JPH10281731A - Method for measuring shape and machining position of membrane panel tube using three-dimensional laser sensor - Google Patents
Method for measuring shape and machining position of membrane panel tube using three-dimensional laser sensorInfo
- Publication number
- JPH10281731A JPH10281731A JP9122197A JP9122197A JPH10281731A JP H10281731 A JPH10281731 A JP H10281731A JP 9122197 A JP9122197 A JP 9122197A JP 9122197 A JP9122197 A JP 9122197A JP H10281731 A JPH10281731 A JP H10281731A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- coordinates
- pipe
- trajectory
- membrane panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ボイラ水冷壁等を
構成するメンブレンパネル製作時に、管の形状測定と、
加工を行う際の加工位置の測定および補正とを、自動装
置によって行なわせる方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of a pipe when manufacturing a membrane panel for forming a water cooling wall of a boiler, etc.
The present invention relates to a method for performing measurement and correction of a processing position when performing processing by an automatic device.
【0002】[0002]
【従来の技術】ボイラの水冷壁に使用されるメンブレン
パネルは、多電極パネル溶接装置により、管とフィンと
を溶接接合し、幅2〜3m、長さ14〜17m程の長大
な長方形パネルに成形されるため、位置によっては、パ
ネル内の管のピッチの不均一や、管の断面の変形が生じ
る可能性がある。2. Description of the Related Art A membrane panel used for a water-cooled wall of a boiler is formed by welding and joining tubes and fins by a multi-electrode panel welding device to form a long rectangular panel having a width of 2 to 3 m and a length of 14 to 17 m. Due to the molding, depending on the position, the pitch of the tubes in the panel may be non-uniform or the cross section of the tubes may be deformed.
【0003】このようなメンブレンパネルをボイラ水冷
壁等に使用する場合、上記のような長大なメンブレンパ
ネルを管を溶接によって接合する必要が生じるが、その
ためには溶接トーチを操作する上で接合部付近のフィン
を切り欠く必要があるほか、溶接接合部に開先加工を施
す必要がある。When such a membrane panel is used for a water-cooled wall of a boiler or the like, it is necessary to join such a long membrane panel by welding pipes. For this purpose, a joint portion is required in operating a welding torch. In addition to the need to cut out the nearby fins, it is necessary to make a groove in the weld joint.
【0004】[0004]
【発明が解決しようとする課題】このような作業を、従
来のように作業者が工具を手動で操作して切削を行う場
合には、管あるいはフィンを目視によって確認しながら
実施できるために、管が楕円状に変形し、あるいは管の
ピッチに乱れが生じている場合でも、それらを矯正しな
がら行うことが可能であったが、従来のように熟練した
作業者の人手に頼る方法は、生産能率の面で好ましくな
く、それらを改善するものとして、ロボット等を利用し
た自動装置によって的確にかつ効率よく行わせることが
求められていた。In the case where the operator performs the cutting by manually operating a tool as in the prior art, such an operation can be performed while visually confirming the pipe or the fin. Even when the pipe is deformed into an elliptical shape or when the pitch of the pipe is disturbed, it was possible to perform them while correcting them, but a method that relies on skilled workers as in the past, It is not preferable in terms of production efficiency, and it has been demanded that an automatic apparatus using a robot or the like perform the processing accurately and efficiently in order to improve them.
