JP6447220B2 - Shape detection method for overlay welding - Google Patents

Shape detection method for overlay welding

Info

Publication number
JP6447220B2
JP6447220B2 JP2015030115A JP2015030115A JP6447220B2 JP 6447220 B2 JP6447220 B2 JP 6447220B2 JP 2015030115 A JP2015030115 A JP 2015030115A JP 2015030115 A JP2015030115 A JP 2015030115A JP 6447220 B2 JP6447220 B2 JP 6447220B2
Authority
JP
Japan
Prior art keywords
welding
approximate
shape
determined
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015030115A
Other languages
Japanese (ja)
Other versions
JP2016151533A (en
Inventor
啓司 樹神
啓司 樹神
慎之介 山田
慎之介 山田
南川 裕隆
裕隆 南川
光宏 伊藤
光宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015030115A priority Critical patent/JP6447220B2/en
Publication of JP2016151533A publication Critical patent/JP2016151533A/en
Application granted granted Critical
Publication of JP6447220B2 publication Critical patent/JP6447220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は肉盛溶接対象の形状検出方法に関し、特に、冷却壁パネルの表面に肉盛溶接する際の溶接狙い位置の決定に有用な形状検出方法に関するものである。   The present invention relates to a shape detection method for overlay welding, and particularly to a shape detection method useful for determining a welding target position when overlay welding is performed on the surface of a cooling wall panel.

ボイラ等における冷却壁パネルとしての水冷壁パネルは、冷媒配管たる冷却水配管を多数並設して、隣り合う冷却水配管の対向側面を、板状フィンの両側縁に隅肉溶接して連結した構造を有している。このような水冷壁パネルの炉内に面する表面は、腐食減肉等を防止するためにステンレスやニッケル基合金等で肉盛溶接して被覆している。また一般に肉盛溶接を自動化するために例えば特許文献1では、ティーチペンダントで狙い位置の調整を行った後、アークセンサユニットで検出された印加電圧に基づいて溶接用マニュピレータを移動制御している。   A water-cooled wall panel as a cooling wall panel in a boiler or the like has a large number of cooling water pipes that are refrigerant pipes arranged in parallel, and the opposite side surfaces of adjacent cooling water pipes are connected by fillet welding to both side edges of the plate fins. It has a structure. The surface of such a water-cooled wall panel facing the inside of the furnace is covered by overlay welding with stainless steel, nickel-base alloy or the like in order to prevent corrosion thinning. In general, in order to automate build-up welding, for example, in Patent Document 1, the target position is adjusted with a teach pendant, and then the welding manipulator is moved and controlled based on the applied voltage detected by the arc sensor unit.

特開2011−251289JP2011-251289A

しかし、水冷壁パネルは比較的複雑な形状であるとともに個体差も大きく、さらに溶接時の変形等も生じるため、上記従来の肉盛溶接方法では、予め溶接狙い位置の調整を行なうとともに、印加電圧に基づく溶接部への上下方向の溶接トーチの位置調整を行っても適正な自動溶接は困難であるという問題があった。   However, since the water-cooled wall panel has a relatively complicated shape and a large individual difference, and also causes deformation during welding, the conventional overlay welding method adjusts the welding target position in advance and applies applied voltage. However, there is a problem that proper automatic welding is difficult even when the position of the vertical welding torch is adjusted to the welded portion.

そこで、本発明はこのような課題を解決するもので、形状が比較的複雑でかつ形状変化も大きい冷却壁パネルの肉盛溶接を自動で行うに際して有用な肉盛溶接対象の形状検出方法を提供することを目的とする。   Accordingly, the present invention solves such problems and provides a method for detecting the shape of a build-up welding target that is useful when performing build-up welding of a cooling wall panel having a relatively complicated shape and large shape change. The purpose is to do.

上記目的を達成するために、本第1発明では、並設された複数の冷媒配管(1)の隣り合う対向側面を平板状のフィン(2)の両側縁に隅肉溶接(3)してなる冷却壁パネル(P)であって、当該冷却壁パネル(P)の表面を肉盛溶接するに際し、隣り合う前記冷媒配管(1)の一方の頂面から前記フィン(2)の連結部を経て前記冷媒配管(1)の他方の頂面に至る表面形状を検出し、検出された表面形状のうち各冷媒配管(1)の外周に倣った部分についてその近似円(SC,SC´)を設定し、これら近似円の頂点を頂面変曲点(C,C´)と決定するとともに、近似円と前記表面形状の差分の変化量が所定値を越える点を前記隅肉溶接(3)の一方の側縁変曲点(A,A´)と決定し、前記フィン(2)の近似直線(SL)から所定値を越えて離間する点を前記隅肉溶接(3)の他方の側縁変曲点(B,B´)と決定する。   In order to achieve the above object, according to the first aspect of the present invention, fillet welding (3) is performed on adjacent side surfaces of a plurality of refrigerant pipes (1) arranged side by side on both side edges of a flat fin (2). When the surface of the cooling wall panel (P) is build-up welded, the connecting portion of the fin (2) is connected from one top surface of the adjacent refrigerant pipe (1). Then, the surface shape reaching the other top surface of the refrigerant pipe (1) is detected, and the approximate circle (SC, SC ′) is detected for the portion following the outer periphery of each refrigerant pipe (1) in the detected surface shape. The apex of these approximate circles is determined as the top inflection point (C, C ′), and the fillet weld (3) is the point where the amount of change in the difference between the approximate circle and the surface shape exceeds a predetermined value. And the predetermined value from the approximate straight line (SL) of the fin (2). Ete other side edge inflection point of the fillet weld points spaced (3) (B, B') and determined.

本第1発明においては、隣り合う冷媒配管について頂面変曲点と隅肉溶接の一方および他方の側縁変曲点を正確に決定することができるから、溶接部のずれや溶接時の変形等によって大きく形状が変化しても、肉盛溶接の溶接狙い位置を適正に定めて自動溶接を行うことができる。   In the first aspect of the invention, since the top surface inflection point and the fillet welding one and the other side edge inflection points can be accurately determined for the adjacent refrigerant pipes, the displacement of the welded portion and the deformation at the time of welding are determined. Even if the shape changes greatly due to, for example, automatic welding can be performed with the welding target position of overlay welding appropriately determined.

本第2発明では、前記表面形状のうち、少なくとも一方の前記近似円(SC,SC´)の中心から表面形状に至るまでの距離の変化の傾きが実質的に一定値となる領域を前記フィン(2)の部分と判定する。   In the second aspect of the present invention, an area in which the slope of the change in distance from the center of at least one of the approximate circles (SC, SC ′) to the surface shape among the surface shapes becomes a substantially constant value is defined as the fin. It is determined that the part is (2).

本第2発明によればフィン部分を正確に特定して近似直線を作成できるから、隅肉溶接の他方の側縁変曲点をより正確に決定することができる。   According to the second aspect of the present invention, the approximate straight line can be created by accurately specifying the fin portion, so that the other side edge inflection point of the fillet weld can be determined more accurately.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。   The reference numerals in the parentheses refer to the correspondence with specific means described in the embodiments described later.

以上のように、本発明の肉盛溶接対象の形状検出方法によれば、形状が比較的複雑でかつ形状変化も大きい冷却壁パネルの自動肉盛溶接を適正に行うことができる。   As described above, according to the shape detection method for build-up welding object of the present invention, automatic build-up welding of a cooling wall panel having a relatively complicated shape and a large shape change can be appropriately performed.

肉盛り溶接対象である水冷壁パネルの一部の斜視図である。It is a one part perspective view of the water cooling wall panel which is a build-up welding object. 水冷壁パネルの一部の断面図である。It is sectional drawing of a part of water cooling wall panel. 肉盛溶接を行う水冷壁パネルの表面形状の測定点データをプロットした図である。It is the figure which plotted the measurement point data of the surface shape of the water cooling wall panel which performs overlay welding. 近似円の中心から各表面測定点までの距離と近似円の半径との差分の、各位置における値を示す図である。It is a figure which shows the value in each position of the difference of the distance from the center of an approximate circle to each surface measurement point, and the radius of an approximate circle. 差分の一階微分値の、各位置における値を示す図である。It is a figure which shows the value in each position of the first-order differential value of a difference. フィン部の測定点データをプロットした図である。It is the figure which plotted the measurement point data of the fin part. 左側近似円の中心から各表面測定点までの距離変化の傾きを示す図である。It is a figure which shows the inclination of the distance change from the center of a left approximate circle to each surface measurement point. 右側近似円の中心から各表面測定点までの距離変化の傾きを示す図である。It is a figure which shows the inclination of the distance change from the center of a right approximate circle to each surface measurement point. 図7と図8のデータを重ね合わせて得られるデータをプロットした図である。It is the figure which plotted the data obtained by superimposing the data of FIG. 7 and FIG. 頂面変曲点の検出精度を示す図である。It is a figure which shows the detection accuracy of a top surface inflection point. 隅肉溶接部の一方の側縁変曲点の検出精度を示す図である。It is a figure which shows the detection accuracy of one side edge inflection point of a fillet weld part. 隅肉溶接部の他方の側縁変曲点の検出精度を示す図である。It is a figure which shows the detection accuracy of the other side edge inflection point of a fillet weld part.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

図1には肉盛溶接の対象である冷却壁パネルとしての水冷壁パネルの一例の外観を示し、図2にはその断面を示す。水冷壁パネルPは複数の円形の冷却水配管1を並列に配して、これら冷却水配管1を厚肉板状のフィン2で連結した構造となっており、フィン2と冷却水配管1の連結は、フィン2の両側縁に、隣り合う冷却水配管1の対向側面を連続隅肉溶接(図2の符号3)することによっている。   FIG. 1 shows an appearance of an example of a water-cooled wall panel as a cooling wall panel that is an object of overlay welding, and FIG. 2 shows a cross section thereof. The water cooling wall panel P has a structure in which a plurality of circular cooling water pipes 1 are arranged in parallel and these cooling water pipes 1 are connected by thick plate-like fins 2. The connection is made by continuous fillet welding (reference numeral 3 in FIG. 2) of the opposite side surfaces of the adjacent cooling water pipes 1 to both side edges of the fins 2.

図2において、肉盛溶接によって覆われる水冷壁パネルPの表面(図の上面)は、互いに連続する冷却水配管1の表面、隅肉溶接3の表面、およびフィン2の表面が凹溝部4を形成して配管方向へ延びている(図1参照)。凹溝部4はパネル幅方向(図1の左右方向)へ隣り合う冷却水配管1の間で繰り返されている。   In FIG. 2, the surface of the water-cooled wall panel P covered by overlay welding (upper surface in the figure) is the surface of the cooling water pipe 1, the surface of the fillet weld 3, and the surface of the fin 2 having the groove 4. It is formed and extends in the piping direction (see FIG. 1). The recessed groove portion 4 is repeated between the cooling water pipes 1 adjacent to each other in the panel width direction (left-right direction in FIG. 1).

このような水冷壁パネルPの表面に肉盛溶接をする場合には、凹溝部4の断面を形成する隣り合う冷却水配管1の頂面変曲点C,C´と隅肉溶接部3の両側縁変曲点A,A´,B,B´の計6点の位置を定める必要がある。すなわちこれら6個の変曲点A,A´,B,B´,C,C´より、例えば肉盛溶接の第1層目の溶接狙い位置をB−B´点間の中央位置とし、第2層目の溶接狙い位置をAないしA´点の位置とし、第n層の溶接狙い位置をCないしC´点と後述する近似円とから算出した位置とする。このために、上記変曲点A,A´,B,B´,C,C´を正確に決定する必要がある。そこで以下にこれら変曲点A?C´の位置を決定する手順を説明する。   When overlay welding is performed on the surface of such a water-cooled wall panel P, the top surface inflection points C and C ′ of the adjacent cooling water pipes 1 forming the cross section of the recessed groove portion 4 and the fillet weld portion 3 It is necessary to determine the positions of a total of 6 points of inflection points A, A ′, B, B ′ on both sides. That is, from these six inflection points A, A ′, B, B ′, C, C ′, for example, the welding target position of the first layer of overlay welding is set to the center position between the points BB ′, The welding target position of the second layer is set as the position of points A to A ′, and the welding target position of the nth layer is set as a position calculated from the points C to C ′ and an approximate circle described later. Therefore, it is necessary to accurately determine the inflection points A, A ′, B, B ′, C, and C ′. A procedure for determining the positions of these inflection points A to C ′ will be described below.

最初にレーザ変位計等を使用して水冷壁パネルPの表面形状を測定する。得られた表面形状は図3に示すように、先に説明したパネル断面形状と同様である。そこで、冷却水配管1部分の形状がほぼ円形で安定していることに鑑み、この部分のレーザ変位計の表面測定点データから最小二乗法等を使用して近似円SC,SC´を求める。そして、近似円の頂点を冷媒配管1の頂面変曲点C,C´とする。   First, the surface shape of the water-cooled wall panel P is measured using a laser displacement meter or the like. The obtained surface shape is the same as the panel cross-sectional shape described above, as shown in FIG. In view of the fact that the shape of the cooling water pipe 1 portion is substantially circular and stable, approximate circles SC and SC ′ are obtained from the surface measurement point data of the laser displacement meter of this portion using the least square method or the like. The apexes of the approximate circle are the top surface inflection points C and C ′ of the refrigerant pipe 1.

隅肉溶接部3の一方の側縁変曲点A,A´は、近似円SC,SC´と表面測定点データMDとの差分、すなわち近似円SC,SC´の中心から各表面測定点までの距離と近似円SC,SC´の半径との差分の変化量が所定値を越える点とする。ここで、図4は、近似円SC,SC´の中心から各表面測定点までの距離と近似円SC,SC´の半径との差分が、凹溝部4の各x座標位置でどのような値をとるかを示しており、図5は差分の一階微分値が各x座標位置でどのような値をとるかを示すものである。そして、この一階微分値に対して適当な閾値を設定することによって側縁変曲点A,A´の位置を決定する。   One side inflection point A, A 'of the fillet weld 3 is the difference between the approximate circle SC, SC' and the surface measurement point data MD, that is, from the center of the approximate circle SC, SC 'to each surface measurement point. And the amount of change in the difference between the approximate circles SC and SC ′ radii exceeds a predetermined value. Here, FIG. 4 shows the value of the difference between the distance from the center of the approximate circle SC, SC ′ to each surface measurement point and the radius of the approximate circle SC, SC ′ at each x coordinate position of the groove 4. FIG. 5 shows what value the first differential value of the difference takes at each x-coordinate position. Then, the positions of the side edge inflection points A and A ′ are determined by setting an appropriate threshold for the first-order differential value.

隅肉溶接部3の他方の側縁変曲点B,B´は、フィン2部の表面測定点データが略直線状に並ぶことを利用して、図6に示すように、これに一致する近似直線SLを作成し、当該近似直線SLから所定値を越えて離間する点を側縁変曲点B,B´とする。   The other side edge inflection points B and B ′ of the fillet weld portion 3 coincide with this as shown in FIG. 6 by utilizing the fact that the surface measurement point data of the fin 2 portion are arranged in a substantially straight line. An approximate straight line SL is created, and points that are separated from the approximate straight line SL by a predetermined value are set as side edge inflection points B and B ′.

水冷壁パネルPの表面形状のうちフィン2部であることの特定は以下のようにして行う。すなわち、近似円SC,SC´の中心から各表面測定点までの距離を算出すると、表面形状が直線に近いほど、算出される距離の変化の傾き(一階微分値)は一定の値になる。ここで、図7には、図3の左側近似円SCの中心から各表面測定点までの距離の変化の傾きを示し、図8には、図3の右側近似円SC´の中心から各表面測定点までの距離の変化の傾きを示す。図7、図8では、上記変化の傾きがほぼ一定になる領域が二箇所あるが、これは隅肉溶接3部の一部に直線部分があるためである。そこで図7と図8のデータを重ね合わせてその変化を強調し(図9)、この場合にも上記変化の傾きがほぼ一定になる領域をフィン2部として判定して、その近似直線を作成する。   Of the surface shape of the water-cooled wall panel P, the identification of the fin 2 part is performed as follows. That is, when the distances from the centers of the approximate circles SC and SC ′ to the respective surface measurement points are calculated, the gradient (first-order differential value) of the change in the calculated distance becomes a constant value as the surface shape is closer to a straight line. . Here, FIG. 7 shows the gradient of the change in distance from the center of the left approximate circle SC in FIG. 3 to each surface measurement point, and FIG. 8 shows each surface from the center of the right approximate circle SC ′ in FIG. Indicates the slope of the change in distance to the measurement point. In FIG. 7 and FIG. 8, there are two regions where the inclination of the change is almost constant, because this is because there is a straight line part in the fillet weld 3 part. Therefore, the data of FIG. 7 and FIG. 8 are overlaid to emphasize the change (FIG. 9). In this case as well, an area where the inclination of the change is almost constant is determined as the fin 2 part, and an approximate straight line is created. To do.

このような手順で決定された各変曲点A,A´,B,B´,C,C´の位置精度を、25の異なるサンプルについて確かめたものが図10〜図12である。これによると、いずれの変曲点A〜C´も0.5mm以内の十分な精度で決定されている。そして、このよう
な変曲点A〜C´の決定を、冷却水配管1に沿って延びる各凹溝部4の適宜箇所で行うことによって、隅肉溶接部の位置がずれ、あるいは溶接で変形した箇所があっても、溶接対象形状を正確に検出することができ、これに基づいて溶接狙い位置を適正に定めて自動溶接を行うことができる。
FIGS. 10 to 12 show the positional accuracy of the inflection points A, A ′, B, B ′, C, and C ′ determined by such a procedure for 25 different samples. According to this, all the inflection points A to C ′ are determined with sufficient accuracy within 0.5 mm. And the determination of such inflection points A to C ′ is performed at an appropriate location of each concave groove portion 4 extending along the cooling water pipe 1, so that the position of the fillet welded portion is shifted or deformed by welding. Even if there is a place, the shape to be welded can be detected accurately, and automatic welding can be performed with the welding target position appropriately determined based on this.

1…冷却水配管(冷媒配管)、2…フィン、3…隅肉溶接、P…水冷壁パネル(冷却壁パネル)、A,A´…一方の側縁変曲点、B,B´…他方の側縁変曲点、C,C´…頂面変曲点、SC,SC´…近似円、SL…近似直線。 DESCRIPTION OF SYMBOLS 1 ... Cooling water piping (refrigerant piping), 2 ... Fin, 3 ... Fillet welding, P ... Water cooling wall panel (cooling wall panel), A, A '... One side edge inflection point, B, B' ... The other Side edge inflection points, C, C ′, top inflection points, SC, SC ′, approximate circle, SL, approximate line.

Claims (2)

並設された複数の冷媒配管の隣り合う対向側面を平板状のフィンの両側縁に隅肉溶接してなる冷却壁パネルであって、当該冷却壁パネルの表面を肉盛溶接するに際し、隣り合う前記冷媒配管の一方の頂面から前記フィンの連結部を経て前記冷媒配管の他方の頂面に至る表面形状を検出し、検出された表面形状のうち各冷媒配管の外周に倣った部分についてその近似円を設定し、これら近似円の頂点を頂面変曲点と決定するとともに、近似円と前記表面形状の差分の変化量が所定値を越える点を前記隅肉溶接の一方の側縁変曲点と決定し、前記フィンの近似直線から所定値を越えて離間する点を前記隅肉溶接の他方の側縁変曲点と決定することを特徴とする肉盛溶接対象の形状検出方法。 A cooling wall panel formed by fillet welding adjacent side faces of a plurality of refrigerant pipes arranged side by side to both side edges of a flat fin, and adjacent to each other when overlay welding the surfaces of the cooling wall panels The surface shape from one top surface of the refrigerant pipe to the other top surface of the refrigerant pipe through the connecting portion of the fin is detected, and the portion of the detected surface shape that follows the outer periphery of each refrigerant pipe is Approximate circles are set, and the apexes of these approximate circles are determined as top inflection points, and the change in the difference between the approximate circle and the surface shape exceeds a predetermined value at one side edge change of the fillet weld. A shape detection method for overlay welding, characterized in that it is determined as a bending point, and a point separated from the approximate straight line of the fin beyond a predetermined value is determined as the other side edge inflection point of the fillet welding. 前記表面形状のうち、少なくとも一方の前記近似円の中心から表面形状に至るまでの距離の変化の傾きが実質的に一定値となる領域を前記フィンの部分と判定する請求項1に記載の肉盛溶接対象の形状検出方法。 2. The meat according to claim 1, wherein an area in which a slope of a change in distance from the center of at least one of the approximate circles to the surface shape is a substantially constant value among the surface shapes is determined as the fin portion. A method for detecting the shape of a welded object.
JP2015030115A 2015-02-19 2015-02-19 Shape detection method for overlay welding Expired - Fee Related JP6447220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030115A JP6447220B2 (en) 2015-02-19 2015-02-19 Shape detection method for overlay welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030115A JP6447220B2 (en) 2015-02-19 2015-02-19 Shape detection method for overlay welding

Publications (2)

Publication Number Publication Date
JP2016151533A JP2016151533A (en) 2016-08-22
JP6447220B2 true JP6447220B2 (en) 2019-01-09

Family

ID=56695385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030115A Expired - Fee Related JP6447220B2 (en) 2015-02-19 2015-02-19 Shape detection method for overlay welding

Country Status (1)

Country Link
JP (1) JP6447220B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350648B (en) * 2017-08-23 2023-06-30 江西恒大高新技术股份有限公司 Full-automatic surface overlaying mechanism that shifts of boiler water-cooled wall
CN111805053B (en) * 2019-12-30 2022-04-19 武汉锅炉股份有限公司 Manufacturing method of efficient ultra-supercritical boiler T23 material membrane wall
CN112304203B (en) * 2020-10-19 2022-05-17 中国一冶集团有限公司 Cooling wall connecting pipe measuring die and size determining method of cooling wall connecting pipe
CN113280775A (en) * 2021-05-25 2021-08-20 中国核工业华兴建设有限公司 Method for checking radius and perimeter of steel lining wall plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914932B2 (en) * 1997-04-09 1999-07-05 川崎重工業株式会社 Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor
JP4705479B2 (en) * 2006-01-20 2011-06-22 新日本製鐵株式会社 Bead shape detection method and apparatus
JP2008302428A (en) * 2007-05-09 2008-12-18 Sekisui Chem Co Ltd Arc welding quality inspection method
JP5129727B2 (en) * 2008-01-31 2013-01-30 三菱重工業株式会社 Boiler furnace evaporator tube inspection device and inspection method
JP5199960B2 (en) * 2009-07-30 2013-05-15 三菱重工業株式会社 Boiler furnace evaporator tube inspection device and inspection method
JP2012110943A (en) * 2010-11-25 2012-06-14 Mitsubishi Heavy Ind Ltd Build-up welding device and method
JP2012184996A (en) * 2011-03-04 2012-09-27 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for evaluating welding shape

Also Published As

Publication number Publication date
JP2016151533A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6447220B2 (en) Shape detection method for overlay welding
Chang et al. A new seam-tracking algorithm through characteristic-point detection for a portable welding robot
JP5637753B2 (en) Welding target position measuring device
KR101724424B1 (en) The automatic equipment for welding ship's curve block and method of operating the same
JP2008215839A (en) Welding quality judging method
US9664651B2 (en) Probe approach for DGS sizing
TWI568913B (en) Liang Buqiang Metal Parts and Beam Reinforcement Structure
JP2021179172A (en) Reinforcement structure
JP2008164155A (en) Metal gasket and erroneous assembly detecting method for metal gasket
JP5729669B2 (en) Method, structure, and automotive seat for monitoring lateral shift of actual weld seam with respect to desired weld seam
JP2009085786A (en) Weld bead inspection device and method
JP3675680B2 (en) Welding line position detection device
JP5199960B2 (en) Boiler furnace evaporator tube inspection device and inspection method
JP2012509773A (en) Method for producing a galvanized sheet metal hollow body for use in automobiles
JP2914932B2 (en) Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor
JP2017173061A (en) Inspection system of welding bead
JP2009250829A (en) Method for simple three-dimensional analysis of welding deformation and residual stress
JP7316278B2 (en) Determining the bending shortening of the sheet workpiece to be bent
JP5724235B2 (en) Connection method and structure
JP5818009B2 (en) Weld hardness evaluation method
JP4333389B2 (en) Apparatus and method for determining weld bead deviation
JP5510187B2 (en) Processing method of mating surfaces of steel structures
JP2009250828A (en) Method for two-dimensional analysis of welding deformation and residual stress
US20190062857A1 (en) Process for forming a stainless steel weldment resistant to stress corrosion cracking
JP2019124560A (en) Appearance evaluation method and appearance evaluation device for weld bead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees