JP3662095B2 - Ozone water concentration meter - Google Patents

Ozone water concentration meter Download PDF

Info

Publication number
JP3662095B2
JP3662095B2 JP12025997A JP12025997A JP3662095B2 JP 3662095 B2 JP3662095 B2 JP 3662095B2 JP 12025997 A JP12025997 A JP 12025997A JP 12025997 A JP12025997 A JP 12025997A JP 3662095 B2 JP3662095 B2 JP 3662095B2
Authority
JP
Japan
Prior art keywords
electrode
operating rod
ozone water
chamber
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12025997A
Other languages
Japanese (ja)
Other versions
JPH10300719A (en
Inventor
博一 塩田
Original Assignee
株式会社ブイエムシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイエムシー filed Critical 株式会社ブイエムシー
Priority to JP12025997A priority Critical patent/JP3662095B2/en
Publication of JPH10300719A publication Critical patent/JPH10300719A/en
Application granted granted Critical
Publication of JP3662095B2 publication Critical patent/JP3662095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はオゾン水濃度測定器に関するもので、特に、応答速度速く測定でき、所謂、インラインの連続測定も可能なオゾン水濃度測定器に関するものである。
【0002】
従来、オゾン水濃度の検出法は大別すると、化学薬品を使用する薬品反応法、紫外線吸収度を比較測定する紫外線吸収法、そして起電力や電解液の導電度変化を検出する電気的検出法が代表的なものであるが、何れも一長一短あることが知られている。
【0003】
先ず、化学薬品を使用する方法の代表的なものは、ヨウ化カリを使用する方法で、最も正確な方法として知られているが、一定量のオゾン水をサンプリングし、滴定操作が必要であるので、連続測定は不能であるという問題点を有している。また、この方式の機械化したもので電量測定法も実用化されているが、これも濃度測定値をデジタル表示したもので、一定量のサンプリングとヨウ化カリ液等の試薬を必要としたバッチ操作が必要であることに変わりはない。また、その他インジゴ等の色素を使用した変色試薬法も提案されているが、同様に試薬を必要としたバッチ法であることに変わりはない。
【0004】
次の紫外線吸収法は、オゾンが紫外線領域253.7nm付近に強い吸収スペクトルをもつ現象を利用したもので、気相オゾンの測定には、最も普及している方法である。しかし、オゾン水の測定には、多量の通過オゾン水を必要とし、かつ、気体と異なり、測定用オゾン水によって紫外線カラムに付着するスライム等によって測定値が著しく誤差を生じるため、頻度高く洗浄操作を必要とする問題点があった。
【0005】
最後の電気的検出法においては、現在メンブレン電解液法が最も知られているが、この方法においては、厚み数ミクロンのテフロン(登録商標)薄膜(メンブレン)を通してオゾンが電解液中に流入し、電解液の電導度の変化を読み取る方法であり、この方法の欠点は、先ず応答速度が遅く、とくに停止時からの立ち上がりにかなりの時間を要し、また消耗電解液の補充、汚染メンブレンの定期取り替え等、煩雑な維持・管理を必要とする問題点を有している。
【0006】
上記した種々の方法に比べ、最も簡便で応答速度の早い方法は、裸電極法(英語での表現はBare Electrode Method)であり、通常、金または白金(Pt)の陽極と銅(Cu)製の陰極をオゾン水中に挿入すると、オゾン水の濃度変化に追従する電圧が発生する現象を利用したものである。しかし、この方法においては、とくに陰極電極の銅(Cu)がオゾン(0)によって酸化されるので、絶えず陰極電極の表面を磨く機構が必要であるという問題点を有している。
【0007】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みなされたもので、簡便な装置で、保守・管理が容易で、応答速度を速くオゾン濃度が測定できるオゾン水濃度測定器を提供することを課題としたものである。
【0008】
【課題を解決するための手段】
上記課題を達成するため、本発明の構成は、オゾン水の流入口11aと流出口11bとを有した測定室10内に白金(Pt)又は金(Au)で構成した第一電極S1と、銀(Ag)で構成した第二電極S2とを所定の間隔を設けて対向させて収納し、上記第一電極S1と第二電極S2とからは、両者間の電気的変化量を測定する測定装置Mに連結するリード線L1,L2を該測定室10の外部に延設し、また、上記第一電極S1と第二電極S2とのいずれか一方または双方には、電気的に絶縁した作動杆4の一端を取り付け、この作動杆4の他端側は測定室1 の通孔31より外に延設して、この作動杆4を往復移動させる駆動源2に連結し、上記通孔31と作動杆4との間には測定室10の気密を確保すると共に、該作動杆4の動きを保証する可曲仕切膜3を設けてなる技術的手段を講じたものである。
【0009】
本発明は、第一電極S1を、化学的に非常に反応性の低い白金又は金(Au)で構成したので、該第一電極S1がオゾン水で変質しづらい作用を呈する。また、第二電極S2を銀(Ag)で構成したので、この第二電極S2はオゾン水で直ちに銀(Ag)が酸化され、その表面が酸化銀(Ag0)となり黒変するが、このオゾン酸化された酸化銀(Ag0)は化学的に非常に安定的で、以後の酸化の進行を阻止する作用を呈する。
【0010】
上記白金で構成した第一電極S1と、銀(Ag)(正確には酸化銀(Ag0))で構成した第二電極S2との組み合わせは、実験の結果、オゾン水濃度の変化に対応する起電作用を呈するものであった。
【0011】
上記第一電極S1と第二電極S2とのいずれか一方または双方には、作動杆4乃至第一電極S1と第二電極S2とのいずれか一方または双方を往復移動する駆動源2で往復移動(振動)させるようになしたので、オゾン濃度に対する大きな起電力を応答速度が速く、安定的に取り出せる作用を呈するものである。この作用のメカニズムは必ずしも明確ではないが、この種裸電極の表面での電気的変化量は静止雰囲気ではごく狭い範囲で起電力の飽和現象が発生するが、両電極を移動(振動)することで、起電作用が継続されて大きな起電力を安定して得られるものであると推定できる。
【0012】
次に「請求項2」の発明は、測定器本体1を、仕切体30で測定室10と駆動装置収納室20とに仕切り、上記測定室10には、オゾン水の流入口11aと流出口11bとを設け、また、上記測定室10内には白金(Pt)又は金(Au)で構成した略直線棒状の第一電極S1と、銀(Ag)で構成され大部分が該第一電極S1を等距離に囲む位置に位置する第二電極S2とを収納し、上記第一電極S1と第二電極S2とからは、両者間の電気的変化量を測定する測定装置Mに連結するリード線L1,L2を上記測定室1 の外部に延設し、また、上記第一電極S1と第二電極S2とのいずれか一方または双方には、電気的に絶縁されると共に上記第一電極S1の軸方向を向く作動杆4の一端を取り付け、この作動杆4の他端側は、上記仕切体30の通孔31より駆動装置収納室20内に延設して該駆動装置収納室20に収納され、該作動杆4を上記第一電極S1の軸方向に往復移動させる駆動源2に連結し、上記通孔31と作動杆4との間には測定室10の気密を確保すると共に、該作動杆4の動きを保証する可曲仕切膜3を設けてなる技術的手段を講じたものである。
【0013】
それ故、本発明は上記作用に加え、第一電極S1と第二電極S2との大部分が等距離に位置するようになしてあり、両者ともに移動(振動)する場合は無論であるが、両電極のいずれか一方のみが移動しても、電極間隔の変化による起電力の変化を抑える作用を呈するものである。
【0014】