【0005】本発明はこのような現状に鑑みてなされた
もので、自動的にメンブレンパネルを測定して管の位
置、形状、ピッチあるいは乱れ等を正確に検知し、その
情報を自動切断加工システムに入力させる、それによっ
てフィンの切り欠き、スリットの形成、加工機の位置決
め等を的確に行わしめる3次元レーザセンサを用いたメ
ンブレンパネルの加工位置および管の形状の測定方法を
提供することを目的としている。The present invention has been made in view of such circumstances, and automatically measures a membrane panel to accurately detect the position, shape, pitch, or turbulence of a pipe, and uses the information as an automatic cutting system. The purpose of the present invention is to provide a method of measuring the processing position of a membrane panel and the shape of a tube using a three-dimensional laser sensor that can accurately perform notch formation, slit formation, positioning of a processing machine, and the like. And
【0006】[0006]
【課題を解決するための手段】上記の目的は、前記特許
請求の範囲に記載された3次元レーザセンサを用いたメ
ンブレンパネルの管の形状および加工位置の測定方法に
よって達成される。すなわち、 (1) メンブレンパネルの管の加工位置の測定方法であっ
て、メンブレンパネルを構成する複数の管のうち、測定
対象の管に対して、該管の軸と垂直をなす上方向からス
リット状のレーザ光を照射し、上記管の表面に照射され
たレーザ光の複数の点の座標を、上記レーザ光を照射さ
れた管の表面の斜め上方から、ロボットに把持されその
位置の座標が明らかなカメラによって測定して、管の軌
跡を求め、上記管の軌跡が急激に変化する特徴点を管の
軌跡の両側に求め、上記二つの特徴点の中間にある管の
軌跡の中で、最も高い位置を見出してその点を頂点とし
て、その点の座標を求め、上記実測によって求めた頂点
の座標と予め定めた頂点の座標とを対比して、必要なメ
ンブレンパネルの位置の補正を行わせる3次元レーザセ
ンサを用いたメンブレンパネルの管の加工位置の測定方
法。The above object is achieved by a method for measuring a shape and a processing position of a tube of a membrane panel using a three-dimensional laser sensor according to the present invention. That is, (1) A method for measuring a processing position of a tube of a membrane panel, in which a plurality of tubes constituting the membrane panel are slit with respect to a tube to be measured from an upper direction perpendicular to an axis of the tube. Shape of the laser light, the coordinates of a plurality of points of the laser light applied to the surface of the tube are grasped by a robot from diagonally above the surface of the tube irradiated with the laser light, and the coordinates of the position are obtained. Measured by an apparent camera, the trajectory of the pipe is determined, the characteristic points where the trajectory of the pipe changes rapidly are determined on both sides of the trajectory of the pipe, and in the trajectory of the pipe in the middle of the two characteristic points, The highest position is found, the point is set as the vertex, the coordinates of the point are obtained, the coordinates of the vertex obtained by the actual measurement are compared with the coordinates of the predetermined vertex, and the necessary position of the membrane panel is corrected. 3D laser sensor Method of measuring the processing position of the membrane panel of the tube had.
【0007】(2) メンブレンパネルの管の加工位置の測
定方法であって、メンブレンパネルを構成する複数の管
のうち、測定対象の管に対して、該管の軸と垂直をなす
上方向からスリット状のレーザ光を照射し、上記管の表
面に照射されたレーザ光の複数の点の座標を、上記レー
ザ光を照射された管の表面の斜め上方から、ロボットに
把持されその位置の座標が明らかなカメラによって測定
して、管の上半分の軌跡を求め、上記管の軌跡が急激に
変化する特徴点を管の軌跡の両側に求め、上記二つの特
徴点の中間にある管の軌跡の中で、最も高い位置を見出
してその点を管の上半分の頂点として、その点の座標を
求め、上記管の軸と垂直をなす下方向からスリット状の
レーザ光を照射し、上記管の表面に照射されたレーザ光
の複数の点の座標を、上記レーザ光を照射された管の表
面の斜め下方から、ロボットに把持されその位置の座標
が明らかなカメラによって測定して、管の下半分の軌跡
を求め、上記管の軌跡が急激に変化する特徴点を管の軌
跡の両側に求め、上記二つの特徴点の中間にある管の軌
跡の中で、最も下方に位置する点を見出してその点を管
の下半分の頂点として、その点の座標を求め、上記測定
された管の上半分のデータと下半分のデータとを合わせ
て楕円補完を行って上下を整合させ、それに基づいて溶
接ビードおよびフィンによって外部から見えない位置の
管のの外壁の位置を計算によって求め、それによって得
られた管の芯の座標と、予め定めた管の芯の座標とを対
比して、必要なメンブレンパネルの位置の補正を行わせ
る3次元レーザセンサを用いたメンブレンパネルの管の
加工位置の測定方法。(2) A method for measuring a processing position of a tube of a membrane panel, wherein, among a plurality of tubes constituting the membrane panel, a tube to be measured is positioned from an upper direction perpendicular to the axis of the tube. The slit-shaped laser light is applied, and the coordinates of a plurality of points of the laser light applied to the surface of the tube are coordinated by the robot from diagonally above the surface of the tube irradiated with the laser light, the position being grasped by the robot. Is measured with a camera that is evident, the trajectory of the upper half of the pipe is obtained, and the characteristic points where the trajectory of the pipe changes rapidly are obtained on both sides of the trajectory of the pipe. Among them, find the highest position, find that point as the vertex of the upper half of the tube, find the coordinates of that point, and irradiate a slit-like laser beam from the bottom perpendicular to the axis of the tube, Coordinates of multiple points of the laser beam applied to the surface of From a diagonally lower part of the surface of the tube irradiated with the laser light, the robot is grasped by a robot, and the coordinates of the position are measured by a camera, and the locus of the lower half of the tube is obtained. The characteristic points to be found are found on both sides of the trajectory of the pipe, and the lowest point in the trajectory of the pipe in the middle of the above two characteristic points is found. The coordinates of the upper half of the measured pipe and the lower half of the measured data are combined to perform elliptical interpolation to align the upper and lower parts. A three-dimensional laser sensor for obtaining the position of the outer wall of the above by calculation, comparing the coordinates of the tube core obtained thereby with the predetermined coordinates of the tube core, and correcting the required position of the membrane panel. Membrane using Measurement method of processing position Npaneru tube.
【0008】(3) メンブレンパネルの管の形状の測定方
法であって、メンブレンパネルを構成する複数の管のう
ち、測定対象の管に対して、該管の軸と垂直をなす上方
向からスリット状のレーザ光を照射し、上記管の表面に
照射されたレーザ光の複数の点の座標を、上記レーザ光
を照射された管の表面の斜め上方から、ロボットに把持
されその位置の座標が明らかなカメラによって測定し
て、管の上半分の軌跡を求め、上記管の軌跡が急激に変
化する特徴点を管の軌跡の両側に求め、上記二つの特徴
点の中間にある管の軌跡の中で、最も高い位置を見出し
てその点を管の上半分の頂点として、その点の座標を求
め、上記管の軸と垂直をなす下方向からスリット状のレ
ーザ光を照射し、上記管の表面に照射されたレーザ光の
複数の点の座標を、上記レーザ光を照射された管の表面
の斜め下方から、ロボットに把持されその位置の座標が
明らかなカメラによって測定して、管の下半分の軌跡を
求め、上記管の軌跡が急激に変化する特徴点を管の軌跡
の両側に求め、上記二つの特徴点の中間にある管の軌跡
の中で、最も下方に位置する点を見出してその点を管の
下半分の頂点として、その点の座標を求め、上記測定さ
れた管の上半分のデータと下半分のデータとを合わせて
楕円補完を行って上下を整合させ、それに基づいて溶接
ビードおよびフィンによって外部から見えない位置の管
のの外壁の位置を計算によって求め、それによって得ら
れた管縦方向の直径と横方向の直径とを対比して、その
比が予め定めた管の許容公差内にあるか否かを判定する
3次元レーザセンサを用いたメンブレンパネルの管の形
状の測定方法である。(3) A method for measuring the shape of a tube of a membrane panel, wherein a slit is formed in a plurality of tubes constituting the membrane panel from an upper direction perpendicular to an axis of the tube with respect to a tube to be measured. Shape of the laser light, the coordinates of a plurality of points of the laser light applied to the surface of the tube are grasped by a robot from diagonally above the surface of the tube irradiated with the laser light, and the coordinates of the position are obtained. Obtain the trajectory of the upper half of the pipe by measuring with a clear camera, determine the feature points where the trajectory of the pipe changes rapidly on both sides of the trajectory of the pipe, and calculate the trajectory of the trajectory of the pipe in the middle of the two feature points. Among them, the highest position is found, and that point is set as the vertex of the upper half of the tube, the coordinates of the point are obtained, and a slit-like laser beam is irradiated from the lower direction perpendicular to the axis of the tube, thereby irradiating the tube. The coordinates of multiple points of the laser beam applied to the surface From the diagonally lower part of the surface of the tube irradiated with the laser light, the robot is grasped by a robot and the coordinates of the position are measured by a camera that is clear, and the locus of the lower half of the tube is obtained, and the locus of the tube changes rapidly Find the characteristic points on both sides of the trajectory of the pipe, find the lowest point in the trajectory of the pipe in the middle of the two feature points, find that point as the vertex of the lower half of the pipe, and The coordinates are obtained, and the upper half data and the lower half data of the measured pipe are combined to perform elliptic interpolation to align the upper and lower parts. The position of the outer wall is obtained by calculation, and the resulting vertical and horizontal diameters of the tube are compared with each other to determine whether the ratio is within a predetermined tolerance of the tube. Membrane using laser sensor It is a method for measuring the shape of the panel of the tube.
【0009】[0009]
【発明の実施の形態】図1は本発明に基づく、3次元レ
ーザセンサを用いたメンブレンパネルの管の形状および
加工位置の測定方法の実施の形態を示す斜視図である。
図1において、まず、管1とフィン2とを並設して溶接
接合したメンブレンパネルの測定対象管に対して、管1
の軸と垂直をなす上方向からレーザセンサ4によってス
リット状のレーザ光5を照射する。FIG. 1 is a perspective view showing an embodiment of a method for measuring the shape and processing position of a tube of a membrane panel using a three-dimensional laser sensor according to the present invention.
In FIG. 1, first, a pipe 1 and a fin 2 are arranged side by side and welded to a membrane panel to be measured.
The slit-shaped laser light 5 is emitted from the laser sensor 4 from above in a direction perpendicular to the axis of the laser beam.
【0010】上記管1の表面に照射されたレーザ光5の
複数の点の座標を、上記レーザ光5を照射された管1の
表面の斜め上方、図1についていえば、レーザ光5が図
1に示す形に見える位置から、図示しないロボットに把
持されその位置の座標が明らかなカメラ(図示せず)に
よって測定して、管1の軌跡を求め、上記管1の軌跡が
急激に変化する特徴点を管1の軌跡の両側に求め、上記
二つの特徴点の中間にある管1の軌跡の中で、最も高い
位置を見出してその点を頂点として、その点の座標を求
める。The coordinates of a plurality of points of the laser beam 5 radiated on the surface of the tube 1 are shown obliquely above the surface of the tube 1 illuminated with the laser beam 5, as shown in FIG. From the position that looks like the shape shown in FIG. 1, the coordinates of the position are measured by a camera (not shown) which is grasped by a robot (not shown), and the trajectory of the tube 1 is obtained. The trajectory of the tube 1 changes rapidly. The characteristic points are obtained on both sides of the trajectory of the tube 1, the highest position is found in the trajectory of the tube 1 between the above two characteristic points, and the point is set as the vertex, and the coordinates of the point are obtained.
【0011】上記実測によって求めた頂点の座標と予め
定めた頂点の座標とを対比することにより、必要なメン
ブレンパネルの位置の補正を行わせる。The required correction of the position of the membrane panel is performed by comparing the coordinates of the vertices obtained by the actual measurement with the coordinates of the predetermined vertices.
【0012】図1においては、メンブレンパネルの片側
面からのみのスリット状レーザ光5の照射による測定を
示したが、このほかに、まず加工位置の測定対象の管1
に対して、図1に示すように管1の軸と垂直をなす上方
向からスリット状のレーザ光5を照射し、上記管1の表
面に照射されたレーザ光5の複数の点の座標を、上記レ
ーザ光5を照射された管1の表面の斜め上方から、図示
しないロボットに把持されその位置の座標が明らかなカ
メラによって測定して、管の上半分の軌跡を求め、上記
管1の軌跡が急激に変化する特徴点を管1の軌跡の両側
に求め、上記二つの特徴点の中間にある管1の軌跡の中
で、最も高い位置を見出してその点を管1の上半分の頂
点として、その点の座標を求めさせる。FIG. 1 shows the measurement by irradiating the slit-shaped laser beam 5 from only one side of the membrane panel.
In response to this, as shown in FIG. 1, a slit-shaped laser beam 5 is irradiated from above in a direction perpendicular to the axis of the tube 1, and the coordinates of a plurality of points of the laser beam 5 irradiated on the surface of the tube 1 are calculated. From a diagonally upper part of the surface of the tube 1 irradiated with the laser light 5, the robot is grasped by a robot (not shown) and the coordinates of the position are measured by a camera, and the locus of the upper half of the tube 1 is obtained. The characteristic points whose trajectory changes abruptly are found on both sides of the trajectory of the tube 1, and the highest position is found in the trajectory of the tube 1 between the above two characteristic points, and the point is located in the upper half of the tube 1. As a vertex, the coordinates of the point are obtained.
【0013】次に上記管1の軸と垂直をなす下方向から
スリット状のレーザ光5を照射し、上記管1の表面に照
射されたレーザ光5の複数の点の座標を、上記レーザ光
5を照射された管1の表面の斜め下方から、ロボットに
把持されその位置の座標が明らかなカメラによって測定
して、管1の下半分の軌跡を求め、上記管1の軌跡が急
激に変化する特徴点を管1の軌跡の両側に求め、上記二
つの特徴点の中間にある管1の軌跡の中で、最も下方に
位置する点を見出してその点を管1の下半分の頂点とし
て、その点の座標を求め、上記測定された管1の上半分
のデータと下半分のデータとを合わせて楕円補完を行っ
て上下を整合させる。Next, a slit-shaped laser beam 5 is irradiated from below, which is perpendicular to the axis of the tube 1, and the coordinates of a plurality of points of the laser beam 5 irradiated on the surface of the tube 1 are determined by the laser beam. 5 from the diagonally lower surface of the tube 1 illuminated by a camera which is grasped by a robot and whose coordinates at the position are clear, the locus of the lower half of the tube 1 is obtained, and the locus of the tube 1 changes rapidly. Are found on both sides of the trajectory of the tube 1, a point located at the lowest position in the trajectory of the tube 1 between the above two feature points is found, and the point is defined as the vertex of the lower half of the tube 1. The coordinates of the point are obtained, and the upper half data and the lower half data of the measured tube 1 are combined to perform elliptic interpolation to match the upper and lower parts.
【0014】それに基づいて溶接ビード3およびフィン
2によって外部から見えない位置の管1の外壁の位置を
計算によって求め、それによって得られた管1の芯の座
標と、予め定めた管1の芯の座標とを対比して、必要な
メンブレンパネルの位置の補正を行わせるとともに、そ
れによって得られた管縦方向の直径と横方向の直径とを
対比して、その比(真円度)が予め定めた管1の許容公
差内にあるか否かを判定することが可能になる。On the basis of this, the position of the outer wall of the pipe 1 at a position invisible from the outside by the welding bead 3 and the fin 2 is obtained by calculation, and the coordinates of the core of the pipe 1 obtained thereby and the predetermined core of the pipe 1 are obtained. And the required correction of the position of the membrane panel is performed, and the resulting diameter in the vertical direction of the tube and the diameter in the horizontal direction are compared. It is possible to determine whether or not it is within a predetermined tolerance of the pipe 1.
【0015】上記測定の結果、管1に変形が発見された
際には、該管1が存在したパネルを別のパネル形状矯正
のルートに回送し、矯正完了後、再び上記の測定ルート
に戻して測定を行わせる。As a result of the above measurement, when a deformation is found in the tube 1, the panel in which the tube 1 is present is sent to another panel shape correcting route, and after the correction is completed, the panel is returned to the above measuring route again. Measurement.
【0016】[0016]
【発明の効果】このように本発明によれば、長大なメン
ブレンパネルを反転させることなく、容易に各管の真円
度、ピッチおよび管の位置を求め得るほか、従来測定が
困難であった溶接ビードあるいはフィン等によって隠さ
れていた管の表面の位置をも的確に求め得ることから、
管を損傷することなく、高い精度の加工を行い、高品質
製品を得るほか、空走時間の短縮を図ることが可能にな
るという効果を奏する。As described above, according to the present invention, the roundness, the pitch, and the position of each tube can be easily obtained without inverting a long membrane panel, and it has been difficult to perform the conventional measurement. Since the position of the surface of the pipe that was hidden by the weld bead or fin, etc. can be determined accurately,
It is possible to perform high-precision processing without damaging the pipe, obtain a high-quality product, and shorten the idle running time.
【図1】本発明の実施の形態を示す、3次元レーザセン
サを用いたメンブレンパネルの管の形状および加工位置
の測定方法の実施の形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a method for measuring a shape and a processing position of a tube of a membrane panel using a three-dimensional laser sensor according to an embodiment of the present invention.
1 管 2 フィン 3 溶接ビード 4 レーザセンサ 5 レーザ光5 Reference Signs List 1 tube 2 fin 3 welding bead 4 laser sensor 5 laser beam 5
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 澄広 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 上原 裕隆 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sumihiro Ueda 1-1, Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Hirotaka Uehara 118 No., Futatsuka, Noda-shi, Chiba Kawasaki Heavy Industries, Ltd. Noda Factory
Claims (3)
方法であって、 メンブレンパネルを構成する複数の管のうち、測定対象
の管に対して、該管の軸と垂直をなす上方向からスリッ
ト状のレーザ光を照射し、 上記管の表面に照射されたレーザ光の複数の点の座標
を、上記レーザ光を照射された管の表面の斜め上方か
ら、ロボットに把持されその位置の座標が明らかなカメ
ラによって測定して、管の軌跡を求め、 上記管の軌跡が急激に変化する特徴点を管の軌跡の両側
に求め、 上記二つの特徴点の中間にある管の軌跡の中で、最も高
い位置を見出してその点を頂点として、その点の座標を
求め、 上記実測によって求めた頂点の座標と予め定めた頂点の
座標とを対比して、必要なメンブレンパネルの位置の補
正を行わせることを特徴とする3次元レーザセンサを用
いたメンブレンパネルの管の加工位置の測定方法。1. A method for measuring a processing position of a tube of a membrane panel, comprising: a plurality of tubes constituting a membrane panel, wherein a slit is formed in a tube to be measured from an upper direction perpendicular to an axis of the tube. The shape of the coordinates of a plurality of points of the laser light irradiated on the surface of the tube is obliquely above the surface of the tube irradiated with the laser light, and the coordinates of the position are grasped by the robot. Obtain the trajectory of the pipe by measuring with an obvious camera, find the feature points where the trajectory of the pipe changes rapidly on both sides of the trajectory of the pipe, and in the trajectory of the pipe in the middle of the two feature points, The highest position is found, the point is set as the vertex, the coordinates of the point are obtained, the coordinates of the vertex obtained by the actual measurement are compared with the coordinates of the predetermined vertex, and the necessary position of the membrane panel is corrected. Characterized by 3 Method of measuring the processing position of the membrane panel of the tube with the original laser sensor.
方法であって、 メンブレンパネルを構成する複数の管のうち、測定対象
の管に対して、該管の軸と垂直をなす上方向からスリッ
ト状のレーザ光を照射し、 上記管の表面に照射されたレーザ光の複数の点の座標
を、上記レーザ光を照射された管の表面の斜め上方か
ら、ロボットに把持されその位置の座標が明らかなカメ
ラによって測定して、管の上半分の軌跡を求め、 上記管の軌跡が急激に変化する特徴点を管の軌跡の両側
に求め、 上記二つの特徴点の中間にある管の軌跡の中で、最も高
い位置を見出してその点を管の上半分の頂点として、そ
の点の座標を求め、 上記管の軸と垂直をなす下方向からスリット状のレーザ
光を照射し、 上記管の表面に照射されたレーザ光の複数の点の座標
を、上記レーザ光を照射された管の表面の斜め下方か
ら、ロボットに把持されその位置の座標が明らかなカメ
ラによって測定して、管の下半分の軌跡を求め、 上記管の軌跡が急激に変化する特徴点を管の軌跡の両側
に求め、 上記二つの特徴点の中間にある管の軌跡の中で、最も下
方に位置する点を見出してその点を管の下半分の頂点と
して、その点の座標を求め、 上記測定された管の上半分のデータと下半分のデータと
を合わせて楕円補完を行って上下を整合させ、 それに基づいて溶接ビードおよびフィンによって外部か
ら見えない位置の管のの外壁の位置を計算によって求
め、 それによって得られた管の芯の座標と、予め定めた管の
芯の座標とを対比して、必要なメンブレンパネルの位置
の補正を行わせることを特徴とする3次元レーザセンサ
を用いたメンブレンパネルの管の加工位置の測定方法。2. A method for measuring a processing position of a tube of a membrane panel, wherein a slit is formed from an upper direction perpendicular to an axis of the tube with respect to a tube to be measured among a plurality of tubes constituting the membrane panel. The shape of the coordinates of a plurality of points of the laser light irradiated on the surface of the tube is obliquely above the surface of the tube irradiated with the laser light, and the coordinates of the position are grasped by the robot. Obtain the trajectory of the upper half of the pipe by measuring with an obvious camera, find the characteristic points where the trajectory of the pipe changes rapidly on both sides of the trajectory of the pipe, Among them, find the highest position, find that point as the vertex of the upper half of the tube, find the coordinates of that point, irradiate a slit-like laser beam from the bottom perpendicular to the axis of the tube, Coordinates of multiple points of laser light irradiated on the surface Is measured from a diagonally lower surface of the surface of the tube irradiated with the laser light by a camera grasped by a robot and the coordinates of the position of which are apparent, and the locus of the lower half of the tube is obtained. Find the changing feature points on both sides of the trajectory of the pipe, find the lowest point in the trajectory of the pipe in the middle of the above two feature points, and use that point as the vertex of the lower half of the pipe. Find the coordinates of the points, perform elliptic interpolation by combining the upper half data and lower half data of the measured pipe, and align them vertically.On the basis of this, pipes that are not visible from the outside with welding beads and fins The position of the outer wall is obtained by calculation, and the obtained coordinates of the tube core are compared with predetermined coordinates of the tube core to perform necessary correction of the position of the membrane panel. Three-dimensional ray Method of measuring the processing position of the membrane panel of the tube with the sensor.
であって、 メンブレンパネルを構成する複数の管のうち、測定対象
の管に対して、該管の軸と垂直をなす上方向からスリッ
ト状のレーザ光を照射し、 上記管の表面に照射されたレーザ光の複数の点の座標
を、上記レーザ光を照射された管の表面の斜め上方か
ら、ロボットに把持されその位置の座標が明らかなカメ
ラによって測定して、管の上半分の軌跡を求め、 上記管の軌跡が急激に変化する特徴点を管の軌跡の両側
に求め、 上記二つの特徴点の中間にある管の軌跡の中で、最も高
い位置を見出してその点を管の上半分の頂点として、そ
の点の座標を求め、上記管の軸と垂直をなす下方向から
スリット状のレーザ光を照射し、 上記管の表面に照射されたレーザ光の複数の点の座標
を、上記レーザ光を照射された管の表面の斜め下方か
ら、ロボットに把持されその位置の座標が明らかなカメ
ラによって測定して、管の下半分の軌跡を求め、 上記管の軌跡が急激に変化する特徴点を管の軌跡の両側
に求め、 上記二つの特徴点の中間にある管の軌跡の中で、最も下
方に位置する点を見出してその点を管の下半分の頂点と
して、その点の座標を求め、 上記測定された管の上半分のデータと下半分のデータと
を合わせて楕円補完を行って上下を整合させ、 それに基づいて溶接ビードおよびフィンによって外部か
ら見えない位置の管のの外壁の位置を計算によって求
め、 それによって得られた管縦方向の直径と横方向の直径と
を対比して、その比が予め定めた管の許容公差内にある
か否かを判定することを特徴とする3次元レーザセンサ
を用いたメンブレンパネルの管の形状の測定方法。3. A method for measuring a shape of a tube of a membrane panel, comprising a plurality of tubes constituting a membrane panel, wherein a slit is formed from an upper direction perpendicular to an axis of the tube with respect to a tube to be measured. The robot grasps the coordinates of a plurality of points of the laser beam irradiated on the surface of the tube from obliquely above the surface of the tube irradiated with the laser light, and clarifies the coordinates of the position. The trajectory of the upper half of the pipe is determined by measuring with a simple camera, and the characteristic points where the trajectory of the pipe changes rapidly are found on both sides of the trajectory of the pipe. Then, find the highest position, determine that point as the vertex of the upper half of the tube, find the coordinates of that point, irradiate a slit-like laser beam from the bottom perpendicular to the axis of the tube, and illuminate the surface of the tube The coordinates of a plurality of points of the laser light applied to From the obliquely lower part of the surface of the tube irradiated with the laser light, the robot is grasped by a robot and the coordinates of the position are measured by a camera, and the locus of the lower half of the tube is obtained, and the locus of the tube changes rapidly. Find the characteristic points on both sides of the trajectory of the pipe, find the lowest point in the trajectory of the pipe in the middle of the above two feature points, set that point as the vertex of the lower half of the pipe, and The coordinates are determined, the upper half data and the lower half data of the measured pipe are combined to perform elliptic interpolation to align the upper and lower parts, and based on that, the welding beads and fins are used to determine the position of the pipe that is not visible from the outside. The position of the outer wall is obtained by calculation, and the resulting vertical diameter and horizontal diameter are compared to determine whether the ratio is within a predetermined tolerance of the pipe. Three-dimensional laser sensor A method for measuring the shape of a tube of a membrane panel using a filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9122197A JP2914932B2 (en) | 1997-04-09 | 1997-04-09 | Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9122197A JP2914932B2 (en) | 1997-04-09 | 1997-04-09 | Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10281731A true JPH10281731A (en) | 1998-10-23 |
JP2914932B2 JP2914932B2 (en) | 1999-07-05 |
Family
ID=14020378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9122197A Expired - Fee Related JP2914932B2 (en) | 1997-04-09 | 1997-04-09 | Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2914932B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204604A (en) * | 2008-01-31 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Inspection apparatus and inspection method for boiler furnace steam generating tube |
WO2010058624A1 (en) * | 2008-11-20 | 2010-05-27 | 三菱重工業株式会社 | Inspection device and inspection method for evaporation pipe in boiler furnace |
JP2011033375A (en) * | 2009-07-30 | 2011-02-17 | Mitsubishi Heavy Ind Ltd | Device and method for inspecting evaporation pipe of boiler furnace |
JP2016151533A (en) * | 2015-02-19 | 2016-08-22 | 大同特殊鋼株式会社 | Shape detection method of build-up welding object |
CN108332681A (en) * | 2018-01-03 | 2018-07-27 | 东北大学 | A kind of determination method of the big plastic bending sectional profile curve lin of thin-wall pipes |
CN110044954A (en) * | 2018-01-17 | 2019-07-23 | 三菱日立电力系统株式会社 | Strain correction method, strain correction support system and the revision program of heat transfer face plate |
-
1997
- 1997-04-09 JP JP9122197A patent/JP2914932B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204604A (en) * | 2008-01-31 | 2009-09-10 | Mitsubishi Heavy Ind Ltd | Inspection apparatus and inspection method for boiler furnace steam generating tube |
US8786867B2 (en) | 2008-01-31 | 2014-07-22 | Mitsubishi Heavy Industries, Ltd. | Inspection device and inspection method for boiler furnace water wall tubes |
WO2010058624A1 (en) * | 2008-11-20 | 2010-05-27 | 三菱重工業株式会社 | Inspection device and inspection method for evaporation pipe in boiler furnace |
JP2011033375A (en) * | 2009-07-30 | 2011-02-17 | Mitsubishi Heavy Ind Ltd | Device and method for inspecting evaporation pipe of boiler furnace |
JP2016151533A (en) * | 2015-02-19 | 2016-08-22 | 大同特殊鋼株式会社 | Shape detection method of build-up welding object |
CN108332681A (en) * | 2018-01-03 | 2018-07-27 | 东北大学 | A kind of determination method of the big plastic bending sectional profile curve lin of thin-wall pipes |
CN108332681B (en) * | 2018-01-03 | 2019-07-16 | 东北大学 | A kind of determination method of the big plastic bending sectional profile curve lin of thin-wall pipes |
CN110044954A (en) * | 2018-01-17 | 2019-07-23 | 三菱日立电力系统株式会社 | Strain correction method, strain correction support system and the revision program of heat transfer face plate |
JP2019124410A (en) * | 2018-01-17 | 2019-07-25 | 三菱日立パワーシステムズ株式会社 | Strain correction method for heat transfer panel, strain correction support system for heat transfer panel, and strain correction program for heat transfer panel |
Also Published As
Publication number | Publication date |
---|---|
JP2914932B2 (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5981143B2 (en) | Robot tool control method | |
EP1486283B1 (en) | Method of controlling the welding of a three-dimensional construction by taking a two-dimensional image of the construction and adjusting in real time in the third dimension | |
JP5217221B2 (en) | Method for detecting surface defect shape of welded portion and computer program | |
JP4705479B2 (en) | Bead shape detection method and apparatus | |
JP6740450B2 (en) | How to establish welding parameters for welding operations | |
JP2014508042A (en) | Automated tube forming press with light source to measure tube inner contour | |
JP2013502326A (en) | Device and method for automatic multi-bead welding | |
JP2008215839A (en) | Welding quality judging method | |
WO2018116510A1 (en) | Method for detecting shape of welded steel pipe butt-seam, method for welded steel pipe quality control using said method, and device for same | |
CN114792337A (en) | High-precision detection method and device for welding groove size and relative pose of welding gun | |
JP2914932B2 (en) | Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor | |
JP6470600B2 (en) | Weld inspection equipment | |
CN114633114A (en) | Special-shaped reducing circular tube butt joint and machining and manufacturing method | |
JP6447220B2 (en) | Shape detection method for overlay welding | |
JPH1094874A (en) | Automatic welding method for tube joint | |
JP2001062566A (en) | Weld line position detecting device | |
JP2007093392A (en) | Three-dimensional shape evaluation method and three-dimensional shape evaluation device | |
JP4525605B2 (en) | Finishing apparatus and finishing method | |
JP2016124019A (en) | Welded part inspection device | |
JP3368492B2 (en) | Welding line detection method and device, and welding device | |
JPH0833979A (en) | Multilayer build-up automatic welding method | |
JPS59114406A (en) | Automatic measurement of shape of tube end | |
JP6705173B2 (en) | Welding method and welding equipment | |
JP2003126963A (en) | Teaching route correction device for welding robot | |
CN110280920A (en) | The production method of profiled metal air hose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |