987A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH10281987A
JPH10281987A JP9342397A JP9342397A JPH10281987A JP H10281987 A JPH10281987 A JP H10281987A JP 9342397 A JP9342397 A JP 9342397A JP 9342397 A JP9342397 A JP 9342397A JP H10281987 A JPH10281987 A JP H10281987A
Authority
JP
Japan
Prior art keywords
sample
tube
pump
flow cell
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9342397A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
浩 鈴木
Hideaki Oraku
英昭 大楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP9342397A priority Critical patent/JPH10281987A/en
Publication of JPH10281987A publication Critical patent/JPH10281987A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve maintainability, and size and cost reduction by forming a sample sucking mechanism for a flow cell using an electromagnetic pump. SOLUTION: A spectrophotometer is provided with a flow cell 3, an electromagnetic pump 8, a waste liquid tube 9, a suction nozzle for sample 6 and so on. The pump 8 operates on pulse exciting given by a control circuit 5, sucks the sample 6 to the flow cell 3, and discharged through a tube 9 after the completion of measurement. Regulating frequency of pulse exciting optimizes sucking accuracy under conditions of a flow passage such as piping inside diameter and sample viscosity. The suction nozzle, pump 8 and the tube 9 are composed of Teflon series material, which is capable of measuring a sample such as organic solvent. Sample suction requires the tube to be drawn through hands, therefore, there is not any aging change in suction amount due to tube deterioration, and the pump 8 of small type and low power model is available for operation, thereby reducing an installation space.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は分光光度計に関す
る。
The present invention relates to a spectrophotometer.

【0002】[0002]

【従来の技術】試料を測光するために測定部に試料を設
置する方法は、角セルを用いる方法とフローセルを用い
る方法が一般的である。
2. Description of the Related Art Generally, a method using a square cell and a method using a flow cell are known as methods for installing a sample in a measuring section in order to perform photometry of the sample.

【0003】角セルを用いる方法はキャリオーバやコン
タミネーション等の影響を無くして測定するため測定結
果の再現性には有利であるが、別の試料を測定するには
その都度セルを入れ替えなくてはならないため、異なる
試料の連続測定にはフローセルを用いた方法が有利とな
る。フローセルに試料を吸引するための方法はチューブ
をしごいて吸引するペリスタポンプがあり、その構成は
図3で示された例があげられる。
A method using a square cell is advantageous in reproducibility of measurement results because measurement is performed without the influence of carryover or contamination, but the cell must be replaced each time another sample is measured. Therefore, a method using a flow cell is advantageous for continuous measurement of different samples. As a method for sucking a sample into the flow cell, there is a peristaltic pump for sucking the sample by squeezing a tube, and the configuration thereof is shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】ペリスタポンプはロー
タを回転させてチューブをしごき流路内の液体を移動さ
せる。従ってチューブの材質は伸縮性に優れ、且つ耐久
性に優れていなければならない。最も多く用いられるチ
ューブの材質は塩化ビニル系である。しかし塩化ビニル
系の素材はトルエン,キシレンなどの有機溶媒や、濃硫
酸などの強酸性の試料に対する耐薬品性に劣り、チュー
ブの寿命が極端に短くなる。さらに前述のようなチュー
ブの寿命を縮める試料を使用しなくともペリスタポンプ
はチューブを強くしごくため、チューブを劣化させ定期
的なチューブの交換が必要であった。またチューブの劣
化に伴い吸引量も変化するため吸引精度が悪く吸引量の
補正が必要であった。さらにペリスタポンプはロータを
回転させてチューブをしごくためにトルクの大きいモー
タを使用しなければならず、電源容量および設置スペー
スが大きくなり結果的に装置の大型化,生産コストの高
騰につながっていた。本発明の目的はチューブを含む流
路を耐薬品性に優れた寿命の長い材質の部品で構成する
ことでメンテナス性の向上を図り、小型,低価格の分光
光度計を提供することにある。
The peristaltic pump rotates the rotor to move the liquid in the flow path by squeezing the tube. Therefore, the material of the tube must be excellent in elasticity and excellent in durability. The most frequently used tube material is vinyl chloride. However, vinyl chloride-based materials have poor chemical resistance to organic solvents such as toluene and xylene, and strongly acidic samples such as concentrated sulfuric acid, and the life of the tube is extremely shortened. Further, the peristaltic pump strongly stiffens the tube without using a sample that shortens the life of the tube as described above, so that the tube is deteriorated and the tube needs to be periodically replaced. In addition, since the suction amount changes with the deterioration of the tube, the suction accuracy is poor and the suction amount needs to be corrected. Further, the peristaltic pump requires the use of a motor having a large torque in order to rotate the rotor and squeeze the tube, so that the power supply capacity and the installation space are increased, resulting in an increase in the size of the apparatus and an increase in production costs. SUMMARY OF THE INVENTION An object of the present invention is to provide a small-sized, low-cost spectrophotometer which improves the maintainability by forming a flow path including a tube with a material having excellent chemical resistance and a long life.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の課題を
解決するための手段として、試料吸引機構にペリスタポ
ンプに代わり図2に示すような電磁石13にパルス通電
15を与えることで電磁石に磁界16を発生させ、磁石
14に往復運動を行う推力を与えることで液体を送り出
す構造の小型電磁ポンプを採用して試料吸引機構の簡素
化を図り、さらにチューブを含む試料の流れる流路を耐
薬品性に優れた材質で構成する。
According to the present invention, as a means for solving the above-mentioned problems, a magnetic field is applied to the electromagnet by applying a pulse current 15 to an electromagnet 13 as shown in FIG. A small electromagnetic pump having a structure for sending liquid by applying thrust for generating reciprocating motion to the magnet 14 is employed to simplify the sample suction mechanism, and furthermore, the flow path of the sample including the tube is chemically resistant. It is made of a material with excellent properties.

【0006】[0006]

【発明の実施の形態】図1は本発明を分光光度計に用い
た実施例を示している。光源1から放射された白色光は
分光器2により単色光に分光され、フローセル3を透過
して受光器4に与えられる。一方、試料6の流れる流路
は吸引ノズル7と、フローセル3と、廃液チューブ9
と、電磁ポンプ8とを順に接続している。このように構
成された分光光度計で試料6を測光するためには下記の
手順で行う。
FIG. 1 shows an embodiment in which the present invention is applied to a spectrophotometer. White light emitted from the light source 1 is split into monochromatic light by the spectroscope 2, transmitted through the flow cell 3, and provided to the light receiver 4. On the other hand, the flow path of the sample 6 includes the suction nozzle 7, the flow cell 3, and the waste liquid tube 9.
And the electromagnetic pump 8 are connected in order. Photometry of the sample 6 with the spectrophotometer configured as described above is performed in the following procedure.

【0007】吸引ノズル7を試料6に差し込み電磁ポン
プ8を制御回路5で動作させ、フローセル3に試料6を
満たす。電磁ポンプ8によりフローセル3に満たされた
試料6に、分光器2より単色光が放射されフローセル3
を透過し受光器4に与えられる。受光器4に与えられた
光はアンプ回路10により電気的な信号に変換され、制
御回路5で処理され吸光度または透過率が求められる。
測定を終えた試料6を装置外に排出するときには、吸引
時と同様に電磁ポンプ8を制御回路5で動作させフロー
セル3に満たされた試料6を電磁ポンプ8及び廃液チュ
ーブ9を経由させ装置外に排出する。
[0007] The suction nozzle 7 is inserted into the sample 6, and the electromagnetic pump 8 is operated by the control circuit 5 to fill the flow cell 3 with the sample 6. The monochromatic light is emitted from the spectroscope 2 to the sample 6 filled in the flow cell 3 by the electromagnetic pump 8 and the flow cell 3
And is given to the light receiver 4. The light provided to the light receiver 4 is converted into an electrical signal by an amplifier circuit 10 and processed by a control circuit 5 to determine the absorbance or transmittance.
When the sample 6 after measurement is discharged to the outside of the apparatus, the electromagnetic pump 8 is operated by the control circuit 5 as in the case of suction, and the sample 6 filled in the flow cell 3 is passed through the electromagnetic pump 8 and the waste liquid tube 9 to the outside of the apparatus. To be discharged.

【0008】電磁ポンプ8は正負両極性の電圧を交互に
パルス通電することにより動作し、そのパルス通電は制
御回路5によって与えられる。制御回路5によって与え
られるパルス通電はパルス数が制御可能で試料6の吸引
量が調整できるように設定されている。また、パルス通
電の周波数及びデューティ比も調整可能で、配管の内
径、試料の粘性など流路の置かれる条件下で吸引精度の
最適化が図れるように設定されている。
The electromagnetic pump 8 operates by alternately applying a pulse of a voltage having both positive and negative polarities. The pulse application is given by the control circuit 5. The pulse energization given by the control circuit 5 is set so that the number of pulses can be controlled and the suction amount of the sample 6 can be adjusted. Also, the frequency and duty ratio of the pulse current can be adjusted, and the setting is made so that the suction accuracy can be optimized under the conditions where the flow path is placed, such as the inner diameter of the pipe and the viscosity of the sample.

【0009】試料吸引機構にペリスタポンプを用いた装
置ではチューブをしごいて吸引するため、一度設定した
吸引量はチューブの劣化に伴い変化してしまう恐れがあ
ったが、本発明では試料吸引機構に電磁ポンプを用いた
ことでチューブ9をしごく必要がなく、チューブの劣化
に伴う吸引量の補正は必要ない。
In a device using a peristaltic pump as the sample suction mechanism, the tube is sucked by suction. Therefore, the suction amount once set may change with deterioration of the tube. By using the electromagnetic pump, it is not necessary to squeeze the tube 9 and it is not necessary to correct the suction amount due to the deterioration of the tube.

【0010】また吸引ノズル7,電磁ポンプ8、及び廃
液チューブ9は耐薬品性に優れたテフロン系の材質で構
成し有機溶媒などの試料も測定可能としている。
The suction nozzle 7, the electromagnetic pump 8, and the waste liquid tube 9 are made of a Teflon-based material having excellent chemical resistance so that a sample such as an organic solvent can be measured.

【0011】さらに電磁ポンプ8は設置スペースが約7
0cm3 程度で、ペリスタポンプより小さなスペースに設
置できる。
Further, the installation space of the electromagnetic pump 8 is about 7
It is about 0cm 3 and can be installed in a smaller space than the peristaltic pump.

【0012】[0012]

【発明の効果】本発明の分光光度計はチューブの材質に
伸縮性の要求はなく、且つチューブをしごく必要がない
ためチューブに耐薬品性に優れた材質を選択できる。こ
の結果、定期的なメンテナンスの必要がなくなり、試料
吸引機構にペリスタポンプを用いた従来方式の装置では
測定できなかった試料の測定が可能になる。また電磁ポ
ンプは小型,小電源容量のモデルで充分動作可能であ
り、装置の小型化,低価格化が可能になる。
According to the spectrophotometer of the present invention, there is no requirement for the material of the tube to be stretchable, and the tube is not required to be very strong. Therefore, a material having excellent chemical resistance can be selected for the tube. As a result, periodic maintenance is not required, and measurement of a sample that cannot be measured by a conventional apparatus using a peristaltic pump as a sample suction mechanism can be performed. In addition, the electromagnetic pump can be operated sufficiently with a small-sized and small power supply model, and the size and cost of the device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を示すブロック図。FIG. 1 is a block diagram showing the present invention.

【図2】電磁ポンプの原理の説明図。FIG. 2 is an explanatory diagram of the principle of an electromagnetic pump.

【図3】従来のブロック図。FIG. 3 is a conventional block diagram.

【符号の説明】[Explanation of symbols]

1…光源、2…分光器、3…フローセル、4…受光器、
5…制御回路、6…試料、7…吸引ノズル、8…電磁ポ
ンプ、9…廃液チューブ、10…アンプ回路、11…電
源回路。
1 light source, 2 spectroscope, 3 flow cell, 4 light receiver,
5: control circuit, 6: sample, 7: suction nozzle, 8: electromagnetic pump, 9: waste liquid tube, 10: amplifier circuit, 11: power supply circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源より放射された白色光を回析格子を用
いて単色光に分光する分光器と、反応処理された試料を
光学的に測光する測定部にフローセルを使用し、前記フ
ローセルに前記試料を吸引するための吸引口と、前記吸
引口から前記試料を吸引し前記フローセル内に前記試料
を満たすための試料吸引機構を備えた分光光度計におい
て、前記試料吸引機構に電磁式ポンプを用いたことを特
徴とする分光光度計。
1. A spectroscope for dispersing white light emitted from a light source into monochromatic light using a diffraction grating, and a flow cell for a measuring unit for optically measuring a reaction-treated sample, wherein the flow cell is used. In a spectrophotometer having a suction port for sucking the sample, and a sample suction mechanism for sucking the sample from the suction port and filling the sample in the flow cell, an electromagnetic pump is provided for the sample suction mechanism. A spectrophotometer characterized by using:
JP9342397A 1997-04-11 1997-04-11 Spectrophotometer Pending JPH10281987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9342397A JPH10281987A (en) 1997-04-11 1997-04-11 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9342397A JPH10281987A (en) 1997-04-11 1997-04-11 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH10281987A true JPH10281987A (en) 1998-10-23

Family

ID=14081901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9342397A Pending JPH10281987A (en) 1997-04-11 1997-04-11 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH10281987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456019C (en) * 2003-11-13 2009-01-28 吉林大学 Dissolving degree detector for continuously detecting multiple component medicine
JP2011137778A (en) * 2010-01-04 2011-07-14 Hitachi High-Technologies Corp Spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456019C (en) * 2003-11-13 2009-01-28 吉林大学 Dissolving degree detector for continuously detecting multiple component medicine
JP2011137778A (en) * 2010-01-04 2011-07-14 Hitachi High-Technologies Corp Spectrophotometer

Similar Documents

Publication Publication Date Title
US4952372A (en) Flow injection apparatus for carrying out chemical analyses
US7708535B2 (en) Systems and methods for providing a dynamically adjustable reciprocating fluid dispenser
CN104764892B (en) A kind of water quality heavy metal multi-parameter on-line monitoring instrument
US4896270A (en) Computer controlled pipetting system
US3972614A (en) Method and apparatus for measuring one or more constituents of a blood sample
JP3068202B2 (en) Automatic water quality analyzer using a cylinder type syringe unit
US5421193A (en) Method and apparatus for leak detection with float excitation and self-calibration
CN109283138B (en) Quantitative sample introduction system
KR101653661B1 (en) syringe pump module
US20210033500A1 (en) Method for dosing an amount of liquid with a peristaltic pump
US4359447A (en) Automatic multichannel apparatus for performing emergency analyses, in particular chemical-clinical analyses on biological fluids
JPH10281987A (en) Spectrophotometer
US4288206A (en) Automatic multiple water sampler
US5869774A (en) Device for taking a liquid sample
FI94675B (en) Method and apparatus for quantitative dosing of small amounts of liquid
JP2015514611A (en) System and method for regulating and measuring flow rate
Prados-Rosales et al. Propelling devices: the heart of flow injection approaches
EP0039146A1 (en) Multiple chamber pump
KR100201336B1 (en) An automatically analysing apparatus for measuring water quality with a cylinder-type syringe unit
US3531209A (en) Digital printout spectrophotometer
CN108444562B (en) Liquid volume metering device
JP3662095B2 (en) Ozone water concentration meter
US4689132A (en) Etching charge measurement system
FR2561782A1 (en) METHOD AND DEVICE FOR AUTOMATIC PHYSICO-CHEMICAL ANALYSIS OF A CONTINUOUS FLOW SOLUTION
CN220894287U (en) Water quality detection device for hydraulic engineering for preventing silt adhesion