次に「請求項3」の発明は、測定器本体1を、その上下の中間部に設けた仕切体30で、上部の測定室10と下部の駆動装置収納室20とに仕切り、該仕切体30の中央には通孔31を設け、上記通孔31には、この通孔31を塞ぐ蛇腹筒よりなる可曲仕切膜3を立設し、この可曲仕切膜3の上端開口部を絶縁性蓋体3aで塞ぎ、上記絶縁性蓋体3a上には、白金(Pt)又は金(Au)で構成した線S1aをコイル状に巻いた略直線棒状の第一電極S1を立設し、さらに、銀(Ag)線を網筒状となした第二電極S2を該第一電極S1と所定の間隙を有して同心状に取り付け、さらに、上記絶縁性蓋体3aの下面側には、上記通孔31内を遊挿する作動杆4の上端を連結し、この作動杆4の下端は前記駆動装置収納室20に収納され該作動杆4を上下方向に往復移動させる駆動源2に連結し、上記第一電極S1と第二電極S2とからは、両者間の電気的変化量を測定する測定装置Mに連結するリード線L1,L2を上記測定室1 の外部に延設し、上記測定室10にオゾン水の流入口11aと流出口11bとを設けてなる技術的手段を講じたものである。
【0015】
それ故、本発明は上記「請求項2」の作用に加え、第一電極S1を白金または金で構成した線S1aをコイル状に巻いて構成したので、白金などの使用量を少なくして電気的反応を行なう表面積を大きく設定できる作用を呈するものである。
【0016】
また、本発明は第二電極S2が銀(Ag)線を網筒状となしたので、第一電極S1と同じく銀(Ag)の使用量が少なく電気的反応表面積を大き設定でき、かつ網目をオゾン水が通過可能となるので該第二電極S2によるオゾン水遮蔽が防がれる作用を呈するものである。
【0017】
【発明の実施の態様】
次に、本発明の実施態様を添附図面に従って説明すれば以下の通りである。図中、10が測定室でオゾン水の流入口11aと流出口11bとを有し、測定しようとするオゾン水が流入口11aより流入して、流出口11bより流出するようになしてある。
【0018】
具体的には、「図2」に示すようにオゾン水供液管50の途中に分岐バイパス路51を分岐して、この分岐バイパス路51の途中に該測定室10とポンプ52とを介装してなるが、無論、オゾン水供液管50の途中に直接該測定室10を介装してもよく、さらには、該測定室10をオゾン水供液管50とは全く別個に設けて、別途オゾン水供液管50等のオゾン水を該測定室10内に供送するようになしてもよい。また、本発明は流水中での連続測定を前提としているが、該測定室10内にオゾン水を所定時間滞留させバッチ式測定を行なうようになしてもよい。
【0019】
上記測定室10は耐オゾン水性を有する材質で構成されるのは無論で、本実施態様では塩化ビニール樹脂材で構成したが、テフロン(登録商標)樹脂やステンレス材等を使用してもよく、さらには耐オゾン水性を有さない材質を使用する場合は、内面に耐オゾン水性膜をコーテングしてもよいものである。
【0020】
また、上記測定室10はオゾン水の流入口11aと流出口11bとを除いて密閉状態に形成すればよいが、図示例及び「請求項2」の発明では仕切体30で測定室10と駆動装置収納室20とに仕切ってある。すなわち、測定室10の一部は該仕切体30で構成し、この仕切体30に通孔31を設けてある。また、「請求項3」の発明も同様で、測定器本体1を、その上下の中間部に設けた仕切体30で、上部の測定室10と下部の駆動装置収納室20とに仕切り、該仕切体30の中央に通孔31を設けてある。
【0021】
上記仕切体30は耐オゾン水性を有する材質で構成され、外周に螺条を有した螺子筒部32の下部にフランジ部33を設けて構成し、測定室10は有蓋筒状に構成してその下部を螺子筒部32に螺合してパッキン34で密閉している。
【0022】
上記仕切体30はその中央に通孔31を設け、駆動装置収納室20に連通(但し、後記する可曲仕切膜3で仕切ってある。)してある。駆動装置収納室20は筒状に構成し、その上端に上記仕切体30を、下端に底板35を嵌着してある。なお、駆動装置収納室20の密閉性は要求されないので、上記仕切体30と底板35の嵌着は、圧入、螺合等で行なえばよく、さらには糊着や螺締螺子36、36による螺締程度で一体化すればよい。
【0023】
なお、「請求項2」及び「請求項3」で、上記のように測定室10と駆動装置収納室20とを仕切体30で仕切ったのは、単に本発明のオゾン水濃度測定器をコンパクトな一体的構成物となすためであり、また、メンテナンスを容にするためである。
【0024】
そして、上記測定室10内に白金(Pt)などの白金金属で構成した第一電極S1と、銀(Ag)で構成した第二電極S2とを所定の間隔を設けて対向させて収納してある。
【0025】
上記第一電極S1を構成する白金金属としては、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)等が使用でき、特に、白金(Pt)を使用することが、第二電極S2に銀(Ag)を使用するのに特に効果的なものであった。また、上記第二電極S2を構成する銀(Ag)は、銀(Ag)を不動化したものが好ましいが、実用に際してオゾン水を供送すると表面が直ちにオゾン酸化されて酸化銀(Ag0)となり不動化されるので、銀(Ag)そのままのものを使用すれば実質的に同じであった。
【0026】
上記第一電極S1と第二電極S2とは、その間隙を変更すると起電力に差が生ずるので所定の間隔を設けて対向させてある。そして、この第一電極S1と第二電極S2とは夫々板状または棒状のものを使用してもよいが、表面積が大きいほど大きな起電力が得られて有利である。
【0027】
そこで、「請求項2」の発明では、第二電極S2を略直線棒状となし、第二電極S2は大部分がこの第一電極S1を等距離に囲む位置に位置するようになしてある。したがって、第一電極S1の全周面が第二電極S2と同距離条件で対向することになり、効率的な起電力を得られるものである。
【0028】
上記略直線棒状の第一電極S1と、この第一電極S1を囲む第二電極S2とは、第一電極S1が断面円形の柱体またはパイプ体で構成され、第二電極S2は第一電極S1の外径よりその内径を大きく設定した円筒体を使用すればよいが、円筒体で第一電極S1を囲むと、一種の遮蔽板となって流過するオゾン水は均等に第一電極S1に接触しないこともあるので、円筒体を複数分割して夫々に間隔を有して円周上に配置すればよい。また、第二電極S2として直線棒状のものを同一円周上に間隔を設けて第二電極S2と平行に設けるようになしてもよい。なお、「請求項3」のように第二電極S2を金網筒状となすことも無論差し支えない。
【0029】
「請求項3」の発明では、第一電極S1は白金(Pt)または金で構成した線S1aをコイル状に巻いて、少ない白金金属の使用量で広い表面積を得るようになしてある。そして、第二電極S2は表面積を広く設定する大きな起電力が得られること、及び、第一電極S1をコイル状にしたのでその全周に対向するのが効果的であることから、銀(Ag)線を網筒状となしたものを使用している。
【0030】
上記第一電極S1と第二電極S2とからは、両者間の電気的変化量を測定する測定装置Mに連結するリード線L1,L2を、該測定室10の外部に延設してある。該測定装置M(「図2」参照)としては電流計、電圧計が使用でき、本実施態様では電圧計を使用している。なお、該測定装置Mには必要に応じて、増幅回路、温度補正回路等を付加するのは無論である。
【0031】
また、上記第一電極S1と第二電極S2とのいずれか一方または双方には、電気的に絶縁した作動杆4の一端を取り付け、この作動杆4の他端側は測定室10の通孔31より外に延設し、この作動杆4を往復移動させる駆動源2に連結してある。
【0032】
すなわち、上記第一電極S1と第二電極S2とのいずれか一方または双方は、駆動源2で往復移動、言い換えると振動するようになしてある。なお、この駆動源2は図示例では電磁力で振動を得るものを使用したが、モータとリンク等を使用した従来公知な他の振動発生装置を使用してもよい。
【0033】
上記第一電極S1と第二電極S2とのいずれか一方を駆動源2で往復移動するには、図示例とは異なり、第一電極S1と第二電極S2のいずれか一方を、作動杆4を介して駆動源2に連結し、他方は適宜固定部位に固定して設ければよいのは無論である。
【0034】
上記第一電極S1と第二電極S2との双方を、駆動源2で同調して同時に往復移動する場合は特に問題はないが、一方のみを移動する場合は、第一電極S1と第二電極S2との間隙が移動に伴って変更されると、起電力が波動形となることがある。そこで、「請求項2」の発明では、第二電極S2を第一電極S1から等距離に囲む位置に位置させ、該第一電極S1と第二電極S2とのいずれか一方または双方には、電気的に絶縁されると共に上記第一電極S1の軸方向を向く作動杆4の一端を取り付け、この作動杆4の他端側は、上記仕切体30の通孔31より駆動装置収納室20内に延設して、該駆動装置収納室20に収納され該作動杆4を上記第一電極S1の軸方向に往復移動させるようになして、該第一電極S1と第二電極S2との距離に変化がないようにしてある。
【0035】
上記通孔31と作動杆4との間には、測定室10の気密を確保すると共に、該作動杆4の動きを保証する可曲仕切膜3を設けてある。この可曲仕切膜3としては耐オゾン水性を有する材質が必要で、本実施態様ではテフロン(登録商標)樹脂で構成してあるが、シリコン樹脂等を使用してもよい。
【0036】
なお、上記可曲仕切膜3は、作動杆4の動きに支障を与えずに通孔31を塞ぐもので、一枚のダイアフラムを使用してもよいが、図示した実施態様及び「請求項3」の発明では蛇腹筒を使用している。すなわち、上記通孔31には、この通孔31を塞ぐ蛇腹筒よりなる可曲仕切膜3を立設し、この可曲仕切膜3の上端開口部を絶縁性蓋体3aで塞ぐ(エポキシ系接着剤で固着して塞いでいる。)ようにしてある。
【0037】
図示した実施態様及び「請求項3」の発明では、上記絶縁性蓋体3a上に第一電極S1と第二電極S2とを共に立設し、上記絶縁性蓋体3aの下面側に作動杆4の上端を連結してあるので、上記第一電極S1と第二電極S2とは双方が共に同方向に移動することになる。
【0038】
なお、上記蛇腹筒よりなる可曲仕切膜3と通孔31及び絶縁性蓋体3aとの接触部位は気密を保つため、本実施態様では糊着してある。また、図中、L3,L4は駆動源2のリード線を示すものである。
【0039】
【発明の効果】
本発明は上記のごときであるので、第一電極S1を化学的に非常に反応性の低い白金で、第二電極S2を同じく化学的に非常に反応性の低い銀(Ag)がオゾン酸化された酸化銀(Ag0)を使用したので、長期間使用しても安定した測定が行なえるオゾン水濃度測定器を提供できる。
【0040】
上記白金で構成した第一電極S1と、銀(Ag)(正確には酸化銀(Ag0))で構成した第二電極S2との組み合わせは、オゾン水選択起電作用を有するもので、オゾンと共に溶存する他の物質に影響されることの少ないオゾン水濃度測定器を提供できる。
【0041】
本発明は上記第一電極S1と第二電極S2とのいずれか一方または双方を駆動源2で往復移動(振動)させるようになしたので、応答速度が速く、実際には増幅回路を必要としない大きな起電力が得られるオゾン水濃度測定器を提供できる。
【0042】
「請求項2」の発明は、第一電極S1と第二電極S2との大部分が等距離に位置するようにしてあるので、両電極を共に移動(振動)する場合は無論、両電極のいずれか一方のみが移動しても、電極間隔の変化による起電力の変化を抑え、測定結果が安定して読み取り易いオゾン水濃度測定器を提供できる。
【0043】
「請求項3」の発明は、第一電極S1を白金または金で構成した線S1aをコイル状に巻いて構成したので、白金などの使用量を少なくして電気的反応を行なう表面積を大きく設定でき、第二電極S2を銀(Ag)線を網筒状となしたので、第一電極S1と同じく銀(Ag)の使用量が少なく電気的反応表面積を大きき設定でき、かつ網目をオゾン水が通過可能となるので、該第二電極S2によるオゾン水遮蔽が防がれ、より安定した測定が可能なオゾン水濃度測定器を提供できる。
【0044】
また、本発明は、蛇腹筒よりなる可曲仕切膜3を使用したので、第一電極S1と第二電極S2との移動範囲を大きくしても該可曲仕切膜3の損傷の心配がないオゾン水濃度測定器を提供できるものである。
【図面の簡単な説明】
【図1】 本発明オゾン水濃度測定器の一実施態様を示す要部縦断面図である。
【図2】 本発明オゾン水濃度測定器の使用例を示す側面図である。
【符号の説明】
測定器本体
2 駆動源
3 可曲仕切膜
3a 絶縁性蓋体
4 作動杆
10 測定室
11a 流入口
11b 流出口
20 駆動装置収納室
30 仕切体
31 通孔
S1 第一電極
S1a 線
S2 第二電極
L1 リード線
L2 リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ozone water concentration measuring device, and more particularly to an ozone water concentration measuring device that can measure a response speed quickly and can perform so-called in-line continuous measurement.
[0002]
Conventionally, ozone water concentration detection methods can be broadly divided into chemical reaction methods that use chemicals, ultraviolet absorption methods that compare and measure ultraviolet absorption, and electrical detection methods that detect changes in electromotive force and electrolyte conductivity. Are representative, but both are known to have advantages and disadvantages.
[0003]
First, a typical method using chemicals is a method using potassium iodide, which is known as the most accurate method, but requires a titration operation by sampling a certain amount of ozone water. Therefore, there is a problem that continuous measurement is impossible. In addition, the mechanization method of this method has been put to practical use, but this is also a digital display of the concentration measurement value, and batch operation that requires a certain amount of sampling and a reagent such as potassium iodide solution. Is still necessary. In addition, a color-changing reagent method using a dye such as indigo has been proposed, but it is still a batch method that requires a reagent.
[0004]
The following ultraviolet absorption method utilizes the phenomenon that ozone has a strong absorption spectrum in the ultraviolet region near 253.7 nm, and is the most popular method for measuring gas phase ozone. However, the measurement of ozone water requires a large amount of passing ozone water, and unlike gas, the measurement value causes a significant error due to slime that adheres to the ultraviolet column due to the measurement ozone water, so the washing operation is frequently performed. There was a problem that required.
[0005]
In the last electrical detection method, the membrane electrolyte method is currently best known. In this method, ozone flows into the electrolyte through a Teflon ( registered trademark ) thin film (membrane) having a thickness of several microns, This method reads changes in the conductivity of the electrolyte. The disadvantages of this method are that the response speed is slow, especially when it takes a considerable amount of time to start up from the stop, and replenishment of consumable electrolyte and periodic contamination of the membrane. There is a problem that requires complicated maintenance and management such as replacement.
[0006]
Compared to the various methods described above, the most convenient and rapid method of response speed, bare electrode method (expressed in English Bare Electrode Method) is usually an anode of gold or platinum (Pt), copper (Cu) This is a phenomenon that uses a phenomenon in which a voltage that follows a change in the concentration of ozone water is generated when a cathode made of ozone is inserted into ozone water. However, this method has a problem that a mechanism for constantly polishing the surface of the cathode electrode is necessary because copper (Cu) of the cathode electrode is oxidized by ozone (0 3 ).
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an ozone water concentration measuring instrument that can measure ozone concentration with a simple apparatus, easy maintenance and management, and quick response speed. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the configuration of the present invention includes a first electrode S1 made of platinum (Pt) or gold (Au) in a measurement chamber 10 having an inlet 11a and an outlet 11b of ozone water, A second electrode S2 made of silver (Ag) is stored opposite to each other with a predetermined interval, and the first electrode S1 and the second electrode S2 measure the amount of electrical change between them. Lead wires L1 and L2 connected to the device M are extended outside the measurement chamber 10, and either or both of the first electrode S1 and the second electrode S2 are electrically insulated. attaching one end of the rod 4, the other end of the actuating rod 4 are extended to the outside from the through hole 31 of the measuring chamber 1 0, connecting the actuating rod 4 to the driving source 2 for reciprocating, the through hole 31 and the working rod 4 are secured to ensure the airtightness of the measuring chamber 10 and bendable to guarantee the movement of the working rod 4. In which it took technical means formed by providing a film 3.
[0009]
In the present invention, the first electrode S1 is made of platinum or gold (Au), which is chemically very low in reactivity, so that the first electrode S1 exhibits an action that is difficult to be altered by ozone water. Further, since the second electrode S2 composed of silver (Ag), the second electrode S2 is immediately oxidized silver (Ag) is in ozone water, the surface of silver oxide (Ag 2 0) will be next to blackening, This ozone-oxidized silver oxide (Ag 2 0) is chemically very stable and exhibits the action of preventing the subsequent oxidation.
[0010]
The combination of the first electrode S1 composed of platinum and the second electrode S2 composed of silver (Ag) (more precisely, silver oxide (Ag 2 0)) corresponds to the change in ozone water concentration as a result of experiments. It exhibited an electromotive action.
[0011]
Either one or both of the first electrode S1 and the second electrode S2 is reciprocated by a driving source 2 that reciprocates either one or both of the operating rod 4 to the first electrode S1 and the second electrode S2. Since it vibrates (vibrates), the response speed of the large electromotive force with respect to the ozone concentration is high and the action can be taken out stably. The mechanism of this action is not always clear, but the amount of electrical change at the surface of this bare electrode occurs in a very narrow range in a static atmosphere, but the phenomenon of electromotive force saturation occurs, but both electrodes move (vibrate). Thus, it can be estimated that a large electromotive force can be stably obtained by continuing the electromotive action.
[0012]
Next, the invention of “Claim 2” divides the measuring instrument main body 1 into a measuring chamber 10 and a driving device storage chamber 20 by a partition 30, and the measuring chamber 10 has an inlet port 11 a and an outlet port for ozone water. 11b, and in the measurement chamber 10, a substantially straight rod-shaped first electrode S1 made of platinum (Pt) or gold (Au) and silver (Ag), most of which is the first electrode. The second electrode S2 located at a position surrounding S1 at an equal distance is housed, and the first electrode S1 and the second electrode S2 are connected to a measuring device M for measuring an electrical change amount between them. the line L1, L2 is extended to the outside of the measuring chamber 1 0, also the first electrode S1 to the either one or both of the second electrode S2, the first electrode with electrically insulated One end of the operating rod 4 facing the axial direction of S1 is attached, and the other end of the operating rod 4 is connected to the partition 30. It extends into the drive device storage chamber 20 from the through hole 31 and is stored in the drive device storage chamber 20, and is connected to a drive source 2 for reciprocating the operating rod 4 in the axial direction of the first electrode S1. Technical means is provided in which a bendable partition film 3 is provided between the through hole 31 and the operating rod 4 to ensure the airtightness of the measuring chamber 10 and to ensure the movement of the operating rod 4.
[0013]
Therefore, in the present invention, in addition to the above-described operation, most of the first electrode S1 and the second electrode S2 are located at the same distance, and it goes without saying that both move (vibrate). Even if only one of the two electrodes moves, the effect of suppressing the change in electromotive force due to the change in the electrode interval is exhibited.
[0014]
Next, the invention of "Claim 3" divides the measuring instrument main body 1 into an upper measurement chamber 10 and a lower drive device storage chamber 20 by a partition body 30 provided at the upper and lower intermediate portions thereof. A through-hole 31 is provided in the center of 30, and a bendable partition film 3 made up of a bellows cylinder that closes the through-hole 31 is erected in the through-hole 31, and the upper end opening of the bendable partition film 3 is insulated. The first electrode S1 in the form of a substantially straight bar in which a wire S1a made of platinum (Pt) or gold (Au) is wound in a coil shape is erected on the insulating lid 3a. Further, a second electrode S2 in which silver (Ag) wire is formed in a mesh tube shape is attached concentrically with the first electrode S1 with a predetermined gap, and further, on the lower surface side of the insulating lid 3a. The upper end of the operating rod 4 that is loosely inserted in the through hole 31 is connected, and the lower end of the operating rod 4 is stored in the drive device storage chamber 20 so that the operating rod 4 can be Connected to a drive source 2 that reciprocates in the direction, from the first electrode S1 and the second electrode S2, lead wires L1 and L2 connected to a measuring device M that measures the amount of electrical change between them are measured. to extend to the outside of the chamber 1 0, in which took technical means formed by providing the outlet port 11b and the inlet 11a of the ozone water in the measuring chamber 10.
[0015]
Therefore, in the present invention, in addition to the effect of the “claim 2”, the first electrode S1 is formed by winding a wire S1a made of platinum or gold in a coil shape, so that the amount of use of platinum or the like can be reduced. It exhibits the effect of setting a large surface area for performing a chemical reaction.
[0016]
Further, since the present invention the second electrode S2 has no silver (Ag) wire and mesh tubular, also be size rather set the electrical reactive surface area usage less of silver (Ag) and the first electrode S1, and Since the ozone water can pass through the mesh, the ozone water shielding by the second electrode S2 is prevented.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings. In the figure, reference numeral 10 denotes a measurement chamber, which has an ozone water inlet 11a and an outlet 11b, and ozone water to be measured flows in from the inlet 11a and flows out from the outlet 11b.
[0018]
Specifically, as shown in FIG. 2, a branch bypass passage 51 is branched in the middle of the ozone water supply pipe 50, and the measurement chamber 10 and the pump 52 are interposed in the branch bypass passage 51. However, of course, the measurement chamber 10 may be interposed directly in the middle of the ozone water supply pipe 50, and further, the measurement chamber 10 is provided completely separately from the ozone water supply pipe 50. Separately, ozone water such as the ozone water supply pipe 50 may be supplied into the measurement chamber 10. Although the present invention is premised on continuous measurement in running water, the batch measurement may be performed by retaining ozone water in the measurement chamber 10 for a predetermined time.
[0019]
Of course, the measurement chamber 10 is made of a material having ozone water resistance. In this embodiment, the measurement chamber 10 is made of a vinyl chloride resin material, but a Teflon ( registered trademark ) resin or a stainless steel material may be used. Furthermore, in the case of using a material that does not have ozone water resistance, an ozone water resistant film may be coated on the inner surface.
[0020]
The measurement chamber 10 may be formed in a sealed state except for the ozone water inlet 11a and the outlet 11b. In the illustrated example and the invention of claim 2, the partition 30 is used to drive the measurement chamber 10. It is partitioned into a device storage chamber 20. That is, a part of the measurement chamber 10 is constituted by the partition body 30, and a through hole 31 is provided in the partition body 30. The invention of "Claim 3" is also the same, and the measuring device main body 1 is divided into an upper measuring chamber 10 and a lower driving device housing chamber 20 by a partition body 30 provided at the upper and lower intermediate portions thereof. A through hole 31 is provided in the center of the partition 30.
[0021]
The partition 30 is made of a material having ozone water resistance, and is formed by providing a flange 33 at the lower part of a screw cylinder 32 having a thread on the outer periphery, and the measurement chamber 10 is formed in a covered cylinder. The lower part is screwed into the screw cylinder part 32 and sealed with a packing 34.
[0022]
The partition body 30 is provided with a through hole 31 at the center thereof and communicates with the drive device storage chamber 20 (however, it is partitioned by a bendable partition film 3 described later). The drive device storage chamber 20 is formed in a cylindrical shape, and the partition body 30 is fitted to the upper end and the bottom plate 35 is fitted to the lower end. Since the sealing of the drive device storage chamber 20 is not required, the partition body 30 and the bottom plate 35 may be fitted by press-fitting, screwing, or the like. What is necessary is just to integrate with a tightening degree.
[0023]
In addition, in the “claim 2” and “claim 3”, the measurement chamber 10 and the drive device storage chamber 20 are partitioned by the partition body 30 as described above, and the ozone water concentration measuring device of the present invention is simply compact. This is to make a single integrated structure and to maintain maintenance.
[0024]
In the measurement chamber 10, the first electrode S1 made of platinum metal such as platinum (Pt) and the second electrode S2 made of silver (Ag) are stored facing each other with a predetermined interval. is there.
[0025]
As the platinum metal constituting the first electrode S1, platinum (Pt), palladium (Pd), iridium (Ir) or the like can be used. In particular, the use of platinum (Pt) can be used for the second electrode S2. It was particularly effective for using (Ag). The silver (Ag) constituting the second electrode S2 is preferably one in which silver (Ag) is immobilized. However, when ozone water is supplied in practical use, the surface is immediately oxidized with ozone and silver oxide (Ag 2 0). ) And thus immobilization, it was substantially the same if silver (Ag) was used as it was.
[0026]
The first electrode S1 and the second electrode S2 are opposed to each other with a predetermined interval since a difference in electromotive force occurs when the gap is changed. The first electrode S1 and the second electrode S2 may be plate-shaped or rod-shaped, respectively, but the larger the surface area, the greater the electromotive force that can be obtained.
[0027]
Therefore, in the invention according to claim 2, the second electrode S2 is formed in a substantially straight bar shape, and the second electrode S2 is mostly located at a position surrounding the first electrode S1 at an equal distance. Accordingly, the entire circumferential surface of the first electrode S1 is opposed to the second electrode S2 under the same distance condition, and an efficient electromotive force can be obtained.
[0028]
The substantially straight rod-shaped first electrode S1 and the second electrode S2 surrounding the first electrode S1 are configured such that the first electrode S1 is a column or pipe having a circular cross section, and the second electrode S2 is the first electrode. A cylindrical body having an inner diameter larger than the outer diameter of S1 may be used. However, when the first electrode S1 is surrounded by the cylindrical body, the ozone water that flows as a kind of shielding plate is evenly distributed to the first electrode S1. In some cases, the cylindrical body may be divided into a plurality of parts and arranged on the circumference with intervals. Alternatively, the second electrode S2 may be a straight bar having a space on the same circumference and parallel to the second electrode S2. Needless to say, the second electrode S2 may be in the form of a wire mesh tube as in "claim 3".
[0029]
In the invention of "Claim 3", the first electrode S1 is obtained by winding a wire S1a made of platinum (Pt) or gold in a coil shape so as to obtain a large surface area with a small amount of platinum metal used. Then, since the second electrode S2, a large electromotive force can be obtained by setting wide surface area, and, since the first electrode S1 to the coil shape to face the entire circumference effective, silver ( Ag) A wire having a net-like shape is used.
[0030]
From the first electrode S1 and the second electrode S2, lead wires L1 and L2 connected to a measuring device M for measuring an electrical change amount between them are extended to the outside of the measuring chamber 10. As the measuring device M (see “FIG. 2”), an ammeter or a voltmeter can be used. In this embodiment, a voltmeter is used. It goes without saying that an amplifier circuit, a temperature correction circuit, and the like are added to the measuring apparatus M as necessary.
[0031]
In addition, one or both of the first electrode S1 and the second electrode S2 is attached with one end of an electrically insulated working rod 4, and the other end of the working rod 4 is a through hole of the measurement chamber 10. It extends outside 31 and is connected to a drive source 2 that reciprocally moves the operating rod 4.
[0032]
That is, one or both of the first electrode S1 and the second electrode S2 is reciprocated by the drive source 2, in other words, vibrates. In the illustrated example, the drive source 2 that obtains vibration by electromagnetic force is used. However, another known vibration generator using a motor and a link may be used.
[0033]
In order to reciprocate either the first electrode S1 or the second electrode S2 by the drive source 2, unlike the illustrated example, either the first electrode S1 or the second electrode S2 is moved by the operating rod 4. Of course, it is possible to connect to the drive source 2 via the other, and to fix the other to the fixed part as appropriate.
[0034]
There is no particular problem when both the first electrode S1 and the second electrode S2 are reciprocated simultaneously in synchronism with the driving source 2, but when only one of them is moved, the first electrode S1 and the second electrode S2 are moved. When the gap with S2 is changed with movement, the electromotive force may be wave-shaped. Therefore, in the invention of "Claim 2", the second electrode S2 is positioned at a position surrounding the first electrode S1 at an equal distance, and one or both of the first electrode S1 and the second electrode S2 are One end of the operating rod 4 which is electrically insulated and faces the axial direction of the first electrode S1 is attached, and the other end side of the operating rod 4 is in the drive device storage chamber 20 through the through hole 31 of the partition 30. The distance between the first electrode S1 and the second electrode S2 is such that the operating rod 4 accommodated in the drive device storage chamber 20 is reciprocated in the axial direction of the first electrode S1. There is no change.
[0035]
A bendable partition film 3 is provided between the through hole 31 and the operating rod 4 to ensure the airtightness of the measuring chamber 10 and to ensure the movement of the operating rod 4. The bendable partition film 3 requires a material having ozone water resistance. In this embodiment, the bendable partition film 3 is made of Teflon ( registered trademark ) resin, but silicon resin or the like may be used.
[0036]
The bendable partition membrane 3 closes the through hole 31 without hindering the movement of the operating rod 4, and a single diaphragm may be used. However, the embodiment shown in FIG. In the present invention, a bellows tube is used. That is, the bendable partition film 3 made of a bellows cylinder that closes the through-hole 31 is erected in the through-hole 31, and the upper end opening of the bendable partition film 3 is closed with the insulating lid 3a (epoxy system). It is fixed with an adhesive and closed.)
[0037]
In the illustrated embodiment and the invention of claim 3, the first electrode S <b> 1 and the second electrode S <b> 2 are both erected on the insulating lid body 3 a, and an operating rod is provided on the lower surface side of the insulating lid body 3 a. Since the upper ends of 4 are connected, both the first electrode S1 and the second electrode S2 move in the same direction.
[0038]
In addition, the contact part of the bendable partition film 3 made of the bellows cylinder, the through hole 31 and the insulating lid 3a is glued in this embodiment in order to keep airtightness. In the figure, L3 and L4 indicate lead wires of the drive source 2.
[0039]
【The invention's effect】
Since the present invention is as described above, the first electrode S1 is chemically oxidized with platinum having a very low reactivity, and the second electrode S2 is also chemically oxidized with silver (Ag) having a very low reactivity. Since silver oxide (Ag 2 0) was used, an ozone water concentration measuring device capable of performing stable measurement even when used for a long time can be provided.
[0040]
The combination of the first electrode S1 composed of platinum and the second electrode S2 composed of silver (Ag) (more precisely, silver oxide (Ag 2 0)) has an ozone water selective electromotive action. An ozone water concentration measuring device that is less affected by other substances dissolved with ozone can be provided.
[0041]
In the present invention, either one or both of the first electrode S1 and the second electrode S2 are reciprocated (vibrated) by the drive source 2, so that the response speed is high and an amplifier circuit is actually required. It is possible to provide an ozone water concentration measuring device that can obtain a large electromotive force that is not generated.
[0042]
In the invention of "Claim 2", most of the first electrode S1 and the second electrode S2 are located at the same distance. Therefore, when both electrodes are moved (vibrated), of course, Even if only one of them moves, it is possible to provide an ozone water concentration measuring instrument that suppresses a change in electromotive force due to a change in the electrode interval and makes the measurement result stable and easy to read.
[0043]
In the invention of "Claim 3", the first electrode S1 is formed by winding a wire S1a composed of platinum or gold in a coil shape, so that the surface area for conducting an electrical reaction is reduced by reducing the amount of platinum used. Since the second electrode S2 has a silver (Ag) wire mesh shape, the amount of silver (Ag) used is the same as the first electrode S1, and the electrical reaction surface area can be set large, and the mesh is made of ozone. Since water can pass through, ozone water shielding by the second electrode S2 is prevented, and an ozone water concentration measuring device capable of more stable measurement can be provided.
[0044]
Further, since the present invention uses the bendable partition film 3 made of a bellows tube, there is no fear of damage to the bendable partition film 3 even if the movement range of the first electrode S1 and the second electrode S2 is increased. An ozone water concentration measuring device can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of an ozone water concentration measuring device of the present invention.
FIG. 2 is a side view showing an example of use of the ozone water concentration measuring device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measuring device main body 2 Drive source 3 Bendable partition film 3a Insulating lid 4 Actuation rod 10 Measurement chamber 11a Inlet 11b Outlet 20 Drive device storage chamber 30 Partition 31 Through-hole S1 1st electrode S1a line S2 L1 Lead wire L2 Lead wire

Claims (3)

オゾン水の流入口(11a)と流出口(11b)とを有した測定室(10)内に白金(Pt)又は金(Au)で構成した第一電極(S1)と、銀(Ag)で構成した第二電極(S2)とを所定の間隔を設けて対向させて収納し、
上記第一電極(S1)と第二電極(S2)とからは、両者間の電気的変化量を測定する測定装置(M)に連結するリード線(L1,L2)を該測定室(10)の外部に延設し、
また、上記第一電極(S1)と第二電極(S2)とのいずれか一方または双方には、電気的に絶縁した作動杆(4)の一端を取り付け、この作動杆(4)の他端側は測定室(10)の通孔(31)より外に延設して、この作動杆(4)を往復移動させる駆動源(2)に連結し、
上記通孔(31)と作動杆(4)との間には測定室(10)の気密を確保すると共に、該作動杆(4)の動きを保証する可曲仕切膜(3)を設けてなるオゾン水濃度測定器。
In a measurement chamber (10) having an inlet (11a) and an outlet (11b) of ozone water, a first electrode (S1) made of platinum (Pt) or gold (Au) and silver (Ag) The configured second electrode (S2) is stored with a predetermined interval facing each other,
From the first electrode (S1) and the second electrode (S2), lead wires (L1, L2) connected to a measuring device (M) for measuring the electrical change between them are connected to the measuring chamber (10). Extending outside the
Further, one or both of the first electrode (S1) and the second electrode (S2) is attached with one end of an electrically insulated operating rod (4), and the other end of the operating rod (4). The side extends outside the through hole (31) of the measurement chamber ( 10 ) and is connected to a drive source (2) for reciprocating the operating rod (4).
A bendable partition film (3) is provided between the through hole (31) and the operating rod (4) to ensure the airtightness of the measuring chamber (10) and to ensure the movement of the operating rod (4). Ozone water concentration measuring instrument.
測定器本体(1)を、仕切体(30)で測定室(10)と駆動装置収納室(20)とに仕切り、
上記測定室(10)には、オゾン水の流入口(11a)と流出口(11b)とを設け、 また、上記測定室(10)内には白金(Pt)又は金(Au)で構成した略直線棒状の第一電極(S1)と、銀(Ag)で構成され大部分が該第一電極(S1)を等距離に囲む位置に位置する第二電極(S2)とを収納し、
上記第一電極(S1)と第二電極(S2)とからは、両者間の電気的変化量を測定する測定装置(M)に連結するリード線L1,L2)を上記測定室(10)の外部に延設し、また、上記第一電極(S1)と第二電極(S2)とのいずれか一方または双方には、電気的に絶縁されると共に上記第一電極(S1)の軸方向を向く作動杆(4)の一端を取り付け、この作動杆(4)の他端側は、上記仕切体(30)の通孔(31)より駆動装置収納室(20内に延設して該駆動装置収納室(20)に収納され、該作動杆(4)を上記第一電極(S1)の軸方向に往復移動させる駆動源(2)に連結し、
上記通孔(31)と作動杆(4)との間には測定室(10)の気密を確保すると共に、該作動杆(4)の動きを保証する可曲仕切膜(3)を設けてなるオゾン水濃度測定器。
The measuring device main body (1) is divided into a measurement chamber (10) and a drive device storage chamber (20) by a partition (30),
The measurement chamber (10) is provided with an inlet ( 11a ) and an outlet ( 11b ) of ozone water, and the measurement chamber (10) is made of platinum (Pt) or gold (Au). A substantially straight rod-shaped first electrode (S1) and a second electrode (S2), which is made of silver (Ag) and is located at a position that mostly surrounds the first electrode (S1) at an equal distance,
From said 1st electrode (S1) and 2nd electrode (S2), lead wire L1, L2 connected to the measuring apparatus (M) which measures the electrical variation | change_quantity between both is carried out of the said measurement chamber ( 10 ). It extends outside, and one or both of the first electrode (S1) and the second electrode (S2) are electrically insulated and the axial direction of the first electrode (S1) is One end of the facing operating rod (4) is attached, and the other end of the operating rod (4) is extended from the through hole (31) of the partition (30) into the drive device storage chamber (20 to drive the driving rod. Connected to a drive source (2) housed in the device storage chamber (20) and reciprocatingly moving the operating rod (4) in the axial direction of the first electrode (S1);
A bendable partition film (3) is provided between the through hole (31) and the operating rod (4) to ensure the airtightness of the measuring chamber ( 10 ) and to ensure the movement of the operating rod (4). Ozone water concentration measuring instrument.
測定器本体(1)を、その上下の中間部に設けた仕切体(30)で、上部の測定室(10)と下部の駆動装置収納室(20)とに仕切り、該仕切体(30)の中央に通孔(31)を設け、
上記通孔(31)には、この通孔(31)を塞ぐ蛇腹筒よりなる可曲仕切膜(3)を立設し、この可曲仕切膜(3)の上端開口部を絶縁性蓋体(3a)で塞ぎ、
上記絶縁性蓋体(3a)上には、白金(Pt)又は金(Au)で構成した線(S1a)をコイル状に巻いた略直線棒状の第一電極(S1)を立設し、さらに、銀(Ag)線を網筒状となした第二電極(S2)を該第一電極(S1)と所定の間隙を有して同心状に取り付け、
さらに、上記絶縁性蓋体(3a)の下面側には、上記通孔(31)内を遊挿する作動杆(4)の上端を連結し、この作動杆(4)の下端は前記駆動装置収納室(20)に収納され該作動杆(4)を上下方向に往復移動させる駆動源(2)に連結し、
上記第一電極(S1)と第二電極(S2)とからは、両者間の電気的変化量を測定する測定装置(M)に連結するリード線(L1,L2)を上記測定室(10)の外部に延設し、
上記測定室(10)にオゾン水の流入口(11a)と流出口(11b)とを設けてなるオゾン水濃度測定器。
The measuring device main body (1) is divided into an upper measurement chamber (10) and a lower drive device storage chamber (20) by a partition (30) provided at the upper and lower intermediate portions, and the partition (30). A through hole (31) is provided in the center of the
The through hole (31) is provided with a bendable partition film (3) made of a bellows cylinder that closes the through hole (31), and the upper end opening of the bendable partition film (3) is an insulating lid. (3a)
On the insulating lid (3a), a substantially straight rod-shaped first electrode (S1) in which a wire (S1a) made of platinum (Pt) or gold (Au) is wound in a coil shape is erected, and The second electrode (S2) in which the silver (Ag) wire is formed into a mesh tube shape is attached concentrically with the first electrode (S1) with a predetermined gap,
Further, an upper end of an operating rod (4) that is loosely inserted into the through hole (31) is connected to the lower surface side of the insulating lid (3a), and the lower end of the operating rod (4) is connected to the driving device. Connected to a drive source (2) stored in the storage chamber (20) and reciprocatingly moving the operating rod (4) vertically;
From said 1st electrode (S1) and 2nd electrode (S2), lead wire (L1, L2) connected with the measuring apparatus (M) which measures the electrical variation between both is said measurement chamber ( 10 ). Extending outside the
An ozone water concentration measuring device comprising an ozone water inlet (11a) and an outlet (11b) in the measurement chamber (10).
JP12025997A 1997-04-23 1997-04-23 Ozone water concentration meter Expired - Fee Related JP3662095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12025997A JP3662095B2 (en) 1997-04-23 1997-04-23 Ozone water concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12025997A JP3662095B2 (en) 1997-04-23 1997-04-23 Ozone water concentration meter

Publications (2)

Publication Number Publication Date
JPH10300719A JPH10300719A (en) 1998-11-13
JP3662095B2 true JP3662095B2 (en) 2005-06-22

Family

ID=14781784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12025997A Expired - Fee Related JP3662095B2 (en) 1997-04-23 1997-04-23 Ozone water concentration meter

Country Status (1)

Country Link
JP (1) JP3662095B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397213B2 (en) * 2003-10-28 2010-01-13 株式会社アイ電子工業 Ozone water concentration measuring device
JP4973469B2 (en) * 2007-11-30 2012-07-11 岩崎電気株式会社 Method and apparatus for detecting reactive oxygen species
JP5184715B1 (en) * 2012-12-06 2013-04-17 日科ミクロン株式会社 Galvanic concentration measuring apparatus and galvanic concentration measuring method

Also Published As

Publication number Publication date
JPH10300719A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US7208071B2 (en) Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JPS6363858B2 (en)
JP3662095B2 (en) Ozone water concentration meter
JP2013519881A (en) Electrochemical detection cell for liquid chromatography systems.
JP5182656B2 (en) Electrolytic current measuring electrode
JP4671565B2 (en) Diaphragm electrode
JPH08304334A (en) Ozone water concentration measuring device
US20110248731A1 (en) APPARATUS AND METHOD FOR MEASUREMENT OF pH OVER A WIDE RANGE OF PRESSURE
JP4620215B2 (en) Diaphragm sensor
JP2000131276A (en) Potable type residual chlorine meter
CN112525964B (en) Swing type residual chlorine sensor
JP2007171119A (en) Sensor for detecting concentration of aqueous ozone solution
JPS61176846A (en) Ion sensor body
JP2000298110A (en) Oxidation-reduction current measuring device
JP2575178Y2 (en) Rotating electrode type analyzer
JPH06765Y2 (en) Vibrating electrode analyzer
JPH09292359A (en) Column type flow electrolytic cell
GB2074323A (en) Apparatus for Detecting Hydrogen Cyanide Gas
JP2008241373A (en) Coulometric measuring method, device for coulometric measuring cell and coulometric type measuring cell set
JPH1123514A (en) Oxidation/reduction current measuring device
JP3958616B2 (en) Redox current measuring method and measuring apparatus
JPH0710288Y2 (en) Water quality measurement electrode
JPH08304333A (en) Dissolved ozone measuring device
JPH1123427A (en) Sample liquid sampler, sampling liquid measuring unit and method for measuring residual chlorine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees