JPH10281761A - Distance-measuring apparatus - Google Patents

Distance-measuring apparatus

Info

Publication number
JPH10281761A
JPH10281761A JP8354897A JP8354897A JPH10281761A JP H10281761 A JPH10281761 A JP H10281761A JP 8354897 A JP8354897 A JP 8354897A JP 8354897 A JP8354897 A JP 8354897A JP H10281761 A JPH10281761 A JP H10281761A
Authority
JP
Japan
Prior art keywords
lens
optical axis
substrate
guide tube
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8354897A
Other languages
Japanese (ja)
Inventor
Akio Izumi
晶雄 泉
Nobuo Hirata
伸生 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8354897A priority Critical patent/JPH10281761A/en
Priority to DE1998113476 priority patent/DE19813476A1/en
Priority to KR1019980010454A priority patent/KR19980080693A/en
Publication of JPH10281761A publication Critical patent/JPH10281761A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance-measuring apparatus by which a highly accurate measurement with small temperature dependence can be realized by improving the mounting structure of a photoelectric conversion device (a CCD or the like). SOLUTION: Regarding a mounting structure onto a CCD light guide tube 16, an aluminum board 17 on which IC packages 21R, 21L for CCD's 20R, 20L as independent components are mounted and a flexible printed-wiring board 11, on its rear, to which tips of lead terminals 21a, at the IC packages 21R, 21L are fixed and bonded by solder pieces 22 are piled up. The lead terminals 21a at the IC packages 21R, 21L are inserted into slit-shaped lead-terminal through holes 17a which are formed in the board 17, and center limited regions on the rear of the IC packages 21R, 21L are bonded to the board 17 by a thermosetting adhesive 18. When a temperature change is generated, local regions in the center limited regions become immobile parts with reference to the board 17, remaining peripheral regions are freely expanded substantially, and the optical-axis interval B0 between the IC packages 21R, 21L is decided in proportion to the coefficient of thermal expansion of a blank (i.e., aluminum) for the substrate 17, i.e., the light guide tube 16, and to the temperature change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車追突防止装
置等に採用可能の外光三角方式の測距装置に関し、特
に、測距装置における光電変換装置の取付構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external light triangular distance measuring device which can be used in a vehicle rear-end collision prevention device and the like, and more particularly to a mounting structure of a photoelectric conversion device in the distance measuring device.

【0002】[0002]

【従来の技術】従来、例えば自動焦点カメラ等に搭載さ
れる外光三角方式(ステレオ方式)の測距装置の原理的
構成は、図6に示すように、被写体(被測定物体)に臨
んで両眼視差を作る左右一対の結像レンズ(正のレン
ズ)1R ,1L を含む複眼結像光学系と、光電変換・電
気系とから成る。この光電変換・電気系は、結像レンズ
R ,1L の略焦平面上に配置されてその結像の空間1
次元照度分布を電気信号列に変換する光電変換素子とし
てのCCD等のフォトセンサアレイ2R ,2L と、フォ
トセンサアレイ2R ,2L のセル(セグメント)毎の出
力信号を順次量子化する量子化回路3R ,3L と、収集
されたディジタル値の左右一対の結像データ列を基に所
要の論理演算処理を行い距離信号を算出する論理部4と
を有している。
2. Description of the Related Art Conventionally, a principle configuration of a triangular external light (stereo method) distance measuring device mounted on, for example, an autofocus camera or the like, as shown in FIG. It comprises a compound-eye imaging optical system including a pair of left and right imaging lenses (positive lenses) 1 R and 1 L for producing binocular parallax, and a photoelectric conversion / electric system. This photoelectric conversion / electrical system is arranged on a substantially focal plane of the imaging lenses 1 R and 1 L to form a space 1 of the imaging.
Photosensor arrays 2 R and 2 L such as CCDs as photoelectric conversion elements for converting a three-dimensional illuminance distribution into an electric signal sequence, and output signals for each cell (segment) of the photo sensor arrays 2 R and 2 L are sequentially quantized. It has quantization circuits 3 R and 3 L and a logic unit 4 for performing a required logical operation process based on a pair of left and right imaging data strings of the collected digital values to calculate a distance signal.

【0003】左右一対の結像レンズ1R ,1L は光軸S
R ,SL が相平行で焦点距離fe が等しく、同一面上に
配置されて両眼結像光学系を構成しており、被写体Tは
基準長(光軸間隔又は眼幅)Bだけ隔てた左右一対の結
像レンズ1R ,1L により結像され、焦平面に相当する
フォトセンサアレイ2R ,2L 上にはそれぞれ倒立実像
の被写体像(照度分布)が結ばれる。被写体Tまでの距
離dが有限長の場合は三角測量の原理(三角形の相似)
に基づいて次式で与えられる。
A pair of left and right image forming lenses 1 R and 1 L have an optical axis S
R and SL are parallel to each other, have the same focal length fe, and are arranged on the same plane to form a binocular imaging optical system. The subject T is separated by a reference length (optical axis interval or interpupillary distance) B. focused by a pair of left and right imaging lenses 1 R, 1 L, object image each of the photosensor array 2 R, on 2 L corresponding to focal plane inverted real (illuminance distribution) is tied. When the distance d to the subject T is finite, the principle of triangulation (similar to a triangle)
Is given by the following equation:

【0004】 d=B・fe /(X1 +X2 )=B・fe /X …(1) 但し、X1 ,X2 はフォトセンサアレイ2R ,2L 上の
像点位置と被写体Tが無限遠にあるときの像点位置との
オフセット距離、XはX1 とX2 の和で、被写体像の相
対的なずれ量(位相差)である。
D = B · fe / (X 1 + X 2 ) = B · fe / X (1) where X 1 and X 2 are the image point positions on the photosensor arrays 2 R and 2 L and the subject offset distance between the image point position at which T is at infinity, X is the sum of X 1 and X 2, a relative shift amount of the object image (phase difference).

【0005】従って、この空間的な位相差Xを検出する
ことにより被写体Tまでの距離dを求めることができ
る。式(1)から判るように、光軸間隔Bが広い程、ま
た焦点距離fe が長い程、測距精度が高まる。
Accordingly, the distance d to the subject T can be determined by detecting the spatial phase difference X. As can be seen from equation (1), the greater the optical axis interval B and the longer the focal length fe , the higher the distance measurement accuracy.

【0006】従来、測距装置は、ユーザー側で製造され
るカメラ等の完成品への搭載を容易にするため、ユニッ
ト化ないしモジュール化されており、例えば、図7に示
す測距ユニットが知られている。この測距ユニットは写
真カメラ搭載用のものであり、結像レンズ1R ,1L
一体的に備えたプラスチック製の2眼レンズ板(レンズ
モジュール)1と、左右一対の窓6R ,6L を備え、結
像レンズ1R ,1L からの入射光線を導き焦点距離fe
の鏡筒長さを確保する箱型アルミニウム製の光導筒(レ
ンズホルダー)6と、光導筒6の底面で結像光線が投影
される受光面を持つフォトセンサアレイ2R ,2L とを
備えている。
Conventionally, a distance measuring device is unitized or modularized in order to facilitate mounting on a completed product such as a camera manufactured by a user. For example, a distance measuring unit shown in FIG. 7 is known. Have been. This distance measuring unit is for mounting a photographic camera, and includes a plastic two-lens plate (lens module) 1 integrally provided with imaging lenses 1 R and 1 L , and a pair of left and right windows 6 R and 6 R. L , and guides the incident light rays from the imaging lenses 1 R and 1 L to form a focal length f e.
A light guide tube (lens holder) 6 made of a box-shaped aluminum for securing the length of the lens barrel, and photosensor arrays 2 R and 2 L having a light receiving surface on the bottom surface of the light guide tube 6 on which an image-forming light beam is projected. ing.

【0007】2眼レンズ板の光導筒6への取付構造に関
しては、2眼レンズ板1が結像レンズ1R ,1L の左右
端部に張出部8R ,8L を一体的に有しており、この張
出部8R ,8L のそれぞれには差込み溝部(ほぞ溝)9
が形成されていると共に、光導筒6の上面の左右端には
突起部(ほぞ)10が起立形成されている。そして、2
眼レンズ板1と光導筒6の組立作業においては、差込み
溝部9に突起部10を差し込んで三枚組接ぎとした後、
その嵌合面の隙間に接着剤を注入して両者を固着するよ
うにしている。
[0007] 2 with respect to the mounting structure of the light guide tube 6 of the eye lens plate, integrally have a projecting portion 8 R, 8 L in binocular lens plate 1 is left and right ends of the image forming lens 1 R, 1 L Each of the overhang portions 8 R and 8 L has an insertion groove (mortise groove) 9.
Are formed, and projections (mortises) 10 are formed upright at the left and right ends of the upper surface of the light guide tube 6. And 2
In the assembling work of the eye lens plate 1 and the light guide tube 6, after inserting the protrusion 10 into the insertion groove 9 to join three pieces,
An adhesive is injected into the gap between the fitting surfaces to fix the two.

【0008】フォトセンサアレイの光導筒6への取付構
造に関しては、図8に示す如く、独立部品のフォトセン
サアレイ2R ,2L のICパッケージ(セラミックスパ
ッケージ等)5R ,5L を搭載したアルミニウム製の基
板7と、その裏面にはICパッケージ5R ,5L のリー
ド端子5aの先端が半田22で固着したフレキシブル印
刷配線板11とが重ねられており、基板7の四隅が光導
筒6の裏面にネジ止めされている。ICパッケージ
R ,5L のリード端子5aは基板7に形成されたスリ
ット状のリード端子貫通孔7aに挿し込まれており、I
Cパッケージ5R ,5L の裏面は熱硬化型接着剤12a
で基板7に全面接着されている。そして、ICパッケー
ジ5R ,5L のリード端子5aが張り出していない裏面
短辺には仮固定用の紫外線硬化型接着剤12bで接着さ
れている。
[0008] With respect to the structure for mounting the light guide tube 6 of the photosensor array, as illustrated in FIG. 8, was equipped with an IC package (ceramic package or the like) 5 R, 5 L of the photosensor array 2 R, 2 L of independent parts and aluminum substrate 7, the IC package 5 R on the back surface, 5 the tip of the L of the lead terminals 5a has a flexible print circuit board 11 which is fixed is overlapped with solder 22, the four corners of the substrate 7 photoconductive tube 6 It is screwed to the back of. IC package 5 R, 5 L of the lead terminals 5a are inserted into the slit-shaped lead terminal through holes 7a formed on the substrate 7, I
C Package 5 R, 5 L of the back of the thermosetting adhesive 12a
To the entire surface of the substrate 7. Then, the IC package 5 R, 5 L backside short side lead terminals 5a are not overhang are adhered together by an ultraviolet curable adhesive 12b for temporary fixing.

【0009】このような外光三角方式の測距装置におい
て、測距精度を高めるためには、前述したように、Bf
e の値を大きくすれば良い訳であるが、焦点距離fe
長くすると、レンズのF数が大きくなり、レンズが暗く
なるため像面照度が減少する。従って、焦点距離fe
短いレンズを用い、像面照度を高めることが望ましい。
しかも、焦点距離fe を短くすると、光導筒6の鏡筒長
さを短縮できるので、薄型の測距装置の実現に好都合で
ある。反面、焦点距離fe を短縮する分、光軸間隔Bを
広くして測距精度を劣化させないようにする。このた
め、自動車追突防止装置に採用される測距装置のよう
に、高精度測距が要求されるものについては、例えば、
焦点距離fe が2cm程度で、光軸間隔Bが6cm程度の薄
型測距装置が要請されている。
In such an external light triangulation type distance measuring device, as described above, Bf
It is sufficient to increase the value of e. However, when the focal length fe is increased, the F number of the lens increases, and the lens becomes darker, so that the image plane illuminance decreases. Therefore, it is desirable to use a lens having a short focal length fe and increase the image plane illuminance.
Moreover, when the focal length fe is shortened, the length of the lens barrel of the light guide tube 6 can be shortened, which is convenient for realizing a thin distance measuring device. On the other hand, the distance B between the optical axes is increased by an amount corresponding to the reduction of the focal length fe , so that the distance measurement accuracy is not deteriorated. For this reason, for a device requiring high-precision distance measurement, such as a distance measurement device employed in a vehicle rear-end collision prevention device, for example,
There is a demand for a thin distance measuring device having a focal length fe of about 2 cm and an optical axis interval B of about 6 cm.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
測距装置にあっては、次のような問題点がある。
However, the above distance measuring device has the following problems.

【0011】 フォトセンサアレイの取付構造におい
て、基板7の材質と光導筒6の材質が等しい場合(例え
ばアルミニウム)、その線膨張率をβとすれば、組付時
の温度に比しΔtの温度変化が生じると、光軸間隔は次
式で与えられる。
In the mounting structure of the photosensor array, when the material of the substrate 7 and the material of the light guide tube 6 are the same (for example, aluminum), assuming that the coefficient of linear expansion is β, the temperature Δt is higher than the temperature at the time of assembly. When a change occurs, the optical axis interval is given by the following equation.

【0012】 B0 (1+β・Δt) …(2) 但し、B0 は組み付け時の温度では光軸間隔である。B 0 (1 + β · Δt) (2) where B 0 is the optical axis interval at the temperature at the time of assembly.

【0013】温度変化により基板7が熱膨張すると同時
にICパッケージ5R ,5L も熱膨張するため、実際の
光軸間隔の変化量は基板7の伸縮量B0 β・ΔtにIC
パッケージ5R ,5L の伸縮量が重畳している。ところ
が、ICパッケージ5R ,5L の裏面は熱硬化型接着剤
12aで基板7に全面接着されているため、接着面の接
着度合いの違いによりICパッケージ5R ,5L には偏
在した熱応力が発生している。このため、ICパッケー
ジ5R ,5自身の熱膨張を定量的に評価することは困難
であり、また左右独立のICパッケージ5R ,5L では
その熱膨張が異なっている。従って、組み付け時の温度
では光軸間隔がB0 であっても、Δtの温度変化が生じ
たときは、光軸間隔はもやは上記の式(2)では与えら
れない。
Since the IC packages 5 R and 5 L thermally expand at the same time as the substrate 7 thermally expands due to a temperature change, the actual amount of change in the optical axis interval is determined by the amount of expansion / contraction B 0 β · Δt of the substrate 7.
The expansion and contraction amounts of the packages 5 R and 5 L are superimposed. However, since the back surfaces of the IC packages 5 R and 5 L are entirely adhered to the substrate 7 with the thermosetting adhesive 12 a, the thermal stress unevenly distributed on the IC packages 5 R and 5 L due to the difference in the degree of adhesion of the adhesion surfaces. Has occurred. Therefore, it is difficult to quantitatively evaluate the thermal expansion of the IC packages 5 R and 5 themselves, and the thermal expansions of the left and right independent IC packages 5 R and 5 L are different. Therefore, even if the optical axis interval is B 0 at the temperature at the time of assembly, when the temperature change of Δt occurs, the optical axis interval is no longer given by the above equation (2).

【0014】それ故、温度センサを配置して温度補償を
行うことができない。
Therefore, it is not possible to perform temperature compensation by disposing a temperature sensor.

【0015】 他方、レンズの取付構造において、2
眼レンズ板1はプラスチックレンズであることから、硝
材と異なり、安価ではあるが、熱膨張が大きいという不
利益がある。そして、光軸間隔Bを広くすればする程、
熱膨張の伸縮量が顕在化する。
On the other hand, in the lens mounting structure,
Since the eye lens plate 1 is a plastic lens, it is inexpensive, unlike a glass material, but has the disadvantage of large thermal expansion. And the wider the optical axis interval B, the more
The amount of expansion and contraction of thermal expansion becomes apparent.

【0016】例えば、図8(A)に示す如く、2眼レン
ズ板1の両側の差込み溝部9に光導筒6の突起部10を
差し込んで固着したときの温度において、光軸間隔Bが
0 で与えられると、それより温度がΔtだけ上昇した
ときでは、2眼レンズ板1のプラスチックの線膨張率を
αとし、2眼レンズ板1が自由熱膨張すると仮定すれ
ば、光軸間隔Bt はB0 (1+α・Δt)で与えられ
る。しかし、2眼レンズ板1はそれより線膨張率の小さ
なアルミニウム製の光導筒6の突起部10間に挟まれて
拘束されているため、図9(A)の矢印で示す熱圧縮力
が2眼レンズ板1に加わっているので、アルミニウムの
線膨張率をβ(<α)とすれば、実際の光軸間隔B
t は、次の不等式で与えられるに過ぎず、一義的に特定
できない。
For example, as shown in FIG. 8A, at the temperature at which the projections 10 of the light guide tube 6 are inserted and fixed in the insertion grooves 9 on both sides of the two-lens lens plate 1, the optical axis interval B is B 0. When the temperature rises by Δt, if the linear expansion coefficient of the plastic of the two-lens lens plate 1 is α and the free-lens expansion of the two-lens lens plate 1 is assumed, the optical axis interval B t Is given by B 0 (1 + α · Δt). However, since the twin-lens plate 1 is sandwiched and restrained between the projections 10 of the aluminum light guide tube 6 having a smaller linear expansion coefficient, the thermal compression force indicated by the arrow in FIG. Since the linear expansion coefficient of aluminum is β (<α) since it is added to the eye lens plate 1, the actual optical axis distance B
t is simply given by the following inequality and cannot be uniquely identified.

【0017】 B0 (1+β・Δt)<Bt <B0 (1+α・Δt) …(3) このように、温度変化Δtにより熱膨張で光軸間隔は必
然的に伸縮するものであるが、式(3)に示すように、
機械的拘束力の按配やヤング率の相違等の複雑さから伸
縮量の温度依存性が明快一義的に決定できず、ある温度
での光軸間隔は曖昧な範囲(誤差)内で不定になってい
る。このため、温度センサを2眼レンズ板1の近傍箇所
に配して光軸間隔の温度補償を試みようとしても、式
(3)で与えられるような原理誤差が紛れ込んでいるた
め、適正な温度補償ができない。特に、低温又は高温に
なればなる程、原理誤差B0 (α−β)Δtが線形に拡
大するため、自動車追突防止装置に採用される測距装置
のように、厳しい温度変化の環境下で高精度が要求され
る測距装置では、もやは、プラスチック製のレンズとア
ルミニウム等の金属製光導筒との組み合わせは無理があ
る。
B 0 (1 + β · Δt) <B t <B 0 (1 + α · Δt) (3) As described above, the optical axis interval naturally expands and contracts due to thermal expansion due to temperature change Δt. As shown in equation (3),
The temperature dependence of the amount of expansion and contraction cannot be determined clearly and unambiguously due to the complexity of apportionment of mechanical restraint and differences in Young's modulus, and the optical axis spacing at a certain temperature becomes indefinite within an ambiguous range (error). ing. For this reason, even if an attempt is made to attempt to compensate the temperature of the optical axis interval by arranging a temperature sensor in the vicinity of the two-lens lens plate 1, the principle error given by the equation (3) is introduced. I can't compensate. In particular, the principle error B 0 (α−β) Δt increases linearly as the temperature becomes lower or higher, and therefore, in an environment of severe temperature change, such as a distance measuring device used in an automobile rear-end collision prevention device. In a distance measuring apparatus that requires high accuracy, it is impossible to combine a plastic lens with a light guide tube made of metal such as aluminum.

【0018】光導筒6もプラスチック製とし、α≒βと
近似させれば良いが、これは光導筒6の線膨張率を大き
くすることを意味するため、光導筒6とフォトセンサア
レイ2R ,2L との取付構造における熱応力の影響が強
まることになるため、却って位相差Xの測定精度に直接
の影響を及ぼす。従って、温度依存性の少ない高精度測
定の実現と結像レンズ1R ,1L のプラスチック化とは
二律背反していた。
The light guide tube 6 is also made of plastic and may be approximated to α ≒ β. However, this means that the linear expansion coefficient of the light guide tube 6 is increased. Therefore, the light guide tube 6 and the photosensor array 2 R , Since the influence of the thermal stress in the mounting structure with 2 L is increased, it directly affects the measurement accuracy of the phase difference X. Therefore, the realization of high-precision measurement with little temperature dependence and the plasticization of the imaging lenses 1 R and 1 L conflicted with each other.

【0019】そこで、上記問題点に鑑み、本発明の第1
の課題は、光電変換装置の取付構造を改善するとによ
り、温度依存性の少ない高精度測定を実現できる測距装
置を提供することにある。
In view of the above problems, the first aspect of the present invention
An object of the present invention is to provide a distance measuring device capable of realizing high-precision measurement with little temperature dependency by improving the mounting structure of the photoelectric conversion device.

【0020】また、本発明の第2の課題は、温度依存性
の少ない高精度測定の実現と共に結像レンズの構造とそ
の取付構造を改善することにより、結像レンズのプラス
チックレンズ化による低コスト化を実現できる測距装置
を提供することにある。
A second object of the present invention is to realize a high-precision measurement with little temperature dependency and to improve the structure of the imaging lens and its mounting structure, thereby reducing the cost of the imaging lens by using a plastic lens. It is an object of the present invention to provide a distance measuring device capable of realizing integration.

【0021】[0021]

【課題を解決するための手段】第1の課題を解決するた
めに、本発明の講じた第1の手段は、一対の光電変換装
置の固定部位を基板に対して同位置でスポット固定した
点にある。即ち、本発明は、光軸が平行配置であって相
等しい独立部品の第1の結像レンズと第2の結像レンズ
が光導筒のレンズ受け面上に取り付けられており、測距
対象に臨んで結像間に視差を作る一対の結像光学系と、
第1の結像レンズによる結像の照度分布を電気信号列に
変換する第1の光電変換装置と第2の結像レンズによる
結像の照度分布を電気信号列に変換する第2の光電変換
装置とを搭載する基板が前記光導筒の裏面取付面に固定
されて成る測距装置において、上記両変換装置の裏面の
うち光軸間隔を含む線上で同位置の局部領域にて前記基
板の面とスポット固定して成ることを特徴とする。
Means for Solving the Problems In order to solve the first problem, a first means adopted by the present invention is that a fixed portion of a pair of photoelectric conversion devices is spot-fixed at the same position with respect to a substrate. It is in. That is, according to the present invention, the first imaging lens and the second imaging lens, which are independent components having the same optical axis and are parallel to each other, are mounted on the lens receiving surface of the light guide tube, and are used for distance measurement. A pair of imaging optics that create parallax between the imaging and
A first photoelectric conversion device that converts the illuminance distribution of the image formed by the first imaging lens into an electric signal sequence, and a second photoelectric conversion that converts the illuminance distribution of the image formed by the second imaging lens into an electric signal sequence In a distance measuring device in which a substrate on which the device is mounted is fixed to a back surface mounting surface of the light guide tube, the surface of the substrate is located at a local area at the same position on a line including an optical axis interval on the back surfaces of the two conversion devices. And a spot fixed.

【0022】このように、光電変換装置の取付構造にお
いては、両光電変換装置の裏面の同位置の局所領域が基
板にスポット固定されているため、温度変化が生じる
と、光電変換装置の局所領域は基板の熱膨張に追従する
ため、局所領域が基板に対する不動部位となるが、局所
領域以外の領域は拘束されていないので実質的に自由膨
張することになる。このため、光電変換装置の熱膨張は
相殺されることになり、両光電変換装置間の光軸間隔は
基板の熱膨張の影響を受けるに過ぎない。つまり、両光
電変換装置間の光軸間隔は基板の熱膨張率と温度変化に
比例して決まるようになる。従って、温度センサを配備
することにより、両光電変換装置間の光軸間隔の温度補
償を行うことができ、温度変化に依存しない高精度測距
が可能となる。
As described above, in the mounting structure of the photoelectric conversion device, the local region at the same position on the back surface of both photoelectric conversion devices is spot-fixed to the substrate. Since the substrate follows the thermal expansion of the substrate, the local region becomes an immovable portion with respect to the substrate, but the region other than the local region is substantially free from expansion because it is not constrained. For this reason, the thermal expansion of the photoelectric conversion device is offset, and the optical axis interval between the two photoelectric conversion devices is only affected by the thermal expansion of the substrate. That is, the optical axis interval between the two photoelectric conversion devices is determined in proportion to the coefficient of thermal expansion of the substrate and a change in temperature. Therefore, by providing the temperature sensor, it is possible to perform temperature compensation of the optical axis interval between the two photoelectric conversion devices, and it is possible to perform high-accuracy distance measurement independent of a temperature change.

【0023】この局所領域としては受光面の原点に対応
した部分、即ち光軸を中心とする中心限定領域であるこ
とが望ましい。
It is desirable that the local region is a portion corresponding to the origin of the light receiving surface, that is, a center-limited region centered on the optical axis.

【0024】特に、基板面のうち固着代限定用の凹部が
形成されて成る場合は、接着剤の固着代が確実に限定で
きるため、両光電変換装置の固着度合いを同等化でき、
相殺性を高めることができる。
In particular, in the case where a concave portion for limiting the amount of fixation is formed on the substrate surface, the amount of fixation of the adhesive can be reliably limited, so that the degree of fixation of both photoelectric conversion devices can be equalized.
The offset can be enhanced.

【0025】第2の課題を解決するために、本発明の講
じた第2の手段は、相等しい独立部品の一対の結像レン
ズを用い、両結像レンズを光導筒のレンズ受け面に対し
て光軸間隔を含む線上で同方向同等に拘束力が少なく熱
膨張できる柔構造で取り付けたことを特徴としている。
即ち、両結像レンズのそれぞれの周辺領域のうち光軸に
対して光軸間隔を含む線上で同側に同距離だけオフセッ
トした基点部位にて上記レンズ受け面と固定して成るこ
とを特徴とする。
In order to solve the second problem, a second means adopted by the present invention is to use a pair of imaging lenses of the same independent parts, and to connect both imaging lenses to the lens receiving surface of the light guide tube. It is characterized in that it is mounted with a flexible structure that has a small restraining force and is thermally expandable in the same direction on a line including the optical axis interval.
That is, it is characterized in that it is fixed to the lens receiving surface at a base point portion offset by the same distance on the same side on a line including the optical axis interval with respect to the optical axis in the respective peripheral regions of both imaging lenses. I do.

【0026】温度変化によりいずれの結像レンズの各点
は基点部位を不動点としてレンズ受け面に対して熱膨張
で微小変位を起こすが、結像レンズの固着部位は光軸に
対して光軸間隔を含む線上で同側に同距離だけオフセッ
トした基点部位であるため、いずれの結像レンズの軸心
も光軸間隔を含む線上で同方向に同距離だけ熱膨張で変
位する。そのため、結像レンズ自身が熱膨張しても、そ
れに基づく光軸間隔の変化は生じない。ただ、結像レン
ズが取り付けられた基体たるレンズ受け面も熱膨張をす
るため、結像レンズの基点部位がレンズ受け面の熱膨張
に追従して変位するので、その熱膨張に基づいて光軸間
隔は変化するが、光軸間隔はレンズ受け面即ち光導筒の
素材の熱膨張率と温度変化に比例して一義的に決まるよ
うになるため、原理誤差の無い温度補償が可能となり、
温度特性の向上により高精度測距が実現できる。このよ
うに、光軸間隔の温度依存性は結像レンズの熱膨張と無
関係になるため、熱膨張率の大きなプラスチックレンズ
の使用が可能となり、低コスト化を実現できる。
Due to the temperature change, each point of any of the imaging lenses causes a minute displacement due to thermal expansion with respect to the lens receiving surface with the base portion as a fixed point, but the fixed portion of the imaging lens is at the optical axis with respect to the optical axis. Since the base portions are offset by the same distance on the same side on the line including the interval, the axis of any of the imaging lenses is displaced by the same distance in the same direction and the same distance on the line including the optical axis interval. Therefore, even if the imaging lens itself thermally expands, the optical axis interval does not change based on the thermal expansion. However, since the lens receiving surface, which is the base body on which the imaging lens is mounted, also undergoes thermal expansion, the base portion of the imaging lens is displaced following the thermal expansion of the lens receiving surface. Although the interval changes, the optical axis interval is uniquely determined in proportion to the thermal expansion coefficient and the temperature change of the lens receiving surface, that is, the material of the light guide tube.
High accuracy ranging can be realized by improving the temperature characteristics. As described above, since the temperature dependency of the optical axis interval is independent of the thermal expansion of the imaging lens, a plastic lens having a large thermal expansion coefficient can be used, and cost reduction can be realized.

【0027】[0027]

【発明の実施の形態】次に、本発明の実施形態を添付図
面に基づいて説明する。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings.

【0028】図1は本発明の実施形態に係る測距装置を
示す平面図、図2は図1(A)中のA−A′線に沿って
切断した状態を示す切断矢視図、図3(A)は同測距装
置に用いる結像レンズを示す平面図、図3(B)は同結
像レンズを示す底面図、図3(C)は図3(A)中のC
−C′線に沿って切断した状態を示す切断矢視図、図4
(A)は同測距装置に用いる板バネ押さえを示す平面
図、図4(B)は同板バネ押さえを示す側面図、図4
(C)は図4(A)中のC−C′線に沿って切断した状
態を示す切断矢視図、図5(A)は同測距装置に用いる
CCD搭載基板を示す部分平面図、図5(B)は同CC
D搭載基板にCCDを搭載した状態を示す部分平面図、
図5(C)は図5(B)中のC−C線に沿って切断した
切断矢視図である。
FIG. 1 is a plan view showing a distance measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA 'in FIG. 3 (A) is a plan view showing an imaging lens used in the distance measuring apparatus, FIG. 3 (B) is a bottom view showing the imaging lens, and FIG. 3 (C) is C in FIG. 3 (A).
FIG. 4 is a cross-sectional view showing a state cut along the -C 'line.
4A is a plan view showing a leaf spring retainer used in the distance measuring apparatus, FIG. 4B is a side view showing the leaf spring retainer, and FIG.
FIG. 5C is a sectional view taken along the line CC 'in FIG. 4A, and FIG. 5A is a partial plan view showing a CCD mounting substrate used in the distance measuring device. FIG. 5 (B) shows the same CC
A partial plan view showing a state where the CCD is mounted on the D mounting board,
FIG. 5C is a sectional view taken along the line CC in FIG. 5B.

【0029】本例の左右一対の結像光学系を構成する結
像レンズ50R (50L )の取付構造は、アルミニウム
・ダイキャスト製の箱型光導筒16のレンズ受け部16
aの窓16R (16L )に合わさっている。光軸S
R (SL )が平行配置であって左右独立部品で相等しい
結像レンズ50R (50L )が設けられている。
The mounting structure of the imaging lens 50 R (50 L ) constituting the pair of left and right imaging optical systems of this embodiment is a lens receiving portion 16 of an aluminum die-cast box light guide tube 16.
It fits the window 16 R (16 L ) of a. Optical axis S
An imaging lens 50 R (50 L ) is provided in which R (S L ) is arranged in parallel and left and right independent components are equal.

【0030】光導筒16の背面(裏面)側においては、
結像レンズ50R (50L )の結像の空間照度分布を時
系列のデータ信号に変換するCCD20R (20L )を
搭載したアルミニウム製基板17がネジ止めで取り付け
られている。CCDの光導筒16への取付構造に関して
は、図5に示す如く、独立部品のCCD20R (2
L )のデュアルインライン型のICパッケージ21R
(21L )を搭載したアルミニウム製の基板17と、そ
の裏面にはICパッケージ21R (21L )のリード端
子21aの先端が半田22で固着したフレキシブル印刷
配線板11とが重ねられている。ICパッケージ21R
(21L )のリード端子21aは基板17に形成された
スリット状のリード端子貫通孔17aに挿し込まれてお
り、ICパッケージ21R (21L )の裏面の中心限定
領域のみが熱硬化型接着剤18で基板7に接着されてい
る。基板17には光導筒16へのネジ止め用の取付孔1
7bが形成されている。またスリット状のリード端子貫
通孔17a,17aの内側に接着代限定用の凹部17
c,17cが形成されており、熱硬化型接着剤18の接
着代が広がらないように規制している。更に、ICパッ
ケージ21R (21L )のリード端子21aが張り出し
ていない裏面短辺の2箇所には仮固定用の紫外線硬化型
接着剤19で接着されている。そして、基板17とフレ
キシブル印刷配線板11との間には両面剥離紙を剥離さ
せて露出した粘着層で貼り付けた粘着剤付きパッド40
が挟まれている。ICパッケージ21R (21L )のリ
ード端子21aがこの粘着剤付きパッド40を突き抜い
ている。
On the back (back) side of the light guide tube 16,
An aluminum substrate 17 having a CCD 20 R (20 L ) for converting a spatial illuminance distribution of the image formed by the imaging lens 50 R (50 L ) into a time-series data signal is mounted by screws. For the mounting structure of the CCD light guide tube 16, as shown in FIG. 5, CCD 20 independent component R (2
0 L ) Dual in-line type IC package 21 R
An aluminum substrate 17 on which (21 L ) is mounted and a flexible printed wiring board 11 to which the ends of lead terminals 21 a of an IC package 21 R (21 L ) are fixed by solder 22 are laminated on the back surface. IC package 21 R
The (21 L ) lead terminal 21 a is inserted into a slit-shaped lead terminal through hole 17 a formed in the substrate 17, and only the center-limited region on the back surface of the IC package 21 R (21 L ) is thermosetting adhesive. It is adhered to the substrate 7 with the agent 18. Mounting hole 1 for screwing to light guide tube 16 in substrate 17
7b is formed. Also, a recessed portion 17 for limiting an adhesive margin is provided inside the slit-shaped lead terminal through holes 17a, 17a.
c and 17c are formed to regulate the bonding margin of the thermosetting adhesive 18 so as not to spread. Further, the two lead-side terminals 21a of the IC package 21R ( 21L ) where the lead terminals 21a do not protrude are bonded with an ultraviolet curing adhesive 19 for temporary fixing. Then, between the substrate 17 and the flexible printed wiring board 11, the double-sided release paper is peeled off and the adhesive pad 40 is attached with an adhesive layer which is exposed.
Is sandwiched. Lead terminals 21a of the IC package 21 R (21 L) is Tsukinui this with adhesive pad 40.

【0031】他方、本例の結像レンズ50R (50L
は、図3に示す如く、実質的に平凸の単レンズであり、
球面又は非球面のレンズ曲面部51とその周辺鍔部52
とが一体成形されたPPS等のプラスチックレンズであ
る。結像レンズ50R (50L )の周辺鍔部52の裏面
には、半月状の固着代用合わせ段部53の中心に起立し
た基点円柱突起53aとこの突起53aを挟んで近傍上
下位置で起立した補助円柱突起53b,53bが一体的
に形成されている。この基点円柱突起53aの中心は軸
心Oから距離Eだけオフセットしている。軸心Oとこの
基点円柱突起53aを結ぶ線(X軸)の上で基点円柱突
起53aとは反対側には調心用の縁欠き部54が形成さ
れている。結像レンズ50R (50L )の周辺鍔部52
の表面では、基点円柱突起53aの真上位置を頂点と
し、それを通るX軸が底辺への垂線と成る2等辺三角形
(正三角形も含む)の3頂点に圧子受け突起55a,5
5b,55cが一体的に形成されている。圧子受け突起
55a,55b,55cの頂面は凸曲面に形成されてい
る。そして、結像レンズ50R (50L )の周辺鍔部5
2の裏面のうち、圧子受け突起55b,55cの真下位
置に滑り代用の浮かせ球面突起56b,56cが一体的
に形成されている。また、Y軸上にも浮かせ小突起57
a,57bが一体的に形成されている。
On the other hand, the imaging lens 50 R (50 L ) of the present embodiment.
Is a substantially plano-convex single lens as shown in FIG.
Spherical or aspheric lens curved surface portion 51 and its peripheral flange portion 52
Are plastic lenses such as PPS integrally molded. On the back surface of the peripheral flange portion 52 of the imaging lens 50 R (50 L ), a base cylindrical projection 53a standing at the center of the crescent-shaped fixing step 53 and standing up and down near the projection 53a. The auxiliary columnar projections 53b, 53b are integrally formed. The center of the base column projection 53a is offset from the axis O by a distance E. On a line (X-axis) connecting the axis O and the base columnar projection 53a, an alignment notch 54 is formed on the side opposite to the base columnar projection 53a. Peripheral flange 52 of the imaging lens 50 R (50 L )
On the surface of, the indenter receiving protrusions 55a, 5a are formed at three vertices of an isosceles triangle (including an equilateral triangle) in which the position just above the base cylindrical protrusion 53a is a vertex, and the X-axis passing therethrough is perpendicular to the base.
5b and 55c are integrally formed. The top surfaces of the indenter receiving projections 55a, 55b, 55c are formed as convex curved surfaces. Then, the peripheral flange portion 5 of the imaging lens 50 R (50 L )
On the back surface of the slider 2, floating spherical projections 56 b, 56 c for sliding substitution are integrally formed directly below the indenter receiving projections 55 b, 55 c. In addition, the small projection 57 floating on the Y axis is also provided.
a and 57b are integrally formed.

【0032】このような形状の左右独立部品の結像レン
ズ50R (50L )は、基点円柱突起55aをレンズ受
け部16aの止め穴16bに嵌め合せ、基点円柱突起5
5aの周囲の固着代用合わせ段部53に接着剤を塗布し
て固着されている。なお、接着剤を塗布する前に、縁欠
き部54に調心用レバーを当てて結像レンズ50R (5
L )を基点円柱突起55aを回転中心にして回動さ
せ、光軸合わせを行う。
In the imaging lens 50 R (50 L ) of the left and right independent parts having such a shape, the base cylindrical protrusion 55 a is fitted into the stop hole 16 b of the lens receiving portion 16 a, and the base cylindrical protrusion 5 is formed.
An adhesive is applied to and fixed to the fixing substitute step 53 around the periphery 5a. Before the adhesive is applied, the alignment lens is applied to the edge notch 54 so that the imaging lens 50 R (5
0 L ) is rotated about the base cylindrical protrusion 55a as the center of rotation to perform optical axis alignment.

【0033】そして、図1に示すように、両結像レンズ
50R (50L )の基点円柱突起55aは光軸間隔B0
を含む線(X軸)で同側にオフセット距離Eだけオフセ
ットしている。
As shown in FIG. 1, the base cylindrical projection 55a of each of the imaging lenses 50 R (50 L ) has an optical axis interval B 0.
Are offset to the same side by an offset distance E on the line (X-axis) including.

【0034】本例の片端固着構造の結像レンズ50
R (50L )は、周辺鍔部52を板バネ押え60で上か
ら弾力的に押さえ込まれており、縁欠き部54側がレン
ズ受け部16aから浮き上がるのを阻止している。本例
の板バネ押え60は、図4に示す如く、円形絞り開口6
1aを持つリング状開口絞り板61と、その絞り板61
の直径方向に相離反して一体的に張り出した屈曲脚片6
2,63と、フランジ成形プレスで形成された結像レン
ズのコバを被う遮光スカート64,65とを有してい
る。リング状開口絞り板61は、レンズの圧子受け突起
55a,55b,55cに対応した2等辺三角形の頂点
にプレス成形で膨出部とした圧子66a,66b,66
cを有している。屈曲脚片62,63の先端は二股状に
分かれており、図1に示す如く、この二股間にワッシャ
ー71を合わせて屈曲脚片62,63をネジ72でレン
ズ受け板16aに螺着される。リング状開口絞り板61
のうち屈曲脚片62,63との連結部分にはプレス成形
で膨出形成された開口変形抑制リブ77,78が形成さ
れている。
The imaging lens 50 having a one-end fixed structure according to this embodiment.
R (50 L ) has the peripheral flange 52 elastically pressed down from above by a leaf spring retainer 60, and prevents the edge notch 54 from rising from the lens receiving portion 16 a. As shown in FIG. 4, the leaf spring retainer 60 of this embodiment has a circular aperture opening 6.
1a, a ring-shaped aperture stop plate 61, and the stop plate 61
Bent leg pieces 6 projecting integrally in opposition to each other in the diametrical direction
2 and 63, and light-shielding skirts 64 and 65 covering the edges of the imaging lens formed by the flange forming press. The ring-shaped aperture stop plate 61 has indenters 66a, 66b, 66 formed as bulges by press molding at the vertices of an isosceles triangle corresponding to the indenter receiving projections 55a, 55b, 55c of the lens.
c. The distal ends of the bent leg pieces 62 and 63 are bifurcated, and as shown in FIG. 1, a washer 71 is fitted between the two forks and the bent leg pieces 62 and 63 are screwed to the lens receiving plate 16a with screws 72. . Ring-shaped aperture stop plate 61
Opening deformation suppressing ribs 77 and 78 bulged by press molding are formed at connecting portions with the bent leg pieces 62 and 63.

【0035】このように、CCDの取付構造において
は、ICパッケージ21R (21L )の裏面の中心限定
領域が熱硬化型接着剤18で基板7に接着(スポット固
定)されているため、温度変化が生じると、ICパッケ
ージ21R (21L )の裏面の中心限定領域は基板17
の伸縮に追従するため、中心限定領域の局部領域が基板
17に対する不動部位となる。そして、ICパッケージ
21R (21L )の裏面の周辺領域は拘束されていない
ので実質的に自由膨張することになる。このため、IC
パッケージ21R (21L )間の光軸間隔Bt は基板1
7の熱膨張の影響を受けるに過ぎない。その光軸間隔B
t は基板17即ち光導筒16の素材(アルミニウム)の
熱膨張率βと温度変化tに比例して決まるようになる。
つまり、ICパッケージ21R (21L )間の光軸間隔
t は温度変化により次式で与えられる。 Bt =B0 (1+βΔt) …(4) 従って、温度センサを配備することにより、光軸間隔B
t の温度補償を行うことができ、温度変化に依存しない
高精度測距が可能となる。
As described above, in the CCD mounting structure, since the center-limited region on the back surface of the IC package 21 R (21 L ) is bonded (spot-fixed) to the substrate 7 with the thermosetting adhesive 18, the temperature is reduced. When a change occurs, the center limited area on the back surface of the IC package 21 R (21 L ) is
In order to follow the expansion and contraction of the substrate 17, the local region of the center limited region becomes an immovable portion with respect to the substrate 17. Then, the peripheral region on the back surface of the IC package 21 R (21 L ) is substantially free from expansion since it is not restrained. Therefore, IC
Package 21 R (21 L) the optical axis interval B t between the substrate 1
7 is only affected by the thermal expansion. The optical axis interval B
t is determined in proportion to the thermal expansion coefficient β of the substrate 17, that is, the material (aluminum) of the light guide tube 16, and the temperature change t.
That, IC package 21 R (21 L) the optical axis interval B t between is given by the temperature change. B t = B 0 (1 + βΔt) (4) Therefore, by disposing the temperature sensor, the optical axis interval B
Temperature compensation of t can be performed, and high-precision distance measurement independent of temperature change can be performed.

【0036】特に、固着代限定用の凹部17c,17c
が形成されており、接着剤の固着代が確実に限定できる
ため、左右の固着度合いを同等化できる。
In particular, the recesses 17c, 17c for limiting the fixing allowance
Is formed, and the amount of fixation of the adhesive can be reliably limited, so that the degree of fixation on the left and right can be equalized.

【0037】更に、本例では、基板17とフレキシブル
印刷配線板11との間には粘着剤付きパッド40を挟ん
であり、リード端子貫通孔17aの底が塞がれているた
め、基板17とフレキシブル印刷配線板11との隙間に
塵埃等が進入せず、リード端子間やフレキシブル印刷配
線板11上の印刷配線間の短絡故障など防止できる。
Further, in this embodiment, the adhesive-coated pad 40 is interposed between the substrate 17 and the flexible printed wiring board 11, and the bottom of the lead terminal through hole 17a is closed. Dust or the like does not enter the gap between the flexible printed wiring board 11 and short circuit failure between lead terminals or between printed wiring on the flexible printed wiring board 11 can be prevented.

【0038】また、この粘着剤付きパッド40はフレキ
シブル印刷配線板11を面接触で支持しているので、リ
ード21aと半田22との固着部分に過度なストレスが
掛かり難くなり、接続故障等を防止できる。
Further, since the adhesive pad 40 supports the flexible printed wiring board 11 by surface contact, an excessive stress is hardly applied to a fixing portion between the lead 21a and the solder 22, thereby preventing a connection failure and the like. it can.

【0039】他方、温度変化によりいずれの結像レンズ
50R (50L )もレンズ受け部16aも熱膨張を起こ
す。結像レンズ50R (50L )の各点は基点円柱突起
55aをアンカー(投錨)点としてレンズ受け部16a
に対して熱膨張変位を起こすが、結像レンズ50R (5
L )の基点円柱突起55aは光軸SR (SL )に対し
て光軸間隔Bt を含む線(X軸)上で同側に同距離Eだ
けオフセットした位置であるため、いずれの結像レンズ
50R (50L )の軸心Oは光軸間隔Bt を含む線(X
軸)上で同方向に同距離だけ変位する。そのため、結像
レンズ50R (50L )自体が熱膨張しても、それに基
づく光軸間隔Bt の変化は生じない。熱膨張による影響
は、結像レンズ50R (50L )が取り付けられた基体
たるレンズ受け部16aから受けるだけである。即ち、
光軸間隔Bt はレンズ受け部16a即ち光導筒16の素
材(アルミニウム)の熱膨張率βと温度変化Δtに比例
して一義的に決まるようになる。つまり、レンズ間の光
軸間隔Bt も、上記(4)式で与えられる。
On the other hand, both the imaging lens 50 R (50 L ) and the lens receiving portion 16a undergo thermal expansion due to a temperature change. Each point of the imaging lens 50 R (50 L ) is defined by using the base cylindrical projection 55a as an anchor (anchor) point and a lens receiving portion 16a.
Causes thermal expansion displacement, but the imaging lens 50 R (5
0 L ) is a position offset by the same distance E to the same side on the line (X-axis) including the optical axis interval Bt with respect to the optical axis S R (S L ). the axis O is a line including the optical axis interval B t of the imaging lens 50 R (50 L) (X
On the axis) in the same direction and the same distance. Therefore, even when the imaging lens 50 R (50 L) itself is thermally expanded, the change in the optical axis interval B t based thereon does not occur. The effect of the thermal expansion is only received from the lens receiving portion 16a, which is the base on which the imaging lens 50R ( 50L ) is attached. That is,
Optical axis distance B t is proportional to the coefficient of thermal expansion β and the temperature change Δt of the lens receiving portion 16a i.e. the optical tube 16 material (aluminum) so determined uniquely. That is, the optical axis spacing B t between lenses is given by equation (4).

【0040】このため、レンズ受け部16a上の結像レ
ンズ50R (50L )間に温度センサを設けて温度計測
を行うことにより、原理誤差の無い温度補償が可能とな
り、温度特性の向上により高精度測距が実現できる。こ
のように、光軸間隔Bt の温度依存性は結像レンズ自体
50R (50L )の熱膨張とは無関係になるため、熱膨
張率の大きなプラスチックレンズの使用が可能となり、
低コスト化を実現できる。
Therefore, by providing a temperature sensor between the imaging lenses 50 R (50 L ) on the lens receiving portion 16a and measuring the temperature, temperature compensation without a principle error becomes possible, and the temperature characteristics are improved. High precision ranging can be realized. Thus, the temperature dependence of the optical axis interval B t is to become independent of the thermal expansion of the imaging lens itself 50 R (50 L), allows the use of large plastic lenses of thermal expansion,
Cost reduction can be realized.

【0041】特に本例では、基点円柱突起53aの外
に、これを挟んで補助円柱突起53b,53bがレンズ
受け部16aの止め孔16bに投錨的に嵌合されている
ため、確実な固着化を実現できることは勿論のこと、基
点円柱突起53aの不動点としての性格が強くなり、ま
たレンズ50R (50L )自体の熱膨張をX軸方向に規
制できる。
In particular, in this embodiment, since the auxiliary columnar projections 53b, 53b are fixedly anchored to the stopper holes 16b of the lens receiving portion 16a with the auxiliary columnar projections 53b, 53b interposed therebetween in addition to the base columnar projection 53a. As a matter of course, the character of the base columnar projection 53a as a fixed point becomes stronger, and the thermal expansion of the lens 50R ( 50L ) itself can be restricted in the X-axis direction.

【0042】更に、浮かせ球面突起56b,56cや浮
かせ小突起57a,57bは、レンズ受け部16aに対
し接触面積が狭く、点接触状態となっているので、レン
ズ50R (50L )自体の熱膨張を起こす際の摩擦抵抗
が僅少になり、滑性が高まり、殆ど自由膨張に近くな
る。なお、レンズ受け部16aの上に潤滑材をコートし
たものを採用することができる。
Further, since the floating spherical projections 56b and 56c and the small floating projections 57a and 57b have a small contact area with the lens receiving portion 16a and are in a point contact state, the heat of the lens 50R ( 50L ) itself is reduced. The frictional resistance at the time of expansion is reduced, the lubricity is increased, and the expansion becomes almost free. It is to be noted that a material in which a lubricant is coated on the lens receiving portion 16a can be employed.

【0043】本例の板バネ押え60は3点式板バネ押え
となっているが、圧子受け突起55a,55b,55c
の頂面が凸曲面となっており、点接触しているため、レ
ンズ5が熱膨張で変位する際、摩擦抵抗を極力軽減でき
る。そしてまた、この板バネ押え60は開口絞りとして
兼用されているため、部品点数が削減しており、低コス
ト化が達成できる。
Although the leaf spring retainer 60 of this embodiment is a three-point leaf spring retainer, the indenter receiving projections 55a, 55b and 55c are provided.
Has a convex curved surface and is in point contact, so that when the lens 5 is displaced by thermal expansion, frictional resistance can be reduced as much as possible. Further, since the leaf spring retainer 60 is also used as an aperture stop, the number of components is reduced, and cost reduction can be achieved.

【0044】板バネ押え60をネジ72で締め付けてレ
ンズ受け板16aに螺着した場合、圧子66a,66
b,66cが圧子受け突起55a,55b,55cに圧
接すると、屈曲脚片62,63が撓曲するため、真円の
絞り開口61aが歪む虞れがある。しかし、本例では、
絞り開口61aの縁と屈曲脚片62,63の付け根との
間に開口変形抑制リブ67,78が形成されており、撓
み剛性を増強させてあるため、歪みが絞り開口61aの
縁まで波及し難くなっており、絞り開口61aの変形が
抑制されている。
When the leaf spring retainer 60 is tightened with the screw 72 and screwed to the lens receiving plate 16a, the indenters 66a, 66
When the b and 66c are pressed against the indenter receiving protrusions 55a, 55b and 55c, the bent leg pieces 62 and 63 are bent, so that the round aperture 61a may be distorted. However, in this example,
Since the opening deformation suppressing ribs 67 and 78 are formed between the edge of the aperture opening 61a and the roots of the bent leg pieces 62 and 63, and the flexural rigidity is enhanced, distortion spreads to the edge of the aperture opening 61a. Therefore, the deformation of the aperture 61a is suppressed.

【0045】また、板バネ押え60はリング状開口絞り
板61の縁を巡る遮光スカート64,65を有している
ため、結像レンズ50R (50L )のコバ(厚み側面)
を墨塗りせずに、そのまま結像レンズ50R (50L
を組み付けても、コバから入射する迷光を無くすことが
できる。高性能の測距装置を低コストで提供できる。
Further, since the plate spring retainer 60 has a light shielding skirt 64 and 65 around the edges of the ring-shaped aperture stop plate 61, an imaging lens 50 edge of R (50 L) (thickness side)
50 R (50 L ) without forming black ink
Even if it is assembled, stray light incident from the edge can be eliminated. A high-performance ranging device can be provided at low cost.

【0046】これら遮光スカート64,65により板バ
ネ押え60の撓み剛性も強くなっているので、絞り開口
61aの変形が抑制されている。
Since the bending rigidity of the leaf spring retainer 60 is increased by the light shielding skirts 64 and 65, the deformation of the aperture 61a is suppressed.

【0047】[0047]

【発明の効果】以上説明したように、本発明は、一対の
光電変換装置の固定部位を基板に対して同位置でスポッ
ト固定した点を特徴とするものであるから、次のような
効果を奏する。
As described above, the present invention is characterized in that the fixing portions of a pair of photoelectric conversion devices are spot-fixed at the same position with respect to the substrate. Play.

【0048】(1) 一対の光電変換装置の熱膨張は相
殺されることになり、一対の光電変換装置間の光軸間隔
は基板の熱膨張の影響を受けるに過ぎず、両光電変換装
置間の光軸間隔は基板の熱膨張率と温度変化に比例して
決まるようになる。従って、温度センサを配備すること
により、両光電変換装置間の光軸間隔の温度補償を行う
ことができ、温度変化に依存しない高精度測距が可能と
なる。
(1) The thermal expansion of the pair of photoelectric conversion devices is offset, and the optical axis interval between the pair of photoelectric conversion devices is only affected by the thermal expansion of the substrate. Is determined in proportion to the coefficient of thermal expansion of the substrate and the temperature change. Therefore, by providing the temperature sensor, it is possible to perform temperature compensation of the optical axis interval between the two photoelectric conversion devices, and it is possible to perform high-accuracy distance measurement independent of a temperature change.

【0049】(2) 基板面のうち固着代限定用の凹部
が形成されて成る場合は、接着剤の固着代が確実に限定
できるため、両光電変換装置の固着度合いを同等化で
き、相殺性を高めることができる。
(2) In the case where a concave portion for limiting the fixing allowance is formed on the substrate surface, the fixing allowance of the adhesive can be reliably limited, so that the degree of fixation of both photoelectric conversion devices can be equalized, and the offsetting effect can be obtained. Can be increased.

【0050】(3) 上記の構成に加えて、本発明は、
相等しい独立部品の一対の結像レンズを用い、両結像レ
ンズを光導筒のレンズ受け面に対して光軸間隔を含む線
上で同方向同等に拘束力が少なく熱膨張できる柔構造で
取り付けたことを特徴としている。光軸間隔がレンズ受
け面の素材の熱膨張率と温度変化にのみ比例して一義的
に決まるため、光軸間隔の温度補償が可能となり、温度
特性の向上により高精度測距が実現できる。そして、熱
膨張率の大きなプラスチックレンズの使用が可能とな
り、低コスト化を実現できる。
(3) In addition to the above configuration, the present invention provides
Using a pair of imaging lenses of the same independent parts, both imaging lenses were attached to the lens receiving surface of the light guide tube with a flexible structure that has little restraining force in the same direction on the line including the optical axis interval and can thermally expand. It is characterized by: Since the optical axis interval is uniquely determined in proportion to only the coefficient of thermal expansion of the material of the lens receiving surface and the temperature change, temperature compensation of the optical axis interval becomes possible, and high precision ranging can be realized by improving the temperature characteristics. Then, a plastic lens having a large coefficient of thermal expansion can be used, and cost reduction can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る測距装置を示す平面図
である。
FIG. 1 is a plan view showing a distance measuring apparatus according to an embodiment of the present invention.

【図2】図1中のA−A′線に沿って切断した状態を示
す切断矢視図である。
FIG. 2 is a sectional view taken along the line AA 'in FIG.

【図3】(A)は同測距装置に用いる結像レンズを示す
平面図、(B)は同結像レンズを示す底面図、(C)は
図3(A)中のC−C′線に沿って切断した状態を示す
切断矢視図である。
3A is a plan view showing an imaging lens used in the distance measuring device, FIG. 3B is a bottom view showing the imaging lens, and FIG. 3C is a line CC ′ in FIG. 3A. It is a cutting arrow view showing the state where it cut along the line.

【図4】(A)は同測距装置に用いる板バネ押さえを示
す平面図、(B)は同板バネ押さえを示す側面図、
(C)は図4(A)中のC−C′線に沿って切断した状
態を示す切断矢視図である。
4A is a plan view showing a leaf spring retainer used in the distance measuring apparatus, FIG. 4B is a side view showing the leaf spring retainer,
FIG. 4C is a sectional view taken along the line CC ′ in FIG. 4A.

【図5】(A)は同測距装置に用いるCCD搭載基板を
示す部分平面図、(B)は同CCD搭載基板にCCDを
搭載した状態を示す部分平面図、(C)は図5(B)中
のC−C線に沿って切断した切断矢視図である。
5A is a partial plan view showing a CCD mounting substrate used in the distance measuring apparatus, FIG. 5B is a partial plan view showing a state where a CCD is mounted on the CCD mounting substrate, and FIG. FIG. 6B is a sectional view taken along the line CC in B).

【図6】外光三角方式の測距装置の概略構成を示すブロ
ック図である。
FIG. 6 is a block diagram showing a schematic configuration of an external light triangulation type distance measuring device.

【図7】従来の写真カメラ搭載用測距ユニットを示す分
解斜視図である。
FIG. 7 is an exploded perspective view showing a conventional ranging unit for mounting a photographic camera.

【図8】(A)は同測距ユニットにおいてCCD搭載基
板にCCDを搭載した状態を示す縦断面図、(B)はそ
の部分平面図である。
8A is a longitudinal sectional view showing a state where a CCD is mounted on a CCD mounting substrate in the distance measuring unit, and FIG. 8B is a partial plan view thereof.

【図9】(A)は同測距ユニットにおける光導筒と2眼
レンズ板との熱膨張の関係を示す平面図、(B)は同光
導筒にCCD搭載基板をネジ止めした状態を示す底面図
である。
9A is a plan view showing a thermal expansion relationship between a light guide tube and a two-lens lens plate in the distance measuring unit, and FIG. 9B is a bottom view showing a state where a CCD mounting substrate is screwed to the light guide tube. FIG.

【符号の説明】[Explanation of symbols]

11…フィレキシブル印刷配線板 16…箱型光導筒 16R (16L )…窓 16a…レンズ受け部 16b…止め穴 17…アルミニウム製基板 17a…リード端子貫通孔 17b…取付孔 17c…接着代限定用凹部 18…熱硬化型接着剤 19…紫外線硬化型接着剤 20R ,20L …CCD 21R ,21L …ICパッケージ 22…半田 40…粘着剤付きパッド 50R ,50L …結像レンズ 51…レンズ曲面部 52…周辺鍔部 53…固着代用合わせ段部 53a…基点円柱突起 53b…補助円柱突起 54…調心用の縁欠き部 55a,55b,55c…圧子受け突起 56b,56c…滑り代用の浮かせ球面突起 57a,57b…浮かせ小突起 60…板バネ押え SR ,SL …光軸 O…軸心 61a…円形絞り開口 61…リング状開口絞り板 62,63…屈曲脚片 64,65…遮光スカート 66a,66b,66c…圧子 71…ワッシャー 72…ネジ 77,78…開口変形抑制リブ11 ... Firekishiburu printed wiring board 16 ... box-type optical guide tube 16 R (16 L) ... window 16a ... lens receiving portion 16b ... locking hole 17 ... aluminum substrate 17a ... lead terminal through holes 17b ... mounting hole 17c ... adhesion margins Limited Concavity for use 18 Thermosetting adhesive 19 UV curing adhesive 20 R , 20 L CCD 21 R , 21 L IC package 22 Solder 40 Pad with adhesive 50 R , 50 L Imaging lens 51 ... Lens curved surface portion 52... Peripheral flange portion 53... Sticking substitute matching step portion 53 a… Base columnar projection 53 b… Auxiliary columnar projection 54… Alignment edge notched portion 55 a, 55 b, 55 c floating spherical projection 57a of, 57 b ... floated small projections 60 ... plate spring retainer S R, S L ... optical axis O ... center axis 61a ... circular aperture 61 ... ring-shaped aperture stop plate 2,63 ... bent leg 64, 65 ... light shielding skirt 66a, 66b, 66c ... indenter 71 ... washer 72 ... Screw 77 ... opening deformation restricting ribs

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光軸が平行配置であって相等しい独立部
品の第1の結像レンズと第2の結像レンズが光導筒のレ
ンズ受け面上に取り付けられており、測距対象に臨んで
結像間に視差を作る一対の結像光学系と、第1の結像レ
ンズによる結像の照度分布を電気信号列に変換する第1
の光電変換装置と第2の結像レンズによる結像の照度分
布を電気信号列に変換する第2の光電変換装置とを搭載
する基板が前記光導筒の裏面取付面に固定されて成る測
距装置において、 前記両変換装置の裏面のうち光軸間隔を含む線上で同位
置の局部領域にて前記基板の面とスポット固定して成る
ことを特徴とする測距装置。
A first imaging lens and a second imaging lens, which are independent parts having the same optical axis and are parallel to each other, are mounted on a lens receiving surface of a light guide tube, and face a distance measurement target. And a first image forming optical system that forms parallax between the images and a first image forming system that converts the illuminance distribution of the image formed by the first image forming lens into an electric signal sequence.
A substrate on which a photoelectric conversion device and a second photoelectric conversion device for converting an illuminance distribution of an image formed by a second imaging lens into an electric signal sequence are fixed to a rear surface mounting surface of the light guide tube. In the apparatus, a distance measuring device is formed by fixing a spot to a surface of the substrate in a local region at the same position on a line including an optical axis interval on the back surfaces of the conversion devices.
【請求項2】 請求項1において、前記局部領域は光軸
を中心とする中心限定領域であることを特徴とする測距
装置。
2. The distance measuring apparatus according to claim 1, wherein the local area is a center-limited area centered on an optical axis.
【請求項3】 請求項1又は請求項2において、前記局
部領域は熱硬化型接着剤を用いた固着領域であり、前記
基板の面のうち前記固着領域の周辺には固着代限定用の
凹部が形成されて成ることを特徴とする測距装置。
3. The fixing region according to claim 1, wherein the local region is a fixing region using a thermosetting adhesive, and a concave portion for limiting a fixing margin is provided around the fixing region on the surface of the substrate. A distance measuring device characterized by being formed.
【請求項4】 請求項1乃至請求項3のいずれか一項に
おいて、前記両レンズのそれぞれの周辺領域のうち光軸
に対して光軸間隔を含む線上で同側に同距離だけオフセ
ットした基点部位にて前記レンズ受け面とスポット固定
して成ることを特徴とする測距装置。
4. The base point according to claim 1, wherein, in a peripheral area of each of the two lenses, the base point is offset by the same distance on the same side on a line including the optical axis interval with respect to the optical axis. A distance measuring device, comprising a spot fixed to the lens receiving surface at a site.
JP8354897A 1997-04-02 1997-04-02 Distance-measuring apparatus Pending JPH10281761A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8354897A JPH10281761A (en) 1997-04-02 1997-04-02 Distance-measuring apparatus
DE1998113476 DE19813476A1 (en) 1997-04-02 1998-03-26 Distance measuring unit
KR1019980010454A KR19980080693A (en) 1997-04-02 1998-03-26 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8354897A JPH10281761A (en) 1997-04-02 1997-04-02 Distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH10281761A true JPH10281761A (en) 1998-10-23

Family

ID=13805573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8354897A Pending JPH10281761A (en) 1997-04-02 1997-04-02 Distance-measuring apparatus

Country Status (3)

Country Link
JP (1) JPH10281761A (en)
KR (1) KR19980080693A (en)
DE (1) DE19813476A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015396A (en) * 1999-07-23 2001-02-26 다쯔타 도키오 Range finder
WO2009001563A1 (en) * 2007-06-28 2008-12-31 Panasonic Corporation Imaging device and semiconductor circuit device
US8390703B2 (en) 2008-07-23 2013-03-05 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
JP2022538462A (en) * 2019-07-04 2022-09-02 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Optical measuring device for determining object information of an object in at least one monitored zone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015396A (en) * 1999-07-23 2001-02-26 다쯔타 도키오 Range finder
WO2009001563A1 (en) * 2007-06-28 2008-12-31 Panasonic Corporation Imaging device and semiconductor circuit device
US8395693B2 (en) 2007-06-28 2013-03-12 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
US8390703B2 (en) 2008-07-23 2013-03-05 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
JP2022538462A (en) * 2019-07-04 2022-09-02 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Optical measuring device for determining object information of an object in at least one monitored zone

Also Published As

Publication number Publication date
DE19813476A1 (en) 1998-10-08
KR19980080693A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP5601000B2 (en) Imaging device
US6046795A (en) Distance measuring instrument
JP5703899B2 (en) Ranging device
JP2004522346A (en) Inexpensive electronic camera using integrated circuit technology
JP7205486B2 (en) Imaging device
EP1873558B1 (en) Lens optical system and photoelectric encoder
JPH0690356B2 (en) Distance-measuring optical system with a mechanism for correcting focus shift due to the temperature of the taking lens
JP2009201008A (en) Compound-eye imaging apparatus
JP3090078B2 (en) Distance measuring device
JPH10281761A (en) Distance-measuring apparatus
JPH10239050A (en) Range finder
JP7124366B2 (en) Imaging element fixing structure and imaging device
JP2003324635A (en) Image pickup device unit
JP6967424B2 (en) Imaging device
JP2000040813A (en) Image sensing apparatus and its manufacture
JP2880821B2 (en) Optical module for distance measurement
JP2003319217A (en) Camera
JPH0996523A (en) Distance-measuring apparatus
JPH09318867A (en) Range finder for camera
JPS61165711A (en) Plastic lens fixing structure
JPH0516126U (en) Lens holding device
JPH0862480A (en) Lens assembling structure of range finder and lens position adjusting method
WO2024009880A1 (en) Lens unit
JP2001307371A (en) Optical pickup device
JPH07199024A (en) Lens fixation structure