JPH10281719A - Method for detecting border line - Google Patents

Method for detecting border line

Info

Publication number
JPH10281719A
JPH10281719A JP9089285A JP8928597A JPH10281719A JP H10281719 A JPH10281719 A JP H10281719A JP 9089285 A JP9089285 A JP 9089285A JP 8928597 A JP8928597 A JP 8928597A JP H10281719 A JPH10281719 A JP H10281719A
Authority
JP
Japan
Prior art keywords
light receiving
light
boundary line
boundary
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9089285A
Other languages
Japanese (ja)
Inventor
Hiroshi Sekii
宏 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP9089285A priority Critical patent/JPH10281719A/en
Publication of JPH10281719A publication Critical patent/JPH10281719A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To ensure a highly accurate measurement even when objects having different reflectance are delivered sequentially by arranging the planes including, respectively, the light projecting axis and the light receiving axis of a reflective photoelectric sensor for detecting variation in the center of gravity of a reflected light on a light receiving element in parallel with each other in the moving direction, subtracting a light receiving signal and controlling the moving speed or the interval from the difference of detection time of a border line. SOLUTION: An LED 2 and a split-half PD 5 are provided and a light receiving signal of the split-half PD 5 is passed through a dividing circuit 11 at a processing circuit section 10 before being outputted. The LED 2 and the split-half PD 5 are arranged in parallel in the moving direction. Since a signal rising/ falling steeply is produced after division, a highly accurate positioning is realized. In order to position a border line, a divided signal is inputted to a comparator and compared with a threshold value. The waveform of a divided output may fluctuate in level due to combination of reflectance of the objects but the shift of positional intersecting the threshold is small when the waveform is steep and the positioning error is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、反射型光電セン
サで移動体上の反射率の相違により発生する境界線を高
精度に検出する境界線検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boundary line detection method for detecting, with high accuracy, a boundary line generated by a difference in reflectance on a moving body by a reflection type photoelectric sensor.

【0002】[0002]

【従来の技術】従来、線状マークを検出する技術とし
て、2個の受光素子を用い、その受光素子出力の差分を
取るもの、あるいは2分割フォトダイオードを用い、そ
の各分割フォトダイオードの受光出力の差分を取るもの
が知られている。
2. Description of the Related Art Conventionally, as a technique for detecting a linear mark, one using two light-receiving elements and taking the difference between the outputs of the light-receiving elements, or using a two-division photodiode and receiving light output from each of the divided photodiodes It is known to take the difference of

【0003】[0003]

【発明が解決しようとする課題】上記した従来のマーク
等の境界線検出方法のうち、2個の受光素子の出力差分
による方法では、複数の受光素子上に、反射光がまた
がるように光学系を設定しなければならないため、受光
ビームを大きくする必要がある。受光素子を複数個使
うため、光学系ヘッド部が大きく複雑化する。差分よ
り線状マークを検出しているため、差分出力の立上がり
特性もしくは立下がり特性が対象物の反射率に依存す
る。したがって、反射率の異なる対象物が順次送られて
くるようなアプリケーションでは高精度の位置決めがで
きないという問題がある。又、2分割フォトダイオード
の出力差分を取る方法でも、上記の問題がある。
In the above-described conventional method for detecting a boundary line of a mark or the like, in the method based on the output difference between two light receiving elements, the optical system is so arranged that the reflected light straddles a plurality of light receiving elements. Must be set, so that the light receiving beam needs to be enlarged. Since a plurality of light receiving elements are used, the optical system head is greatly complicated. Since the linear mark is detected from the difference, the rising or falling characteristics of the difference output depend on the reflectance of the object. Therefore, there is a problem that high-precision positioning cannot be performed in an application in which objects having different reflectivities are sequentially sent. In addition, the above-mentioned problem also occurs in a method of obtaining the output difference between the two-part photodiodes.

【0004】この発明は上記問題点に着目してなされた
ものであって、反射率の異なる対象物が順次送られてく
る場合でも、高精度に検出できる境界線検出方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a boundary line detection method capable of detecting a boundary line with high accuracy even when objects having different reflectances are sequentially sent. And

【0005】[0005]

【課題を解決するための手段】この出願の特許請求の範
囲の請求項1に係る境界線検出方法は、反射率の差によ
って発生する境界線を有する移動物体に対して、受光素
子上での反射光の重心変化を検出する反射型光電センサ
の投光軸と受光軸を含む面を移動方向に平行に配置し、
受光信号を除算して境界線の検知時間差より移動速度も
しくは間隔を制御するようにしている。
According to a first aspect of the present invention, there is provided a method for detecting a boundary line, comprising the steps of: detecting a moving object having a boundary line caused by a difference in reflectance; A plane including the light projecting axis and the light receiving axis of the reflective photoelectric sensor that detects a change in the center of gravity of the reflected light is arranged in parallel to the moving direction,
The moving speed or the interval is controlled based on the detection time difference of the boundary line by dividing the light receiving signal.

【0006】また、請求項5に係る境界線検出方法は、
移動体の表面にラインの反射率差によって生じる境界線
を移動方向に対して直交するように配置し、その境界線
が光電センサの投光軸と受光素子の受光面法線を含む平
行な構成とし、受光素子の検出方法が移動体の移動方向
と平行であるようにしている。
According to a fifth aspect of the present invention, there is provided a method for detecting a boundary line, comprising:
A parallel structure is arranged on the surface of the moving object so that the boundary line caused by the difference in the reflectivity of the line is orthogonal to the moving direction, and the boundary line includes the light emitting axis of the photoelectric sensor and the normal to the light receiving surface of the light receiving element. The detection method of the light receiving element is set to be parallel to the moving direction of the moving body.

【0007】[0007]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。図1は、この発明の一実施
形態線状マーク検出方法に使用される変位センサである
反射型光電センサのセンサヘッド部の断面図である。図
1において、ケース体1aに収納された投光素子として
のLED2からの光が投光軸に対して垂直な方向(図で
は矢印P方向)に移動する対象物3に照射され、その反
射光がケース体1aの上部に設けられたスリット4を介
して、ケース体1a内に設けられた受光素子としての2
分割PD(フォトダイオード)5で受光される。この2
分割PDは、PSD素子であってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a sectional view of a sensor head of a reflection type photoelectric sensor which is a displacement sensor used in a linear mark detection method according to an embodiment of the present invention. In FIG. 1, light from an LED 2 serving as a light projecting element housed in a case body 1a is applied to an object 3 moving in a direction perpendicular to the light projecting axis (the direction of arrow P in the figure), and reflected light thereof Are provided through a slit 4 provided in an upper portion of the case body 1a, and are provided as light receiving elements 2 provided in the case body 1a.
The light is received by the divided PD (photodiode) 5. This 2
The split PD may be a PSD element.

【0008】このセンサヘッド部1は、投光軸A、Bと
受光面a、bの法線を含む面(紙面に平行方向)内の受
光素子上での重心変化より対象物3の距離を三角測距の
原理、つまり、三角形abOと三角形ABOに基づいて
検出する。この場合、対象物3上の投光スポット径内に
は、一様な反射率のものであることが正確な距離を出力
する条件となる。
The sensor head 1 determines the distance of the object 3 from the change in the center of gravity on the light receiving element in a plane (parallel to the paper) including the normals of the light projecting axes A and B and the light receiving surfaces a and b. Detection is performed based on the principle of triangulation, that is, based on triangle abO and triangle ABO. In this case, it is a condition for outputting an accurate distance that the light source has a uniform reflectance within the projected spot diameter on the target 3.

【0009】ところが、図2に示すように、対象物3上
の投光スポット径内に、反射率の異なる部分Q(ここで
は低反射とした)があると、受光素子5上で重心変化が
起きてしまい、距離が一定であるにもかかわらず、出力
変化が起こる。そのため、境界線検出の精度が悪くな
る。この実施形態境界線検出方法は、この現象をも考慮
して、従来の反射形光電センサを用いた場合より高精度
に、線状マーク等の境界線を検出するものである。
However, as shown in FIG. 2, if there is a portion Q having a different reflectivity (here, low reflection) within the projected spot diameter on the object 3, a change in the center of gravity on the light receiving element 5 will occur. And the output changes even though the distance is constant. For this reason, the accuracy of boundary line detection deteriorates. The boundary line detection method of this embodiment detects the boundary line such as a linear mark with higher accuracy in consideration of this phenomenon than in the case of using the conventional reflection type photoelectric sensor.

【0010】そのため、この実施形態では、図1のセン
サヘッド部の後処理として、図3に示す回路を使用す
る。図3において、センサヘッド部1内には、図1の場
合と同様、LED2及び2分割PD5を備え、2分割P
D5の受光信号は、処理回路部10の除算処理回路11
で、除算処理されて出力される。なお、トランジスタ1
2は、LED2駆動用のトランジスタである。
For this reason, in this embodiment, the circuit shown in FIG. 3 is used as post-processing of the sensor head section in FIG. 3, an LED 2 and a two-part PD 5 are provided in the sensor head unit 1 as in the case of FIG.
The light receiving signal of D5 is divided by the division processing circuit 11 of the processing circuit unit 10.
Is output after being subjected to division processing. Note that transistor 1
Reference numeral 2 denotes a transistor for driving LED2.

【0011】ここで、受光信号の処理に、除算回路を使
用する理由について説明する。図4の(a)は受光素子
としてPSDを用いた場合の説明図、図4の(b)は受
光素子として2分割PDを用いた場合の説明図であり、
いずれの場合も出力電流をI 1 、I2 、素子幅をL、図
4の(a)の重心位置をx、図4の(b)の受光素子上
でのビーム径をBw、入射光ビームが中心に入光したと
きの分割PDの内側からビームスポット端までの距離を
xとすると、それぞれの出力電流I1 、I2 を用いて除
算処理すると、図4の(a)のPSDの場合、
Here, a division circuit is used for processing the received light signal.
The reason for using will be described. FIG. 4A shows a light receiving element.
FIG. 4 (b) is an explanatory view in the case of using a PSD as an example.
FIG. 4 is an explanatory diagram when a two-segment PD is used as an optical element;
In either case, the output current is I 1, ITwo, Element width L, figure
4 (a), the position of the center of gravity is x, on the light receiving element of FIG.
Is the beam diameter at Bw, and the incident light beam enters the center
The distance from the inside of the split PD to the beam spot end
x, each output current I1, ITwoRemove with
In the case of the PSD shown in FIG.

【0012】[0012]

【数1】 (Equation 1)

【0013】と表され、また図4の(b)の2分割PD
の場合、
And the two-divided PD shown in FIG.
in the case of,

【0014】[0014]

【数2】 (Equation 2)

【0015】となり、いずれの場合も反射光量に依存せ
ずに、重心位置を求めることができる。図2に示す場合
で、図5の(a)に示すように、投光ビーム幅Bw固定
で、対象物が右から左へ移動した場合に、従来のように
差動処理すると、図5の(c)の出力となり、この発明
の実施形態のように除算処理すると、図5の(b)の出
力となる。図5の(b)、及び図5の(c)において、
、、の位置は、図6に示すように、は投光ビー
ム端に境界が達した時、は投光ビームの中心に境界が
達した時、は投光ビームを境界が抜ける時点を示して
いる。
In any case, the position of the center of gravity can be obtained without depending on the amount of reflected light. In the case shown in FIG. 2, as shown in FIG. 5A, when the light beam width Bw is fixed and the object moves from right to left, the differential processing is performed as in the related art. FIG. 5B shows the output of FIG. 5 when the division processing is performed as in the embodiment of the present invention. In FIG. 5B and FIG. 5C,
As shown in FIG. 6, the positions of,... Indicate when the boundary reaches the end of the projection beam, when the boundary reaches the center of the projection beam, and when the boundary passes through the projection beam. I have.

【0016】図5の(b)に示すように、除算処理する
と、図5の(c)に示す差動処理の時と比べて、信号の
立上がり、立下がりが急峻になる。そのため高精度に位
置決めすることができる。波形が急峻なほど、高精度に
位置決め出来る理由について説明する。境界線の位置決
めをするのに、最終的には、除算処理された信号をコン
パレータに入力し、あるスレッショルドより上か、下か
で判別する。この除算出力の波形は、対象物の反射率の
組み合わせにより、レベル的に上下動することが考えら
れるが、波形が急峻であれば、上下してもスレッショル
ドと交叉する位置はわずかずれるだけとなり、位置決め
誤差が少ない。つまり位置決め精度が良い。この場合、
反射率の差が小さいと、差動処理ではΔVが小さくなる
ため、信号の立上りが緩くなるが、除算処理をすれば小
さいことの影響は受けるが、差動処理に比べ立上がり、
立下がりが急峻であるため、上記したように高精度に位
置決めすることができる。ただし、ここ図5、図6での
説明は、対象物の大きさWが投光ビーム径Bwと同等以
上の場合である。
As shown in FIG. 5B, when the division processing is performed, the rising and falling of the signal become steeper than in the case of the differential processing shown in FIG. 5C. Therefore, positioning can be performed with high accuracy. The reason why the steeper the waveform is, the more accurate the positioning can be described. In order to position the boundary line, finally, the signal subjected to the division processing is input to a comparator, and it is determined whether the signal is above or below a certain threshold. It is conceivable that the waveform of the decalculation force may move up and down in a level depending on the combination of the reflectances of the target object.However, if the waveform is steep, the position crossing the threshold is slightly shifted even if the waveform is moved up and down, Low positioning error. That is, the positioning accuracy is good. in this case,
If the difference between the reflectances is small, ΔV becomes small in the differential processing, so that the signal rises slowly. However, if the division processing is performed, the rise of the signal is affected.
Since the fall is steep, positioning can be performed with high accuracy as described above. However, the description in FIGS. 5 and 6 is based on the case where the size W of the object is equal to or larger than the light projection beam diameter Bw.

【0017】次に、対象物の大きさWが投光ビームの径
Bwより小さい場合について、図7、図8により説明す
る。図7の(a)は、ビーム径Bwの投光ビームに対
し、幅Wの対象物が右から左へ移動して行く場合を示し
ており、図7の(b)は受光信号を除算処理した場合の
出力を、また図7の(c)は受光信号を差動処理した場
合の出力をそれぞれ示している。なお、図7の(b)、
及び図7の(c)において、、、…、の位置は、
図8示すようにが投光ビームの前端に、対象物の境界
1が達した位置を、が投光ビームの前端に対象物の中
心が達した位置を、が投光ビームの前端に対象物の境
界2が達した位置を、が投光ビームの中心に対象物の
中心が達した位置を、が投光ビームの後端に対象物の
境界1が達した位置を、が投光ビームの後端に対象物
の中心が達した場合を、が投光ビームの後端に対象物
の境界2が達した位置をそれぞれ示している。
Next, a case where the size W of the target object is smaller than the diameter Bw of the projection beam will be described with reference to FIGS. FIG. 7A shows a case where an object having a width W moves from right to left with respect to a projected beam having a beam diameter Bw, and FIG. 7B shows a process of dividing a received light signal. FIG. 7C shows the output when the received light signal is subjected to the differential processing. In addition, (b) of FIG.
And (c) of FIG. 7, the position of...
As shown in FIG. 8, the position at which the boundary 1 of the object reaches the front end of the projection beam, the position at which the center of the object reaches the front end of the projection beam, and the object at the front end of the projection beam Is the position at which the center of the object reaches the center of the projection beam, is the position at which the boundary 1 of the object reaches the rear end of the projection beam, and The case where the center of the object has reached the rear end indicates the position where the boundary 2 of the object has reached the rear end of the projection beam.

【0018】この場合、信号の立上がり、立下りの急峻
さは見かけ上、差がなくなるように見えるが、差動処理
の場合、反射光量の変化であるΔVが極端に小さくなる
ため判別するのは、実用上難しい。また、反射率差が小
さくなると、更にΔVが小さくなるため、ますます境界
線の判別は困難となる。これに対して、除算処理の場
合、図7の(b)に示した波形を反射率差が小さくても
維持できるため、高精度に位置決めすることができる。
In this case, the steepness of the rise and fall of the signal appears to have no difference, but in the case of the differential processing, it is difficult to determine because the change ΔV in the amount of reflected light is extremely small. Difficult in practice. Further, when the reflectance difference is reduced, ΔV is further reduced, so that it becomes more difficult to determine the boundary line. On the other hand, in the case of the division processing, the waveform shown in FIG. 7B can be maintained even if the reflectance difference is small, so that the positioning can be performed with high accuracy.

【0019】図9は、図1に示した光学ヘッドと図3の
回路とからなる反射形光電センサを用いて、複写機内の
駆動ベルト上のトナーの位置を検出する場合の適用例を
示す図である。転写ベルト21上のイエロー、マゼン
タ、シアン、クロの各転写位置22、23、24、25
は、転写ベルト21の移動により、反射形光電センサ2
6は、除算処理回路11より、それぞれ図10に示す信
号波形が出力され、この信号で高精度な位置決めを行う
ことができる。つまり、この境界線を示す信号から境界
線の検知時間差を得、これにより移動速度あるいは境界
線の間隔を制御する。なお、27、28、29、30
は、イエロー、マゼンタ、シアン、クロの転写ドラムで
ある。
FIG. 9 is a diagram showing an application example in which the position of toner on a drive belt in a copying machine is detected by using a reflection type photoelectric sensor comprising the optical head shown in FIG. 1 and the circuit of FIG. It is. Yellow, magenta, cyan, and black transfer positions 22, 23, 24, and 25 on transfer belt 21
Is the reflection type photoelectric sensor 2 due to the movement of the transfer belt 21.
6 outputs the signal waveforms shown in FIG. 10 from the division processing circuit 11, respectively, and it is possible to perform high-precision positioning using these signals. That is, the detection time difference of the boundary line is obtained from the signal indicating the boundary line, and thereby the moving speed or the interval between the boundary lines is controlled. 27, 28, 29, 30
Are transfer drums for yellow, magenta, cyan, and black.

【0020】図11は、この発明の他の実施形態境界線
検出方法に使用される反射形光電センサの例を示す概略
図である。図11において、移動体3の表面には、移動
方向に対して直交する方向に、ライン状の反射率差によ
って生じる境界線31が配置されている。そして、反射
形光電センサ32は、LED33からの投光軸と受光素
子である2分割PD(PSDでも良い)34の受光面法
線を含む面が、境界線に対し平行となるように構成され
ている。また、2分割PD34は2つのPDが移動体3
の表面と平行に方向に配置されている。
FIG. 11 is a schematic diagram showing an example of a reflection type photoelectric sensor used in a boundary line detecting method according to another embodiment of the present invention. In FIG. 11, a boundary line 31 generated by a linear reflectance difference is arranged on the surface of the moving body 3 in a direction orthogonal to the moving direction. The reflection-type photoelectric sensor 32 is configured such that a plane including a light-projecting axis from the LED 33 and a light-receiving surface normal of a two-divided PD (or a PSD) 34 as a light-receiving element is parallel to the boundary line. ing. The two-divided PD 34 is composed of two moving objects 3
Are arranged in a direction parallel to the surface.

【0021】このような構成であると、反射率差によっ
て生じる重心変化検出方向、つまり境界線検出方向は水
平、対象物(移動体)のばたつきによる反射光重心変化
検出方向は垂直と、互いに90°異なるため、対象物の
ばたつきが生じても境界線を安定して検出することがで
きる。そのため、この境界線検出方法を複写機の転写ベ
ルトの転写位置検出を行うのに、ベルトのばたつきをそ
れほど考慮に入れる必要はないので、反射形光電センサ
をベルトのどの位置にでも設けることができる。
With this configuration, the direction of detecting the change in the center of gravity caused by the reflectance difference, that is, the direction of detecting the boundary line is horizontal, and the direction of detecting the change in the center of gravity of the reflected light due to the fluttering of the object (moving body) is 90 degrees. Due to the difference, the boundary line can be detected stably even if the object flutters. Therefore, in order to detect the transfer position of the transfer belt of the copying machine in this boundary line detection method, it is not necessary to consider the fluttering of the belt so much, so that the reflective photoelectric sensor can be provided at any position of the belt. .

【0022】この発明のさらに他の実施形態境界線検出
方法として、図3に示す回路の除算処理回路の後に微分
処理回路を設け、その出力でもって境界線検出を行って
もよい。この方法によると、除算処理回路の出力が図1
2の(a)の場合、その微分処理出力は、図12の
(b)の信号波形となり、出力波形がより急峻となるた
め、位置決め精度をさらに向上させることができる。ま
た、この微分出力波形により除算出力波形のピーク点を
安定して検出できる。
As still another embodiment of the present invention, a differential processing circuit may be provided after the division processing circuit of the circuit shown in FIG. 3, and the output of the differential processing circuit may be used to detect the boundary line. According to this method, the output of the division processing circuit is
In the case of 2 (a), the differential processing output becomes the signal waveform of FIG. 12 (b), and the output waveform becomes steeper, so that the positioning accuracy can be further improved. Further, the peak point of the divisional calculation force waveform can be stably detected by the differential output waveform.

【0023】[0023]

【発明の効果】特許請求の範囲の請求項1、請求項2及
び請求項3に係る発明によれば、受光素子上の反射光の
重心位置変化を除算処理により求めるようにしたので、
変位センサの光学系でよいため、光学系が簡素であ
る。対象物の大きさを投光ビーム径以下にしても受光
素子上での重心変化は発生するため、対象物の大きさの
制限を緩くすることができる。対象物の反射率が異な
る場合でも、除算処理により信号を規格化できるため、
信号の立上がりもしくは立下がり特性を揃えることがで
き、高精度に位置決めすることができる。
According to the first, second and third aspects of the present invention, the change in the center of gravity of the reflected light on the light receiving element is obtained by the division processing.
Since the optical system of the displacement sensor may be used, the optical system is simple. Even if the size of the object is smaller than the beam diameter, the center of gravity changes on the light receiving element, so that the size of the object can be less restricted. Even if the reflectance of the object is different, the signal can be normalized by the division process,
Signal rising or falling characteristics can be made uniform, and positioning can be performed with high accuracy.

【0024】また、請求項4に係る発明によれば、除算
処理後、さらに微分処理するので、出力信号波形がより
急峻となり、また除算出力波形のピーク点を安定して検
出でき、さらに高精度の検出を行うことができる。ま
た、請求項5に係る発明によれば、ばたつきによる反射
光重心検出方向と境界線検出方向が90°異なるため、
対象物のばたつきが発生しても、その影響を受けること
なく、境界線を安定して検出できる。
According to the fourth aspect of the present invention, the differential processing is further performed after the division processing, so that the output signal waveform becomes steeper, and the peak point of the division calculation force waveform can be detected stably, thereby achieving higher accuracy. Can be detected. According to the fifth aspect of the present invention, the direction of detection of the center of gravity of the reflected light due to the flutter and the direction of detection of the boundary line differ by 90 °.
Even if the object flutters, the boundary can be detected stably without being affected by the flutter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態境界線検出方法に使用す
る反射形光電センサのセンサヘッドの断面図である。
FIG. 1 is a sectional view of a sensor head of a reflection type photoelectric sensor used in a boundary line detection method according to an embodiment of the present invention.

【図2】同反射形センサヘッドで反射率の一様でない対
象物の境界線を検出する場合の説明図である。
FIG. 2 is an explanatory diagram in the case of detecting a boundary line of an object having non-uniform reflectance with the reflective sensor head.

【図3】図1のセンサヘッドと組み合わせて反射形光電
センサを構成する回路部の回路図である。
FIG. 3 is a circuit diagram of a circuit unit which constitutes a reflective photoelectric sensor in combination with the sensor head of FIG. 1;

【図4】同反射形光電センサを用い、除算処理で境界線
を検出する場合の説明図である。
FIG. 4 is an explanatory diagram of a case where a boundary line is detected by a division process using the same reflection type photoelectric sensor.

【図5】対象物の幅が投光スポット径以上の場合で、除
算処理を行った場合と、差動処理を行った場合の出力の
相違を説明する図である。
FIG. 5 is a diagram illustrating a difference in output between a case where a division process is performed and a case where a differential process is performed when the width of the target object is equal to or larger than the light projection spot diameter.

【図6】図5の波形の各タイミングを説明する波形図で
ある。
6 is a waveform chart illustrating each timing of the waveform in FIG.

【図7】対象物の幅が投光スポット径よりも小さい場合
で、除算処理と差動処理を行った場合の出力波形の相違
を説明する図である。
FIG. 7 is a diagram illustrating a difference between output waveforms when division processing and differential processing are performed when the width of the target object is smaller than the light projection spot diameter.

【図8】図7の波形の各タイミングを説明する波形図で
ある。
FIG. 8 is a waveform chart for explaining each timing of the waveform of FIG. 7;

【図9】上記実施形態境界線検出方法の適用例を示す図
である。
FIG. 9 is a diagram illustrating an application example of the boundary line detection method according to the embodiment.

【図10】同適用例における反射形光電センサの出力波
形を示す図である。
FIG. 10 is a diagram showing an output waveform of a reflection type photoelectric sensor in the application example.

【図11】この発明の他の実施形態境界線検出方法を説
明する図である。
FIG. 11 is a diagram illustrating a boundary line detection method according to another embodiment of the present invention.

【図12】この発明のさらに他の実施形態境界線検出方
法を説明する出力波形を示す図である。
FIG. 12 is a diagram showing output waveforms for explaining a boundary line detection method according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 センサヘッド部 2 LED 3 対象物 5 2分割PD 11 除算処理回路 DESCRIPTION OF SYMBOLS 1 Sensor head part 2 LED 3 Target object 5 2 division PD 11 Division processing circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】反射率の差によって発生する境界線を有す
る移動物体に対して、受光素子上での反射光の重心変化
を検出する反射型光電センサの投光軸と受光軸を含む面
を移動方向に平行に配置し、受光信号を除算して境界線
の検知時間差より移動速度もしくは間隔を制御するよう
にしたことを特徴とする境界線検出方法。
1. A surface including a light-projecting axis and a light-receiving axis of a reflection-type photoelectric sensor for detecting a change in the center of gravity of reflected light on a light-receiving element for a moving object having a boundary generated by a difference in reflectance. A boundary line detection method comprising: arranging in parallel with a moving direction, dividing a light receiving signal, and controlling a moving speed or an interval based on a detection time difference of the boundary line.
【請求項2】前記境界線は、複写機の転写ベルトのトナ
ーによって形成されるものであり、前記境界線の検知時
間差より、トナー位置間隔を制御するものである請求項
1記載の境界線検出方法。
2. The boundary detection according to claim 1, wherein the boundary is formed by toner on a transfer belt of a copying machine, and a toner position interval is controlled based on a detection time difference of the boundary. Method.
【請求項3】前記境界線を形成する対象物の大きさが投
光ビーム径以上である請求項1又は請求項2記載の境界
線検出方法。
3. The boundary line detection method according to claim 1, wherein the size of the object forming the boundary line is equal to or larger than the diameter of the projected beam.
【請求項4】前記受光信号の除算後は、さらに微分処理
を行うようにしたことを特徴とする請求項1、請求項2
又は請求項3記載の境界線検出方法。
4. The apparatus according to claim 1, wherein after the division of the light receiving signal, a differentiation process is further performed.
Or the boundary line detection method according to claim 3.
【請求項5】移動体の表面にラインの反射率差によって
生じる境界線を移動方向に対して直交するように配置
し、その境界線が光電センサの投光軸と受光素子の受光
面法線を含む平行な構成とし、受光素子の検出方法が移
動体の移動方向と平行であるようにしたことを特徴とす
る境界線検出方法。
5. A boundary line formed by a difference in reflectance between lines is arranged on the surface of the moving body so as to be orthogonal to the moving direction, and the boundary line is a projection axis of the photoelectric sensor and a normal to a light receiving surface of the light receiving element. Wherein the detection method of the light receiving element is parallel to the moving direction of the moving body.
JP9089285A 1997-04-08 1997-04-08 Method for detecting border line Pending JPH10281719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9089285A JPH10281719A (en) 1997-04-08 1997-04-08 Method for detecting border line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9089285A JPH10281719A (en) 1997-04-08 1997-04-08 Method for detecting border line

Publications (1)

Publication Number Publication Date
JPH10281719A true JPH10281719A (en) 1998-10-23

Family

ID=13966442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9089285A Pending JPH10281719A (en) 1997-04-08 1997-04-08 Method for detecting border line

Country Status (1)

Country Link
JP (1) JPH10281719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077660A (en) * 2012-10-09 2014-05-01 Fuji Xerox Co Ltd Detector
JP6514841B1 (en) * 2017-07-06 2019-05-15 浜松ホトニクス株式会社 Optical module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077660A (en) * 2012-10-09 2014-05-01 Fuji Xerox Co Ltd Detector
JP6514841B1 (en) * 2017-07-06 2019-05-15 浜松ホトニクス株式会社 Optical module
US11054309B2 (en) 2017-07-06 2021-07-06 Hamamatsu Photonics K.K. Optical module
US11067380B2 (en) 2017-07-06 2021-07-20 Hamamatsu Photonics K.K. Optical module
US11187579B2 (en) 2017-07-06 2021-11-30 Hamamatsu Photonics K.K. Optical device
US11209260B2 (en) 2017-07-06 2021-12-28 Hamamatsu Photonics K.K. Optical module having high-accuracy spectral analysis
US11624605B2 (en) 2017-07-06 2023-04-11 Hamamatsu Photonics K.K. Mirror unit and optical module
US11629946B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Mirror unit and optical module
US11629947B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Optical device
US11635290B2 (en) 2017-07-06 2023-04-25 Hamamatsu Photonics K.K. Optical module
US11879731B2 (en) 2017-07-06 2024-01-23 Hamamatsu Photonics K.K. Mirror unit and optical module

Similar Documents

Publication Publication Date Title
KR101360252B1 (en) A reflection type optics sensor and a surface coarseness detection method of the measurement side
EP0632302A1 (en) Image forming apparatus
CN111721235B (en) Photoelectric edge detection system and detection method thereof
JPH07103710A (en) Displacement detector
US4833497A (en) Apparatus for adjusting focus in the macro-photographing mode of an automatic focus camera
JPH0743245B2 (en) Alignment device
US5315373A (en) Method of measuring a minute displacement
JPH10281719A (en) Method for detecting border line
US6674517B2 (en) Optical motion detector, transport system and transport processing system
US7345745B2 (en) Optical device for measuring the displacement velocity of a first moving element with respect to a second element
JP2544733B2 (en) Photoelectric switch
JPS62174718A (en) Optical scanning device
JP2003097924A (en) Shape measuring system and method using the same
JP2754962B2 (en) Optical mark detector for printed matter
JP3752788B2 (en) Ranging light sensor
JP3143889B2 (en) Distance measuring method and device
JPH05231848A (en) Optical displacement sensor
JPH0520989A (en) Photoelectric sensor
JPS62222117A (en) Multipoint distance measuring sensor
JPH102715A (en) Position detector
KR100326170B1 (en) Measuring device for waveguides pitch of optical device
JP2000206429A (en) Light beam scanning optical device
JP2817800B2 (en) Electric load averaging method and apparatus therefor
JPH02157614A (en) Distance measuring instrument
JPH033176B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term