JPH10280034A - Method for heat treating fe base amorphous alloy thin strip - Google Patents

Method for heat treating fe base amorphous alloy thin strip

Info

Publication number
JPH10280034A
JPH10280034A JP9083730A JP8373097A JPH10280034A JP H10280034 A JPH10280034 A JP H10280034A JP 9083730 A JP9083730 A JP 9083730A JP 8373097 A JP8373097 A JP 8373097A JP H10280034 A JPH10280034 A JP H10280034A
Authority
JP
Japan
Prior art keywords
ribbon
less
temperature
annealing
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9083730A
Other languages
Japanese (ja)
Inventor
Hiroaki Sakamoto
本 広 明 坂
Toshio Yamada
田 利 男 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9083730A priority Critical patent/JPH10280034A/en
Publication of JPH10280034A publication Critical patent/JPH10280034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Abstract

PROBLEM TO BE SOLVED: To provide a heat treating method for an Fe base amorphous alloy thin strip in which the improvement of the dispersion of core loss between each charge is made possible, furthermore, the core loss itself can be improved, and as a result, the improvement of the yield of the thin strip is made possible even in the case an inexpensive alloy is used. SOLUTION: An amorphous thin strip produced by melting an alloy whose compsn. is shown by (Fea Sib Bc Cd )100-x Px and jetting the allay molten metal onto a moving cooled substrate through a slot nozzle is subjected to low temp. annealing in the temp. range of 150 to 320 deg.C for 30 sec to 1 hr and is thereafter subjected to magnetic annealing at 340 to 400 deg.C for 30 min to 3 hr, where, as for (a), (b), (c) and (d), by atomic %, 70<=a<=86, 1<=b<=19 7<=c<=20, 0.02<=d<=4 and a+b+c+d=100, and as for (x), by wt.%, 0.03<=x<=0.1. The thin strip having <=30 μm sheet thickness is preferably produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力トランス、高
周波トランスなどの鉄心に用いられるFe系非晶質合金
薄帯およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-based amorphous alloy ribbon used for an iron core of a power transformer, a high-frequency transformer and the like, and a method for producing the same.

【0002】[0002]

【従来技術】合金を溶融状態から急冷することによっ
て、連続的に薄帯や線を製造する方法として遠心急冷
法、単ロール法、双ロール法、等が知られている。これ
らの方法は、高速回転する金属製ドラムの内周面または
外周面に溶融金属をオリフィス等から噴出させることに
よって、急速に溶融金属を凝固させて薄帯や線を製造す
るものである。さらに、合金組成を適正に選ぶことによ
って、液体金属に類似した非晶質合金を得ることがで
き、磁気的性質あるいは機械的性質に優れた材料を製造
することができる。
2. Description of the Related Art As a method for continuously producing a ribbon or a wire by rapidly cooling an alloy from a molten state, a centrifugal quenching method, a single roll method, a twin roll method, and the like are known. In these methods, a molten metal is ejected from an orifice or the like onto the inner or outer peripheral surface of a metal drum rotating at a high speed, thereby rapidly solidifying the molten metal to produce a ribbon or a wire. Furthermore, by properly selecting the alloy composition, an amorphous alloy similar to a liquid metal can be obtained, and a material having excellent magnetic properties or mechanical properties can be manufactured.

【0003】この非晶質合金薄帯は、その優れた特性か
ら多くの用途において工業材料として有望視されてい
る。その中でも、電力トランスや高周波トランスなどの
鉄心材料の用途としては、鉄損が低く、かつ、飽和磁束
密度および透磁率が高いこと、等の理由からFe系非晶
質合金薄帯、例えば、Fe−Si−B系、等が採用され
ている。
[0003] This amorphous alloy ribbon is regarded as a promising industrial material in many applications because of its excellent properties. Among them, iron core materials such as power transformers and high-frequency transformers are used for low iron loss and high saturation magnetic flux density and high magnetic permeability. -Si-B type or the like is employed.

【0004】本発明者らは、特開平8−283919号
公報で、Fe−Si−B−C系にPを0.003重量%
以上0.1重量%以下含有させた組成の合金薄帯の板厚
を40μm以上90μm以下にすることによって鉄損を
改善した薄帯、および、前記組成の融点から400℃ま
での平均冷却速度を1×10℃/秒以上2×10
/秒以下で冷却することによって、鉄損を改善する方法
を開示した。また、本発明者らは、特願平7−3323
40号で、Fe−Si−B−C系に不純物として0.0
08重量%以上0.1重量%以下のP、0.15重量%
以上0.5重量%以下のMn、0.004重量%以上
0.05重量%以下のSを含有させた安価な非晶質合金
薄帯を出願している。この特願平7−332340号
は、P添加がMnおよびSの不純物を無害化することに
よって達成されたものである。
The present inventors disclosed in Japanese Patent Application Laid-Open No. 8-283919 that 0.003% by weight of P was added to the Fe-Si-BC system.
The thickness of the alloy ribbon having a composition of not less than 0.1% by weight is not less than 40 μm and the thickness of the ribbon is not more than 90 μm to improve the iron loss, and the average cooling rate from the melting point of the composition to 400 ° C. 1 × 10 5 ℃ / sec or more 2 × 10 5
A method has been disclosed for improving iron loss by cooling at a rate of less than / sec. The present inventors have also disclosed in Japanese Patent Application No. 7-3323.
In No. 40, 0.0 as an impurity was added to the Fe-Si-BC system.
P of not less than 08% by weight and not more than 0.1% by weight, 0.15% by weight
An inexpensive amorphous alloy ribbon containing Mn of not less than 0.5% by weight and S of not less than 0.004% by weight and not more than 0.05% by weight has been filed. Japanese Patent Application No. 7-332340 has been achieved by adding P to render Mn and S impurities harmless.

【0005】本発明者らは、特開平8−283919号
公報および特願平7−332340号公報に開示した
P、Mn、Sを不純物として含む安価な合金を用いて、
通常の単ロール法で約20μm〜70μm厚の非晶質合
金薄帯を鋳造し、公知の歪み取りアニールである360
℃×1時間の磁場中アニールを施した試料の鉄損を評価
した。その結果、板厚が30μm超の場合には、単板試
験(SST)を用いて50kHz、1.3Tの条件で測
定した鉄損(W13/50 )が0.09〜0.12W/kg
と優れた低鉄損値を示す。しかし、板厚が30μm以下
になると、鉄損が0.09〜0.16W/kgと同じ組
成で同じ厚さの薄帯に鋳造しても各チャージ間における
鉄損のバラツキが大きくなり、同じ板厚における鉄損の
平均値も大きくなることが判明した。
[0005] The present inventors have used an inexpensive alloy containing P, Mn and S as impurities disclosed in Japanese Patent Application Laid-Open Nos. 8-283919 and 7-332340,
An amorphous alloy ribbon having a thickness of about 20 μm to 70 μm is cast by a normal single-roll method, and a known strain relief annealing is performed.
The iron loss of the sample subjected to annealing in a magnetic field of 1 ° C. × 1 hour was evaluated. As a result, when the plate thickness is more than 30 μm, the iron loss (W13 / 50) measured under the conditions of 50 kHz and 1.3 T using the single plate test (SST) is 0.09 to 0.12 W / kg.
And an excellent low iron loss value. However, when the sheet thickness is 30 μm or less, even if the iron loss is cast into a ribbon having the same composition of 0.09 to 0.16 W / kg and the same thickness, the variation of the iron loss between each charge increases, and the same. It was also found that the average value of the iron loss in the plate thickness was increased.

【0006】また、Fe−Si−B系にPが含有された
ものとしては、以下のものが開示されている。特開昭5
7−137451号公報には、Feを78.5原子%超
80原子%未満、Siを5原子%以上10原子%以下、
Bを13原子%以上16原子%以下に規制することによ
って、鋳造時の湯流れ性が向上し、薄帯の熱安定性が向
上することが開示されている。ただし、各種不純物元素
の最大許容量が示されており、例えば、Pは0.008
原子%以下、Mnは0.12原子%以下、Sは0.02
原子%以下と規定されている。
The following are disclosed as P-containing Fe-Si-B alloys. JP 5
JP-A-7-137451 discloses that Fe is more than 78.5 at% and less than 80 at%, Si is 5 to 10 at%,
It is disclosed that by regulating B to 13 at% or more and 16 at% or less, the flowability of molten metal at the time of casting is improved, and the thermal stability of the ribbon is improved. However, the maximum allowable amounts of various impurity elements are shown, for example, P is 0.008
Atomic% or less, Mn is 0.12 atomic% or less, S is 0.02 atomic% or less.
Atomic% or less is specified.

【0007】さらに、特開昭57−185957号公報
には、薄帯の飽和磁束密度の向上と損失の低減を図るた
めに、Fe−Si−B−C−P系において、Pを1原子
%以上10原子%以下添加することを特徴とした合金組
成が開示されている。特開平8−193252号公報で
は、6〜10原子%のB、10〜17原子%のSi、
0.02〜5原子%のP、残部Feからなる低ボロン非
晶質合金を開示している。これは低コスト化のためにB
量を従来よりも低くしても、Pを添加することによって
薄帯表面粗さが改善されて高B含有の場合と同等の軟磁
気特性を得たものである。
Further, Japanese Patent Application Laid-Open No. 57-185957 discloses that, in order to improve the saturation magnetic flux density of a ribbon and to reduce the loss, in an Fe—Si—B—C—P system, P is 1 atomic%. An alloy composition characterized by adding at least 10 atomic% or less is disclosed. JP-A-8-193252 discloses that 6 to 10 atomic% of B, 10 to 17 atomic% of Si,
A low boron amorphous alloy consisting of 0.02 to 5 atomic% P and the balance Fe is disclosed. This is B for cost reduction
Even if the amount is lower than in the conventional case, the surface roughness of the ribbon is improved by adding P, and the same soft magnetic properties as in the case of high B content are obtained.

【0008】しかし、これらの特開昭57−13745
1号公報、特開昭57−185957号公報および特開
平8−193252号公報で用いられている薄帯の製造
方法は、通常の単ロール法で薄帯を鋳造した後、通常の
一段の歪み取りアニールを磁場中で行う方法である。
However, Japanese Patent Application Laid-Open No. 57-13745 discloses such a method.
No. 1, JP-A-57-185957 and JP-A-8-193252 disclose a method of manufacturing a ribbon by casting a ribbon by a usual single-roll method and then subjecting the ribbon to a normal single-stage distortion. This is a method of performing annealing in a magnetic field.

【0009】[0009]

【発明が解決しようとする課題】上述のごとく、従来
は、不純物としてP、Mn、S等が含有された安価な合
金を用いて薄帯を鋳造しても、板厚が30μm以下にな
ると、同じ組成で同じ板厚に鋳造しても各チャージ間に
おける鉄損のバラツキが大きくなり、鉄損の平均値も劣
化することが判明した。
As described above, conventionally, even when a thin strip is cast using an inexpensive alloy containing P, Mn, S, etc. as impurities, if the sheet thickness becomes 30 μm or less, It has been found that even if the same composition and the same thickness are cast, the variation in iron loss between charges increases, and the average value of iron loss also deteriorates.

【0010】本発明は、前述の安価な合金を用いた場合
でも、薄帯鋳造後に通常実施する歪み取りアニールの前
に低温アニールを施すことによって、板厚が30μm以
下の薄帯においても、各チャージ間における鉄損のバラ
ツキの改善が可能になり、かつ、鉄損自身も改善され、
その結果、薄帯の歩留り向上を可能にするFe基非晶質
合金薄帯の熱処理方法を提供することを目的とする。
According to the present invention, even when the above-mentioned inexpensive alloy is used, the low-temperature annealing is performed after the strip casting and before the strain relief annealing which is usually performed, so that even when the strip has a thickness of 30 μm or less, Iron loss variation between charges can be improved, and iron loss itself is also improved,
As a result, an object of the present invention is to provide a heat treatment method for an Fe-based amorphous alloy ribbon, which can improve the yield of the ribbon.

【0011】[0011]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)組成が(FeSi100−x
で表示される合金を溶解し、合金溶湯を移動している冷
却基板上にスロットノズルを通して噴出させて製造した
非晶質薄帯に150℃以上320℃以下の温度範囲で3
0秒以上1時間以内の低温アニールを施した後、340
℃以上400℃以下の温度で30分以上3時間以内、地
場中アニールすることを特徴とするFe基非晶質合金薄
帯の熱処理方法。ただし、a、b、cおよびdは、原子
%で、70≦a≦86、1≦b≦19、7≦c≦20、
0.02≦d≦4、a+b+c+d=100であり、x
は重量%で0.003≦x≦0.1である。 (2)板厚が30μm以下の薄帯を製造することを特徴
とする前項(1)記載のFe基非晶質合金薄帯の熱処理
方法。
The gist of the present invention is as follows. (1) composition (Fe a Si b B c C d) 100-x P x
Is melted, and the molten alloy is ejected through a slot nozzle onto a moving cooling substrate to form an amorphous ribbon produced at a temperature in the range of 150 ° C to 320 ° C.
After performing low temperature annealing for 0 second or more and within 1 hour, 340
A heat treatment method for an Fe-based amorphous alloy ribbon, comprising annealing in a field at a temperature of not less than 400C and not more than 400C for not less than 30 minutes and not more than 3 hours. However, a, b, c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b ≦ 19, 7 ≦ c ≦ 20,
0.02 ≦ d ≦ 4, a + b + c + d = 100, and x
Is 0.003 ≦ x ≦ 0.1 in weight%. (2) The heat treatment method for an Fe-based amorphous alloy ribbon according to the above (1), wherein a ribbon having a plate thickness of 30 μm or less is manufactured.

【0012】本発明者らは、安価な合金を用いて鋳造し
た板厚が30μm以下の薄帯においても鉄損を改善する
目的で、ロールの回転速度、ロールとノズルの間隔、溶
湯の噴出圧力を変えるなどしていろいろと試したが、中
々、成功しなかった。そこで、Pが含有される系では、
冷却速度と鉄損が密接に関係していることから、鋳造中
の薄帯の冷却速度のプロファイルを公知の接触式熱電対
を用いて、そのプロファイルと鉄損の関係を詳細に調べ
た。その結果、従来の鋳造方法では、そのほとんどの場
合、薄帯の板厚が30μm以下になると、薄帯は100
℃程度の温度まで充分速い冷却速度で冷却されているこ
とが判明した。それと同時に、従来の鋳造方法では、冷
却基板上で超急冷される薄帯の到達温度が数十℃の範囲
で変化してしまい、偶然にその温度が150℃以上32
0℃以下の範囲に入ったときのみに、W13/50 で0.1
2W/kg以下の優れた鉄損が得られることが判明し
た。しかし、ほとんどの場合には到達薄帯温度がこの1
50℃以上320℃以下の温度範囲に入らないために良
好な鉄損が得られず、これが鉄損のバラツキの原因にな
っていた。
In order to improve iron loss even in a thin strip having a thickness of 30 μm or less cast using an inexpensive alloy, the present inventors have attempted to improve the rotation speed of the roll, the distance between the roll and the nozzle, and the pressure of the molten metal jet. I tried various things, such as changing, but it was not successful. Therefore, in a system containing P,
Since the cooling rate and the iron loss are closely related, the profile of the cooling rate of the ribbon during casting was examined in detail using a well-known contact thermocouple with the profile and the iron loss. As a result, in the conventional casting method, in most cases, when the thickness of the ribbon becomes 30 μm or less, the ribbon becomes 100
It was found that cooling was performed at a sufficiently high cooling rate to a temperature of about ° C. At the same time, in the conventional casting method, the ultimate temperature of the ultra-rapidly cooled ribbon on the cooling substrate changes within the range of several tens of degrees Celsius, and the temperature is accidentally increased to 150 degrees Celsius or more.
Only when the temperature falls within the range of 0 ° C or less, W13 / 50
It has been found that excellent iron loss of 2 W / kg or less can be obtained. However, in most cases, the ultimate ribbon temperature is
Since the temperature did not fall within the temperature range of 50 ° C. or more and 320 ° C. or less, good iron loss was not obtained, and this caused variation in iron loss.

【0013】通常、高温から連続的に冷却されて形成さ
れる組織と、一端冷却された後のアニールによって形成
される組織は異なると考えられている。特に、非晶質の
ような準安定な物質においては、両者の相異はより顕著
となる。しかし、本発明者らは、前記の実験結果を踏ま
えて、従来の方法で鋳造した薄帯でも、歪み取りアニー
ルの前に低温アニールを実施することによって、鉄損が
改善できるか否かを熱処理温度、時間を種々変えて詳細
に調べた。その結果、超急冷した薄帯を150℃以上3
20℃以下の温度範囲で30秒以上1時間以内の低温ア
ニールを施した後、340℃以上400℃以下の温度で
30分以上3時間以内の磁場中での歪み取りアニールを
することによって、鉄損が改善され、かつ、チャージ間
のバラツキも低減することを新たに見い出した。150
℃より低い温度、あるいは、320℃超の温度でアニー
ルしても鉄損の改善効果は得られない。
It is generally considered that the structure formed by continuous cooling from a high temperature is different from the structure formed by annealing once cooled. Particularly, in a metastable material such as an amorphous material, the difference between the two becomes more remarkable. However, based on the above experimental results, the present inventors conducted a heat treatment to determine whether iron loss can be improved by performing low-temperature annealing before performing strain relief annealing even on a ribbon cast by a conventional method. The temperature and time were varied and examined in detail. As a result, the ultra-rapidly cooled ribbon was
After performing low-temperature annealing in a temperature range of 20 ° C. or less for 30 seconds or more and 1 hour or less, and then performing strain relief annealing in a magnetic field at a temperature of 340 ° C. or more and 400 ° C. or less for 30 minutes or more and 3 hours or less, It has been newly found that the loss is improved and the variation between charges is reduced. 150
Annealing at a temperature lower than ℃ or a temperature higher than 320 ° C. does not provide the effect of improving iron loss.

【0014】鉄損改善のメカニズムに関しては、まだ、
明らかになっていないが、150℃以上320℃以下の
温度範囲の低温アニールによってのみ、Pが何らかの形
でクラスター化あるいは微細な析出物として非晶質マト
リックス中に析出し、それらが鉄損低下に寄与している
ものと推定される。低温アニールの時間を30秒より短
くすると、鉄損のバラツキが改善されない。また、1時
間以上アニールしても鉄損改善効果の向上は認められ
ず、電気代などのコストアップになる。したがって、低
温アニールの条件を150℃以上320℃以下の温度で
30秒以上1時間以下に限定した。
Regarding the mechanism of iron loss improvement,
Although not clear, only by low-temperature annealing in the temperature range of 150 ° C. or more and 320 ° C. or less, P is clustered in some form or precipitates as fine precipitates in the amorphous matrix, and they reduce iron loss. It is presumed to have contributed. If the time of the low-temperature annealing is shorter than 30 seconds, the variation of the iron loss is not improved. Further, even if the annealing is performed for one hour or more, the improvement of the iron loss improvement effect is not recognized, and the cost such as electricity cost is increased. Therefore, the condition of the low-temperature annealing is limited to a temperature of 150 ° C. or more and 320 ° C. or less and 30 seconds or more and 1 hour or less.

【0015】その後の磁場中での歪み取りアニールにお
いては、温度が340℃より低い場合、および、時間が
30分より短い場合には歪みを除ききれないために鉄損
が劣化する。また、400℃超の温度でアニールすると
部分的に結晶化が起こってしまう。アニール時間を3時
間より長くしても鉄損の向上は認められず、組成によっ
ては部分的に結晶化が起こり鉄損が劣化してしまう場合
も出てくる。したがって、磁場中アニールの条件を34
0℃以上400℃以下の温度で30分以上3時間以内に
限定した。低温アニールした後は、室温まで冷却した後
に歪み取りアニールを実施しても良いし、また、低温ア
ニールした後に冷却せず、引き続いて歪み取りアニール
を実施しても良い。本発明による低温アニールを板厚が
30μm超の薄帯に適用した場合にも、さらなる鉄損の
バラツキが改善されて、ほとんどの場合、W13/50 で
0.10W/kgレベル以下となった。
In the subsequent strain relief annealing in a magnetic field, when the temperature is lower than 340 ° C. and when the time is shorter than 30 minutes, the iron loss is deteriorated because the strain cannot be completely removed. In addition, when annealing is performed at a temperature exceeding 400 ° C., crystallization occurs partially. Even if the annealing time is longer than 3 hours, no improvement in iron loss is recognized, and depending on the composition, partial crystallization may occur and the iron loss may deteriorate. Therefore, the conditions for annealing in a magnetic field are set to 34.
The temperature was limited to 30 ° C. or more and 3 hours or less at a temperature of 0 ° C. or more and 400 ° C. or less. After the low temperature annealing, the strain relief annealing may be performed after cooling to room temperature, or the strain relief annealing may be performed without cooling after the low temperature annealing. Even when the low-temperature annealing according to the present invention is applied to a ribbon having a thickness of more than 30 μm, the variation in the iron loss is further improved, and in most cases, the W13 / 50 is 0.10 W / kg or less.

【0016】次に合金組成の限定理由について述べる。
薄帯を鉄心に使用する場合、鉄心の飽和磁束密度は1.
5T以上の高い値にする必要がある。そのためにはFe
の含有量を70原子%以上にしなければならない。ま
た、Feの含有量が86原子%超になると非晶質の形成
が困難になって良好な薄帯特性が得られなくなる。した
がって、Feを70原子%以上86原子%以下の範囲に
限定する。
Next, the reasons for limiting the alloy composition will be described.
When a ribbon is used for the iron core, the saturation magnetic flux density of the iron core is 1.
It is necessary to set a high value of 5T or more. For that, Fe
Must be 70 atomic% or more. On the other hand, if the Fe content exceeds 86 atomic%, it becomes difficult to form an amorphous phase, and good ribbon properties cannot be obtained. Therefore, Fe is limited to the range of 70 at% to 86 at%.

【0017】SiおよびBは、非晶質形成能および熱安
定性を向上させるために添加する。Siが1原子%未
満、Bが7原子%未満では非晶質が安定して形成され
ず、一方、Siが19原子%超、Bが20原子%超とし
ても原料コストが高くなるだけで、非晶質形成能および
熱的安定性の向上が認められない。したがって、Siは
1原子%以上19原子%以下、Bは7原子%以上20原
子%以下が好ましい。
Si and B are added to improve the ability to form an amorphous phase and the thermal stability. If Si is less than 1 at% and B is less than 7 at%, amorphous is not formed stably. On the other hand, if Si is more than 19 at% and B is more than 20 at%, the cost of raw materials is only high, No improvement in amorphous forming ability and thermal stability is observed. Therefore, it is preferable that Si is 1 to 19 atomic% and B is 7 to 20 atomic%.

【0018】Cは、薄帯の鋳造性向上に効果がある元素
である。Cを含有させることによって、溶湯と冷却基板
の濡性が向上して良好な薄帯を形成することができる。
Cが0.02原子%より少ない場合には、この効果が得
られない。また、Cを4原子%より多く含有させてもこ
の効果の向上は認められない。したがって、Cを0.0
2原子%以上4原子%以下に限定した。
C is an element effective for improving the castability of the ribbon. By containing C, the wettability between the molten metal and the cooling substrate is improved, and a good ribbon can be formed.
If C is less than 0.02 atomic%, this effect cannot be obtained. Further, even if C is contained in an amount of more than 4 atomic%, no improvement in this effect is recognized. Therefore, C is set to 0.0
It is limited to 2 atomic% or more and 4 atomic% or less.

【0019】さらなる磁気特性の安定化をはかるには、
Feを77原子%以上83原子%以下、Siを2原子%
以上9原子%以下、Bを11原子%以上17原子%以下
にするのが好ましい。
In order to further stabilize the magnetic characteristics,
Fe at least 77 atomic% and at most 83 atomic%, Si at 2 atomic%
It is preferable that the content of B is not less than 9 atomic% and the content of B is not less than 11 atomic% and not more than 17 atomic%.

【0020】Pは、0.003重量%未満では十分な鉄
損改善効果が得られない。また、0.1重量%超含有し
ても鉄損改善効果の向上は認められない。したがって、
Pの含有量を0.003重量%以上0.1重量%以下に
限定した。
If P is less than 0.003% by weight, a sufficient iron loss improving effect cannot be obtained. Further, even if the content exceeds 0.1% by weight, no improvement in the iron loss improving effect is observed. Therefore,
The P content was limited to 0.003% by weight or more and 0.1% by weight or less.

【0021】不純物として、Mnが0.15重量%以上
0.5重量%以下、Sが0.004重量%以上0.05
重量%以下の如く、MnおよびSを含む安価な鉄源の使
用も可能である。この場合には、Pを0.008重量%
以上0.1重量%以下の範囲で積極的に含有させること
よって、これらのMnおよびSを無害化することが可能
になる。Mnを0.5重量%超、Sを0.05重量%超
含有する場合には、Pを0.008重量%以上0.1重
量%以下含有しても、それらを無害化できなくなる。し
たがって、Mnを0.5重量%以下、Sを0.05重量
%以下にすることが望ましい。一方、Mnを0.15重
量%より少なくする場合、Sを0.004重量%より少
なくする場合には、もはや、安価な鉄源を使うことがで
きなくなり、従来のように高価な高純度な鉄源を使用し
なければならなくなる。その結果、合金コストが増大し
好ましくない。したがって、Mnを0.15重量%以
上、Sを0.004重量%以上にすることが望ましい。
As impurities, Mn is 0.15% by weight or more and 0.5% by weight or less, and S is 0.004% by weight or more and 0.05% by weight.
It is also possible to use an inexpensive iron source containing Mn and S, such as below% by weight. In this case, P is 0.008% by weight.
By positively containing Mn and S in the range of 0.1% by weight or less, these Mn and S can be rendered harmless. When Mn exceeds 0.5% by weight and S exceeds 0.05% by weight, even if P is contained in an amount of 0.008% by weight or more and 0.1% by weight or less, they cannot be rendered harmless. Therefore, it is desirable that Mn is 0.5% by weight or less and S is 0.05% by weight or less. On the other hand, when Mn is less than 0.15% by weight or when S is less than 0.004% by weight, it is no longer possible to use an inexpensive iron source, which is expensive and of high purity as in the past. Iron sources must be used. As a result, the alloy cost is undesirably increased. Therefore, it is desirable that Mn is 0.15% by weight or more and S is 0.004% by weight or more.

【0022】[0022]

【発明の実施の形態】本発明の薄帯は、所定の合金成分
を溶解し、溶湯をスロットノズル等を通して高速で移動
している冷却基板の上に噴出し、該溶湯を急冷凝固させ
る方法、例えば、単ロール法、双ロール法によって製造
することができる。単ロール装置には、ドラムの内壁を
使う遠心急冷装置、エンドレスタイプのベルトを使う装
置、および、これらの改良型である補助ロールやロール
表面温度制御装置を付属させたもの、減圧下あるいは真
空中、または不活性ガス中での鋳造装置も含まれる。本
発明では、薄帯の板幅などの寸法は特に限定しないが、
例えば、板幅は20mm以上が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The ribbon of the present invention melts a predetermined alloy component, jets the molten metal through a slot nozzle or the like onto a cooling substrate moving at a high speed, and rapidly solidifies the molten metal. For example, it can be manufactured by a single roll method or a twin roll method. Single-roll devices include a centrifugal quenching device that uses the inner wall of the drum, a device that uses an endless type belt, and an improved version of these auxiliary rolls or a roll surface temperature control device that is attached under reduced pressure or vacuum. Or a casting apparatus in an inert gas. In the present invention, the dimensions such as the width of the ribbon are not particularly limited,
For example, the plate width is preferably 20 mm or more.

【0023】このような方法で得られた薄帯を用いて、
例えば、巻き鉄心トランスを製作する場合には、薄帯を
トロイダル形状に巻回した状態で、本発明による150
℃以上320℃以下の低温アニールを行い、その後、磁
場中で歪み取りアニールを実施すれば良い。本発明の低
温アニールは、歪み取りアニールとは異なるために、最
終のトロイダル形状の状態でなくても実施できる。例え
ば、鋳造後、巻き取る前に薄帯を150℃以上320℃
以下に保たれた低温加熱炉を通す方法、あるいは、巻き
取ったコイルの段階で一括して低温アニールを施すこと
も可能である。
Using the ribbon obtained by such a method,
For example, when manufacturing a wound iron core transformer, a thin ribbon is wound in a toroidal shape, and a 150 mm according to the present invention is used.
Low-temperature annealing at a temperature of at least 320C and a temperature of 320C or less may be performed, and then annealing for removing strain in a magnetic field may be performed. Since the low-temperature annealing of the present invention is different from the strain relief annealing, it can be performed even if it is not in a final toroidal shape. For example, after casting, before winding, the ribbon should be at least 150 ° C and 320 ° C.
It is also possible to pass through a low-temperature heating furnace maintained below, or to perform low-temperature annealing all at once on the wound coil stage.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいてさらに説明
する。実施例1 Fe80.5Si2.5B16C1(原子%)にPが
0.018wt%含有される合金を単ロール法で薄帯に
鋳造した。使用した単ロール薄帯製造装置は、直径58
0mmの銅合金製冷却ロール、試料溶解用の高周波電
源、先端にスロットノズルがついている石英るつぼなど
から構成される。公知の接触式熱電対で測定した薄帯の
剥離温度は90℃であった。
The present invention will be further described below with reference to examples. Example 1 An alloy containing 0.018 wt% of P in Fe80.5Si2.5B16C1 (atomic%) was cast into a ribbon by a single roll method. The single roll ribbon manufacturing apparatus used has a diameter of 58
It consists of a 0 mm copper alloy cooling roll, a high-frequency power supply for melting the sample, a quartz crucible with a slot nozzle at the tip, and the like. The stripping temperature of the ribbon measured by a known contact thermocouple was 90 ° C.

【0025】1チャージ分の薄帯の一部を120mm長
さに切断し、100℃〜330℃の温度で時間を変えて
低温アニールを実施した後、360℃で1時間の磁場中
での歪み取りアニールを行って評価用試験片を作製し
た。鉄損の評価にはSST(Single Strip
Tester)を用いた。測定条件は、磁束密度1.
3T、周波数50Hzである。
A part of the ribbon for one charge is cut to a length of 120 mm, low-temperature annealing is performed at a temperature of 100 ° C. to 330 ° C. for a different time, and then a strain in a magnetic field at 360 ° C. for 1 hour is performed. An annealing test was performed to produce a test piece for evaluation. SST (Single Strip)
Tester) was used. The measurement conditions were as follows.
3T, frequency 50 Hz.

【0026】今回の実験では、長さ25mm、幅0.4
mmのシングルスロットノズルを使用し、板厚が約25
μmの薄帯を得た。
In this experiment, the length was 25 mm and the width was 0.4
mm single slot nozzle, plate thickness is about 25
A μm ribbon was obtained.

【0027】結果を、表1に示す。The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示す結果から、150℃以上320
℃以下で30秒以上1時間以内の低温アニールを歪み取
りアニールの前に実施することによって、0.12W/
kg以下の鉄損値を有する薄帯が得られる。また、熱処
理No.17および18から低温アニール時間を1時間
超にしても、さらなる鉄損改善効果は認められないこと
がわかる。
From the results shown in Table 1, it is found that
By performing a low-temperature anneal at 30 ° C. or less for 30 seconds to 1 hour before the strain relief annealing, 0.12 W /
A ribbon having an iron loss value of not more than kg is obtained. In addition, heat treatment No. 17 and 18 show that even if the low-temperature annealing time exceeds 1 hour, no further effect of improving iron loss is observed.

【0030】実施例2 実施例1と同様に板厚が約25μmの薄帯を1チャージ
鋳造し、230℃で5分の低温アニールを実施した後に
330〜420℃の温度範囲で時間を変えて熱処理を実
施して鉄損評価用試験片を作製した。薄帯の剥離温度は
95℃であった。SSTを用いて測定した結果を、表2
に示す。
Example 2 In the same manner as in Example 1, a thin strip having a thickness of about 25 μm was cast by one charge, and a low-temperature anneal was performed at 230 ° C. for 5 minutes, and then the time was changed in a temperature range of 330 to 420 ° C. Heat treatment was performed to produce a test piece for evaluating iron loss. The stripping temperature of the ribbon was 95 ° C. Table 2 shows the results measured using SST.
Shown in

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示す結果から、本発明による低温ア
ニールの後に、340℃以上400℃以下で30分以上
3時間以内の歪み取りアニールを実施することによっ
て、0.12W/kg以下の鉄損値を有する薄帯が得ら
れた。
From the results shown in Table 2, the low-temperature annealing according to the present invention is followed by a strain relief annealing at 340 ° C. to 400 ° C. for 30 minutes to 3 hours to obtain an iron loss of 0.12 W / kg or less. A ribbon having a value was obtained.

【0033】実施例3 実施例1と同様に薄帯を8チャージ(No.3〜10)
鋳造し、鉄損を評価した。薄帯の板厚を20〜60μm
の範囲で変化させた。薄帯の剥離温度の実測結果は、鋳
造チャージNo.3〜6が90〜110℃の範囲であ
り、鋳造チャージNo.7〜10が150〜280℃の
範囲であった。厚手の薄帯の鋳造には、長さ25mm、
幅0.4mmのダブルスロットノズルを用いた。スロッ
ト間隔は1mmである。各板厚の薄帯に5分間の低温ア
ニールを施した後に、360℃で1時間の歪み取りアニ
ールを磁場中で行った。比較として、低温アニールを施
さず、歪み取りアニールのみを施した試験片も作製し
た。鉄損評価結果を、表3に示す。
Embodiment 3 As in the case of the embodiment 1, the ribbon is charged 8 times (Nos. 3 to 10).
It was cast and evaluated for iron loss. The thickness of the ribbon is 20 ~ 60μm
Was changed within the range. The actual measurement result of the stripping temperature of the ribbon is shown in Cast Charge No. 3 to 6 are in the range of 90 to 110 ° C. 7 to 10 was in the range of 150 to 280 ° C. For casting of thick ribbon, length 25mm,
A double slot nozzle having a width of 0.4 mm was used. The slot interval is 1 mm. After performing low-temperature annealing for 5 minutes on the ribbons of each thickness, strain removing annealing was performed at 360 ° C. for 1 hour in a magnetic field. As a comparison, a test piece subjected to only strain relief annealing without performing low-temperature annealing was also manufactured. Table 3 shows the iron loss evaluation results.

【0034】[0034]

【表3】 [Table 3]

【0035】鋳造チャージNo.3〜6の低温アニール
有無の比較から、板厚が30μm以下の薄帯では、本発
明による低温アニールを実施することによって、鉄損が
改善されて、0.12W/kgの鉄損を有する薄帯を得
ることができる。一方、鋳造チャージNo.7〜10の
低温アニール有無の比較から、板厚が30μm超の薄帯
では、本発明によらなくても、0.12W/kg以下の
鉄損が得られることがわかる。
Casting charge No. From the comparison of the presence or absence of the low-temperature annealing of 3 to 6, the iron loss is improved by performing the low-temperature annealing according to the present invention for the ribbon having a thickness of 30 μm or less, and the thin sheet having the iron loss of 0.12 W / kg is obtained. You can get a belt. On the other hand, casting charge No. From the comparison of the presence or absence of low-temperature annealing of 7 to 10, it can be seen that the iron loss of 0.12 W / kg or less can be obtained without using the present invention in a ribbon having a thickness of more than 30 μm.

【0036】実施例4 実施例1と同様に薄帯を6チャージ(No.11〜1
6)鋳造した。狙い板厚は25μm、および30μmと
し、ロッド間のバラツキを調べるために、各々の鋳造条
件で3チャージづつ鋳造し、鉄損を評価した。薄帯の剥
離温度は85〜105℃の範囲であった。各チャージに
おける鉄損は、薄帯のトップ部、ミドル部、ボトム部か
らそれぞれ3枚づづSST用試験片を採取し、各チャー
ジで計9枚の鉄損を測定し、それらの平均値を各チャー
ジの鉄損値とした。各チャージで250℃で5分の低温
アニールを実施した場合と、実施しなかった場合の両者
で比較した。歪み取りアニールは360℃で1時間磁場
中で行った。結果を、表4に示す。
Embodiment 4 In the same manner as in Embodiment 1, 6 thin strips were charged (Nos. 11 to 1).
6) Cast. The target plate thickness was set to 25 μm and 30 μm, and three charges were cast under each casting condition to evaluate the variation between rods, and the iron loss was evaluated. The stripping temperature of the ribbon was in the range of 85 to 105 ° C. The iron loss at each charge was determined by collecting three SST test pieces from the top, middle, and bottom of the ribbon, measuring a total of 9 iron losses at each charge, and calculating the average value of each. The iron loss value of the charge was used. For each charge, a comparison was made between the case where low-temperature annealing was performed at 250 ° C. for 5 minutes and the case where no low-temperature annealing was performed. The strain relief annealing was performed at 360 ° C. for 1 hour in a magnetic field. Table 4 shows the results.

【0037】[0037]

【表4】 [Table 4]

【0038】表4に示す結果から、本発明による低温ア
ニールを実施することによって、鉄損が改善されるとと
もに、そのバラツキも著しく低減することがわかる。
From the results shown in Table 4, it can be seen that by performing the low-temperature annealing according to the present invention, the iron loss is improved and the variation is significantly reduced.

【0039】実施例5 Fe78Si9.5B12C0.5の組成の合金を用い
て、実施例1と同様に板厚25μmの薄帯を鋳造し、2
50℃で5分の低温アニールの後に、360℃で1時間
の歪み取りアニールを磁場中で実施した。鉄損改善効果
は得られなかった。これは、薄帯中にPが含まれていな
いためである。
Example 5 A thin strip having a thickness of 25 μm was cast in the same manner as in Example 1 by using an alloy having a composition of Fe78Si9.5B12C0.5.
After low-temperature annealing at 50 ° C. for 5 minutes, a strain relief annealing at 360 ° C. for 1 hour was performed in a magnetic field. No iron loss improvement effect was obtained. This is because P is not contained in the ribbon.

【0040】[0040]

【発明の効果】本発明によれば、安価な合金を用いて板
厚が30μm以下の薄帯を鋳造しても、その後の簡便な
熱処理によって、優れた鉄損の薄帯が得られるととも
に、チャージ間のバラツキも著しく減少させることが可
能になり、歩留りを向上させることができる。
According to the present invention, even when a ribbon having a thickness of 30 μm or less is cast using an inexpensive alloy, a ribbon having excellent iron loss can be obtained by a simple heat treatment thereafter. Variations between charges can be significantly reduced, and the yield can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】組成が(FeSi
100−xで表示される合金を溶解し、該合金溶湯
を移動している冷却基板上にスロットノズルを通して噴
出させて製造した非晶質薄帯に、150℃以上320℃
以下の温度範囲で30秒以上1時間以内の低温アニール
を施した後、340℃以上400℃以下の温度で30分
以上3時間以内の磁場中アニールすることを特徴とす
る、Fe基非晶質合金薄帯の熱処理方法。ただし、a、
b、cおよびdは、原子%で、70≦a≦86、1≦b
≦19、7≦c≦20、0.02≦d≦4、a+b+c
+d=100であり、xは重量%で0.003≦x≦
0.1である。
1. A composition (Fe a Si b B c C d)
100-x was dissolved P x alloy to be displayed, in amorphous ribbon produced by ejecting through a slot nozzle to the cooling substrate which is moving the alloy melt, 0.99 ° C. or higher 320 ° C.
A low-temperature anneal in the following temperature range for 30 seconds to 1 hour, followed by annealing in a magnetic field for 30 minutes to 3 hours at a temperature of 340 to 400 ° C. Heat treatment method for alloy ribbon. Where a,
b, c and d are atomic%, 70 ≦ a ≦ 86, 1 ≦ b
≦ 19, 7 ≦ c ≦ 20, 0.02 ≦ d ≦ 4, a + b + c
+ D = 100, and x is 0.003 ≦ x ≦% by weight
0.1.
【請求項2】板厚が30μm以下の薄帯を製造すること
を特徴とする請求項1に記載のFe基非晶質合金薄帯の
熱処理方法。
2. The heat treatment method for an Fe-based amorphous alloy ribbon according to claim 1, wherein a ribbon having a thickness of 30 μm or less is manufactured.
JP9083730A 1997-04-02 1997-04-02 Method for heat treating fe base amorphous alloy thin strip Pending JPH10280034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9083730A JPH10280034A (en) 1997-04-02 1997-04-02 Method for heat treating fe base amorphous alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083730A JPH10280034A (en) 1997-04-02 1997-04-02 Method for heat treating fe base amorphous alloy thin strip

Publications (1)

Publication Number Publication Date
JPH10280034A true JPH10280034A (en) 1998-10-20

Family

ID=13810649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083730A Pending JPH10280034A (en) 1997-04-02 1997-04-02 Method for heat treating fe base amorphous alloy thin strip

Country Status (1)

Country Link
JP (1) JPH10280034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1853742A2 (en) * 2005-02-17 2007-11-14 Metglas, Inc. Iron-based high saturation induction amorphous alloy
US8663399B2 (en) 2005-02-17 2014-03-04 Metglas, Inc. Iron-based high saturation induction amorphous alloy
KR101459700B1 (en) * 2013-06-07 2014-11-26 한국생산기술연구원 Method for heat treatment of amorphous alloy and method for manufacturing crystalline alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1853742A2 (en) * 2005-02-17 2007-11-14 Metglas, Inc. Iron-based high saturation induction amorphous alloy
EP1853742A4 (en) * 2005-02-17 2011-05-25 Metglas Inc Iron-based high saturation induction amorphous alloy
US8372217B2 (en) 2005-02-17 2013-02-12 Metglas, Inc. Iron-based high saturation magnetic induction amorphous alloy core having low core and low audible noise
US8663399B2 (en) 2005-02-17 2014-03-04 Metglas, Inc. Iron-based high saturation induction amorphous alloy
KR101459700B1 (en) * 2013-06-07 2014-11-26 한국생산기술연구원 Method for heat treatment of amorphous alloy and method for manufacturing crystalline alloy

Similar Documents

Publication Publication Date Title
KR100447090B1 (en) Fe-based amorphous alloy thin strip and core produced using the same
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
JP6156661B2 (en) Iron-based amorphous alloy ribbon
JP2018123424A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP2008248380A (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2018083984A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY RIBBON WITH EXCELLENT SOFT MAGNETIC PROPERTY
WO2008105135A1 (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
US6077367A (en) Method of production glassy alloy
JP3432661B2 (en) Fe-based amorphous alloy ribbon
JP2778719B2 (en) Iron-based amorphous magnetic alloy containing cobalt
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
EP0515483A1 (en) Amorphous fe-b-si alloys exhibiting enhanced ac magnetic properties and handleability.
JPS6327407B2 (en)
JPH10280034A (en) Method for heat treating fe base amorphous alloy thin strip
JP3634286B2 (en) Fe-based amorphous alloy ribbon and iron core manufactured using it
JP3639689B2 (en) Method for producing Fe-based amorphous alloy ribbon
JP3709149B2 (en) Fe-based amorphous alloy ribbon with high magnetic flux density
JP4441140B2 (en) Iron-based amorphous alloy ribbon
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JPH09263914A (en) Inexpensive iron base master alloy
JP3379059B2 (en) Inexpensive Fe-B-Si-C amorphous alloy ribbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107