JPH1027704A - Manufacture of resistive part - Google Patents

Manufacture of resistive part

Info

Publication number
JPH1027704A
JPH1027704A JP8183016A JP18301696A JPH1027704A JP H1027704 A JPH1027704 A JP H1027704A JP 8183016 A JP8183016 A JP 8183016A JP 18301696 A JP18301696 A JP 18301696A JP H1027704 A JPH1027704 A JP H1027704A
Authority
JP
Japan
Prior art keywords
resistor
forming member
resistor forming
resistance value
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8183016A
Other languages
Japanese (ja)
Inventor
Keiichi Nakao
恵一 中尾
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8183016A priority Critical patent/JPH1027704A/en
Publication of JPH1027704A publication Critical patent/JPH1027704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistive parts in manufacturing yield by a method wherein before or after a resistor forming member is thermally treated, one or more elements contained in the member are quantitatively analyzed through a non-destructive method, and the resistor forming member is controlled in volume so that the resistance may be as prescribed. SOLUTION: X-rays 7 are quantified by letting them penetrate through a filter 8, collimated by a collimator 9, limited in irradiation area, and made to fall on a resistor forming member 11 on a board 10. The wavelength or energy intensity of fluorescent X-rays 12 induced by this irradiation is measured by a detector 14 through the intermediary of a filter 13, and elements contained the resistor forming member 11 are quantitatively analyzed by calculator 15. The intensity of fluorescent X-rays obtained from the resistor forming member 11 is in very close correlation with the resistance of a resistor, resistance determining elements are selected out of component elements contained in the member 11, the resistor forming member proper in volume to attain a target resistance is formed through a method such as printing, application, transfer or the like measuring the intensity of fluorescent X-rays of the above elements. By this setup, a resistive part can be lessened in manufacturing cost, and a trimming process can be dispensed with.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は携帯電話や小型情報
機器に用いられるチップ抵抗やハイブリッド回路部品等
の抵抗部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a resistor component such as a chip resistor or a hybrid circuit component used in a cellular phone or a small information device.

【0002】[0002]

【従来の技術】従来、抵抗部品の製造方法としては、印
刷等で形成された抵抗体をトリミングすることで抵抗値
を目的とする値に当てる(以下、命中させると呼ぶ)手
法が、特開昭52−97158号公報で紹介されてい
る。また、特公昭55−32009号公報や特開昭61
−292396号公報では抵抗体を転写方法によって製
造することが紹介されている。
2. Description of the Related Art Conventionally, as a method of manufacturing a resistance component, a method of applying a resistance value to a target value by trimming a resistor formed by printing or the like (hereinafter, referred to as hitting) is disclosed in Japanese Patent Application Laid-Open Publication No. H11-163873. This is introduced in JP-A-52-97158. Also, Japanese Patent Publication No. 55-32009 and Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 292396/1992 discloses that a resistor is manufactured by a transfer method.

【0003】図5に従来の抵抗器の構造を示す。図5に
おいて、1は基板、2は電極であり、抵抗体3の両端に
複数個形成されている。抵抗体3は前述したように、印
刷や転写方法等で形成される。4はトリミング部分であ
り、抵抗体3をレーザー等により除去することで抵抗値
を目的とする値に命中させた跡である。通常の抵抗部品
では、この抵抗体3及びトリミング部分4の上に保護層
(図示していない)が形成されるが、図5では省略して
いる。5はマイクロクラックであり、トリミング部分4
の周辺に発生してしまう。このマイクロクラック5はト
リミング4の長さや大きさに関係なく発生してしまい、
できあがった抵抗器のノイズ特性を劣化させてしまう。
FIG. 5 shows the structure of a conventional resistor. In FIG. 5, 1 is a substrate, 2 is an electrode, and a plurality of resistors are formed at both ends of the resistor 3. As described above, the resistor 3 is formed by a printing or transfer method. Reference numeral 4 denotes a trimming portion, which is a trace where the resistance value is hit to a target value by removing the resistor 3 with a laser or the like. In a normal resistance component, a protective layer (not shown) is formed on the resistor 3 and the trimming portion 4, but is omitted in FIG. Reference numeral 5 denotes a micro crack, and a trimming portion 4
Occurs around the This micro crack 5 is generated regardless of the length and size of the trimming 4,
The noise characteristics of the completed resistor will be degraded.

【0004】ここで、抵抗体3の抵抗値が目的とする値
に命中できない原因は、基板1のうねりやそりが抵抗体
3の印刷精度に影響を与えてしまうためである。そのた
め、抵抗体3を転写方法によって製造することも提案さ
れているが、抵抗値の命中率改善の効果も少なくコスト
アップの原因になり、市場から望まれているにも関わら
ず殆ど実用化されていない。
Here, the reason why the resistance value of the resistor 3 cannot hit the target value is that the undulation or warpage of the substrate 1 affects the printing accuracy of the resistor 3. Therefore, it has been proposed to manufacture the resistor 3 by a transfer method. However, the effect of improving the hit rate of the resistance value is small and causes a cost increase. Not.

【0005】図6を用いて従来の抵抗部品を形成する場
合の抵抗値の命中率改善の一例を示す。図6は基板上や
転写体上に形成された抵抗体形成部材の厚みやその断面
積を測定することで、熱処理や硬化後の抵抗値の予想を
行う一例である。図6においてX軸は抵抗体形成部材の
厚みや断面積であり、Y軸は焼成や硬化後の抵抗値の実
測値を示したものである。図6から判るように、抵抗体
形成部材の厚みや断面積と、できあがった抵抗体の抵抗
値との間に相関関係はあることが判る。しかし残念なが
ら相関関係は低く、抵抗体の厚みや断面積を熱処理前に
高精度に測定したとしても熱処理後の抵抗値を命中させ
ることは難しい。そのため前述したようにレーザー等に
よりトリミングが必要であった。
FIG. 6 shows an example of improving the hit rate of the resistance value when a conventional resistance component is formed. FIG. 6 shows an example of estimating the resistance value after heat treatment or curing by measuring the thickness and the cross-sectional area of a resistor forming member formed on a substrate or a transfer body. In FIG. 6, the X-axis is the thickness and cross-sectional area of the resistor forming member, and the Y-axis is the measured resistance value after firing or curing. As can be seen from FIG. 6, there is a correlation between the thickness and the cross-sectional area of the resistor forming member and the resistance value of the completed resistor. Unfortunately, however, the correlation is low, and it is difficult to hit the resistance value after heat treatment even if the thickness and cross-sectional area of the resistor are measured with high accuracy before heat treatment. Therefore, trimming by a laser or the like was necessary as described above.

【0006】また厚膜抵抗体のガラス領域中の導電性物
質の分布状態の分析法としては、特開平5−11339
4号公報で提案されているような厚膜抵抗体を作る抵抗
ペーストに配合する導電性粉末の種類や量と抵抗値やT
RC(抵抗値の温度特性)との関係を解明する手掛かり
を得ようとするものがある。
As a method for analyzing the distribution state of the conductive substance in the glass region of the thick film resistor, see Japanese Patent Application Laid-Open No. Hei 5-11339.
No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No. 4, No.
Some seek to provide clues to elucidate the relationship with RC (temperature characteristics of resistance).

【0007】[0007]

【発明が解決しようとする課題】しかし本分析方法は、
厚膜抵抗体ペーストを焼成した後、試料を基板から剥離
した状態で厚さ100nm以下に形成した厚膜抵抗体を
破壊検査として分析するには有効であるが、基板上に密
着した状態の熱処理される前の厚膜抵抗体を非破壊で分
析しながら抵抗部品を製造する場合には使えない。
However, this analysis method is
After baking the thick film resistor paste, it is effective to analyze as a destructive inspection a thick film resistor formed to a thickness of 100 nm or less with the sample peeled from the substrate. This method cannot be used when manufacturing a resistive component while analyzing a thick film resistor before being subjected to non-destructive analysis.

【0008】本発明は、上記従来の課題を解決し、製造
工程内の熱処理前もしくは後において抵抗値バラツキを
低減しかつ抵抗値を目的とする値に製造することによ
り、トリミング工程を省いたり、もしトリミングする場
合でもトリミング可能な抵抗値領域内への製品の作り込
み歩留まりを上げることで抵抗部品のコストを低下させ
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and reduces the variation in resistance before or after heat treatment in a manufacturing process and manufactures the resistor to a desired value, thereby eliminating a trimming process. An object of the present invention is to reduce the cost of a resistor component by increasing the yield of producing a product within a resistance value region where trimming is possible even when trimming is performed.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、抵抗体形成部材の元素を定量分析すること
により、熱処理前もしくは後に抵抗値を高精度に予測で
きるようにするものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a method for predicting the resistance value with high accuracy before or after heat treatment by quantitatively analyzing elements of a resistor forming member. is there.

【0010】これにより、抵抗体形成部材を印刷や塗布
によって基板上に形成する際に抵抗値の命中率を高める
ことができ、歩留まりを上げられる。特に抵抗体形成工
程を経て基板上に形成された抵抗体形成部材を熱処理前
もしくは後に元素分析し、この結果を前記抵抗体形成工
程にフィードバックすることにより多量の抵抗部品を製
造する際において、大幅なコストダウンを可能にする。
[0010] Thus, when the resistor forming member is formed on the substrate by printing or coating, the hit rate of the resistance value can be increased, and the yield can be increased. Particularly, when a resistor forming member formed on a substrate through a resistor forming step is subjected to elemental analysis before or after heat treatment, and when the result is fed back to the resistor forming step, a large number of resistive parts are manufactured. Cost reduction.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、基板上に形成された抵抗体形成部材を熱処理して抵
抗体とする抵抗部品の製造方法において、前記抵抗体形
成部材を熱処理する前もしくは後に前記抵抗体形成部材
の中の少なくとも1元素以上を非破壊で定量分析し、予
め用意した検量線を用いて熱処理後の抵抗値を予測して
前記抵抗体形成部材の形成量を加減するものであり、熱
処理タイプの抵抗体を用いた抵抗部品の抵抗値を目標値
に高精度に命中できるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a method of manufacturing a resistor component by heat-treating a resistor forming member formed on a substrate to form a resistor. Before or after the heat treatment, at least one element in the resistor forming member is non-destructively quantitatively analyzed, and a resistance value after the heat treatment is predicted using a calibration curve prepared in advance to form the resistor forming member. This has the effect that the resistance value of the resistance component using the heat treatment type resistor can be hit with the target value with high accuracy.

【0012】本発明の請求項2に記載の発明は、基板上
に形成された抵抗体形成部材を熱処理して抵抗体とする
抵抗部品の製造方法において、前記抵抗体形成部材を熱
処理する前もしくは後に前記抵抗体形成部材の中の少な
くとも1元素以上を非破壊で定量分析し、予め用意した
検量線を用いて熱処理後の抵抗値を予測して抵抗体形成
部材の熱処理温度プロファイルを加減するものであり、
熱処理タイプの抵抗体を用いた抵抗部品の抵抗値を目標
値に高精度に命中できるという作用を有する。
According to a second aspect of the present invention, there is provided a method of manufacturing a resistance component in which a resistor forming member formed on a substrate is heat-treated as a resistor, before or after the resistor forming member is heat-treated. Later, non-destructive quantitative analysis of at least one element in the resistor forming member is performed, and a resistance value after the heat treatment is predicted using a calibration curve prepared in advance to adjust a heat treatment temperature profile of the resistor forming member. And
This has the effect that the resistance value of the resistance component using the heat treatment type resistor can be hit with the target value with high accuracy.

【0013】本発明の請求項3に記載の発明は、基板上
に形成された抵抗体形成部材を熱処理して抵抗体とする
抵抗部品の製造方法において、前記抵抗体形成部材が基
板上で目的とする抵抗値に相当する塗着量になるよう
に、前記抵抗体形成部材中の溶剤の熱処理により飛散す
る有機成分を増減するものであり、熱処理タイプの抵抗
体を用いた抵抗部品の抵抗値を高精度に命中できるとい
う作用を有する。
According to a third aspect of the present invention, there is provided a method of manufacturing a resistance component in which a resistor forming member formed on a substrate is heat-treated to form a resistor. The amount of organic components scattered by the heat treatment of the solvent in the resistor forming member is increased or decreased so that a coating amount corresponding to the resistance value is obtained. Can be hit with high accuracy.

【0014】本発明の請求項4に記載の発明は、基板上
に形成された抵抗体形成部材を熱処理して抵抗体とする
抵抗部品の製造方法において、前記抵抗体形成部材を基
板上で塗着させる際に目的とする抵抗値が得られるべく
塗出された抵抗体形成部材の中の少なくとも1元素以上
の非有機元素を非破壊で定量分析し、求める抵抗値が得
られるべく前記抵抗体形成部材の有機成分量を増減する
ものであり、熱処理タイプの抵抗体を用いた抵抗部品の
抵抗値を目標値に高精度に命中できるという作用を有す
る。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a resistance component by heat-treating a resistor-forming member formed on a substrate to form a resistor, wherein the resistor-forming member is coated on the substrate. The non-organic element of at least one or more non-organic elements in the coated resistor forming member coated so as to obtain a desired resistance value when applied is non-destructively quantitatively analyzed, and the resistor is obtained so as to obtain a desired resistance value. It increases or decreases the amount of the organic component of the forming member, and has an effect that the resistance value of a resistance component using a heat treatment type resistor can be hit with a target value with high accuracy.

【0015】本発明の請求項5に記載の発明は、基板上
に形成された抵抗体形成部材を熱処理して抵抗体とする
抵抗部品の製造方法において、前記抵抗体形成部材が基
板上で目的とする抵抗値に相当する塗着量になるように
異なる抵抗値を示す複数の抵抗体形成部材を混合するも
のであり、熱処理タイプの厚膜抵抗体を用いた抵抗部品
の抵抗値を目標値に高精度に命中できるという作用を有
する。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a resistance component, in which a resistor forming member formed on a substrate is heat-treated to form a resistor. A plurality of resistor forming members exhibiting different resistance values are mixed so as to have a coating amount corresponding to the resistance value to be used, and the resistance value of a resistance component using a heat treatment type thick film resistor is set to a target value. Has the effect of being able to hit with high precision.

【0016】本発明の請求項6に記載の発明は、基板上
に形成された抵抗体形成部材は熱処理前もしくは後に基
板上に形成された状態で蛍光X線によって元素分析する
ものであり、蛍光X線を用いることで前記抵抗体形成部
材を非破壊かつ高速に定量分析でき、熱処理タイプの厚
膜抵抗体を用いた抵抗部品の抵抗値を目標値に高精度に
命中させるためのデータを得られ、抵抗部品の低コスト
化を行えるという作用を有する。
According to a sixth aspect of the present invention, a resistor forming member formed on a substrate is subjected to elemental analysis by X-ray fluorescence in a state formed on the substrate before or after heat treatment. The use of X-rays enables nondestructive and high-speed quantitative analysis of the resistor forming member, and obtains data for accurately hitting a resistance value of a resistance component using a heat treatment type thick film resistor to a target value. Therefore, the resistance component can be reduced in cost.

【0017】本発明の請求項7に記載の発明は、抵抗体
形成工程を経て基板上に形成された抵抗体形成部材を熱
処理前もしくは後に元素分析し、この結果を前記抵抗体
形成工程にフィードバックすることで抵抗値精度を向上
させるものであり、熱処理タイプの抵抗体を用いた抵抗
部品の抵抗値を目標値に高精度に命中できるという作用
を有する。
According to a seventh aspect of the present invention, a resistor forming member formed on a substrate through a resistor forming step is subjected to elemental analysis before or after heat treatment, and the result is fed back to the resistor forming step. By doing so, the resistance value accuracy is improved, and has an effect that the resistance value of the resistance component using the heat treatment type resistor can be hit with the target value with high accuracy.

【0018】次に、本発明の具体的な実施の形態を説明
する。 (実施の形態1)実施の形態1では、図1から図3を用
いて説明する。実施の形態1では抵抗体形成部材の形成
量を予め用意した検量線を用いて熱処理前もしくは後に
定量分析し目的とする抵抗値が得られるように抵抗体形
成部材の形成量を増減することになる。
Next, specific embodiments of the present invention will be described. (Embodiment 1) Embodiment 1 will be described with reference to FIGS. In the first embodiment, the formation amount of the resistor forming member is quantitatively analyzed before or after the heat treatment using a calibration curve prepared in advance, and the formation amount of the resistor forming member is increased or decreased so as to obtain a desired resistance value. Become.

【0019】図1は抵抗体形成部材を熱処理や硬化によ
って抵抗値が決定される前の状態で抵抗値を蛍光X線測
定装置を用いて予測する様子を示し、図1において6は
X線発生管であり、X線7を発生させる。発生したX線
7はフィルタ8を通過することで定量化される。なおフ
ィルタ8をシャッターとして機能させることもできる。
9はコリメータでありX線7の照射面積を規定する。コ
リメータ9で絞られたX線7が基板10上の抵抗体形成
部材11に照射される。抵抗体形成部材11に照射され
たX線7によって、散乱X線と同時に蛍光X線が発生す
る。この蛍光X線12をフィルタ13を介して検出器1
4でその蛍光X線12の各波長もしくは各エネルギーに
おける強度を測定し、計算機15によって元素を定量化
分析されることを示すものである。
FIG. 1 shows a state in which the resistance value of a resistor forming member is predicted using a fluorescent X-ray measuring apparatus before the resistance value is determined by heat treatment or hardening. In FIG. It is a tube and generates X-rays 7. The generated X-rays 7 are quantified by passing through a filter 8. Note that the filter 8 can also function as a shutter.
Reference numeral 9 denotes a collimator which defines an irradiation area of the X-ray 7. The X-rays 7 squeezed by the collimator 9 are applied to the resistor forming member 11 on the substrate 10. The X-rays 7 applied to the resistor forming member 11 generate fluorescent X-rays at the same time as scattered X-rays. This fluorescent X-ray 12 is passed through a filter 13 to the detector 1.
4 shows that the intensity of the fluorescent X-ray 12 at each wavelength or each energy is measured, and that the element is quantified and analyzed by the computer 15.

【0020】また図2は蛍光X線強度と物質量の相関関
係を示すものであり、図2において物質量と蛍光X線強
度が比例関係にあることを示すものである。実施の形態
1では、抵抗体形成部材11の中の一つ以上の元素を選
ぶことができる。例えばルテニウムやガラス成分を選ぶ
ことができる。
FIG. 2 shows the correlation between the fluorescent X-ray intensity and the amount of the substance. FIG. 2 shows that the substance amount and the fluorescent X-ray intensity are proportional to each other. In the first embodiment, one or more elements in the resistor forming member 11 can be selected. For example, ruthenium and glass components can be selected.

【0021】図3は抵抗体形成部材の蛍光X線強度と熱
処理後の抵抗体の抵抗値の関係を示したもので、図3に
示すように非常に強い相関関係が得られることが判る。
図3において、X軸は抵抗値、Y軸は抵抗体形成部材の
元素の蛍光X線強度である。本実施の形態1では抵抗体
形成部材11の元素の中の抵抗値決定元素を選ぶことで
図3のような高精度の相関関係が得られている。実施の
形態1では図3を検量線として用い、抵抗体形成部材1
1の蛍光X線強度を測定しながら目的となる抵抗値が得
られるだけの抵抗体形成部材量を印刷や塗布、転写等の
方法で形成することになる。
FIG. 3 shows the relationship between the fluorescent X-ray intensity of the resistor forming member and the resistance value of the resistor after the heat treatment. It can be seen from FIG. 3 that a very strong correlation is obtained.
In FIG. 3, the X axis represents the resistance value, and the Y axis represents the fluorescent X-ray intensity of the element of the resistor forming member. In the first embodiment, a high-precision correlation as shown in FIG. 3 is obtained by selecting a resistance value determining element from among elements of the resistor forming member 11. In the first embodiment, FIG. 3 is used as a calibration curve, and the resistor forming member 1 is used.
While measuring the intensity of the fluorescent X-rays, the amount of the resistor forming member enough to obtain the target resistance value is formed by a method such as printing, coating and transfer.

【0022】更に詳しく説明する。まず検量線の作成方
法の一例について説明する。抵抗体形成部材11として
市販の抵抗体ペーストを選んだ。まずアルミナ基板の上
に、銀パラジウム製の市販の電極ペーストで複数の電極
パターンを印刷し、850℃で熱処理した。次にこの複
数の電極パターンを接続するように抵抗体ペーストを各
厚みで印刷し、この印刷された抵抗体ペーストを市販の
蛍光X線測定装置を用いてルテニウム元素の蛍光X線強
度を測定した。そしてこの抵抗体ペーストを850℃で
熱処理した後でこの抵抗値を測定した。この抵抗値とル
テニウム元素の蛍光X線強度結果をグラフ化したとこ
ろ、図3と同様の非常に強い相関関係が得られ、これを
検量線としてコンピュータに入力した。
This will be described in more detail. First, an example of a method for creating a calibration curve will be described. A commercially available resistor paste was selected as the resistor forming member 11. First, a plurality of electrode patterns were printed on a alumina substrate with a commercially available electrode paste made of silver / palladium, and heat-treated at 850 ° C. Next, the resistor paste was printed at each thickness so as to connect the plurality of electrode patterns, and the printed resistor paste was measured for the fluorescent X-ray intensity of the ruthenium element using a commercially available fluorescent X-ray measuring device. . After the resistor paste was heat-treated at 850 ° C., the resistance value was measured. When this resistance value and the result of the fluorescent X-ray intensity of the ruthenium element were graphed, a very strong correlation similar to that of FIG. 3 was obtained, and this was input to a computer as a calibration curve.

【0023】次に、目的とする抵抗値を10kΩとし
て、この10kΩが得られるX線強度を検量線から求
め、このX線強度が得られるだけの塗着量が得られるよ
うに抵抗体ペーストを調整し、これを電極パターンの形
成されたアルミナ基板の上に印刷した。なお抵抗体ペー
ストの調整には溶剤量を増減することができるが、抵抗
体ペーストによっては粘度が低下する場合もある。その
場合は、溶剤と樹脂の混合溶液(通常ビヒクルやレジュ
ーサと呼ばれる)を添加することができる。あるいは印
刷機側で印圧や印刷速度を調整して印刷量を変えること
もできる。
Next, assuming that the target resistance value is 10 kΩ, the X-ray intensity at which this 10 kΩ is obtained is obtained from a calibration curve, and the resistor paste is applied so that the coating amount enough to obtain this X-ray intensity can be obtained. It was adjusted and printed on an alumina substrate on which an electrode pattern was formed. Although the amount of the solvent can be increased or decreased in adjusting the resistor paste, the viscosity may decrease depending on the resistor paste. In that case, a mixed solution of a solvent and a resin (usually called a vehicle or a reducer) can be added. Alternatively, the printing amount can be changed by adjusting the printing pressure and the printing speed on the printing press side.

【0024】このように連続して3000枚のアルミナ
基板に抵抗体ペーストの印刷を行い、各アルミナ基板と
も抵抗体ペーストの塗着量が目標値になるように数時間
の連続印刷を行った。そして印刷の終わったアルミナ基
板は、3分間レベリングさせた後連続して熱処理炉に投
入した。こうしてできあがった抵抗体の抵抗値を測定し
たところ、目的とする抵抗値10kΩに対して、99%
以上が±0.5%以内に収まっていた。この後、抵抗体
表面に保護層を形成し端面電極を形成することで、ノン
トリミングの抵抗器として完成できた。
In this manner, the resistor paste was continuously printed on 3000 alumina substrates, and continuous printing was performed for several hours on each of the alumina substrates so that the applied amount of the resistor paste reached the target value. The printed alumina substrate was leveled for 3 minutes and then continuously put into a heat treatment furnace. When the resistance of the resistor thus completed was measured, it was found that the resistance was 99% of the target resistance of 10 kΩ.
These were within ± 0.5%. Thereafter, by forming a protective layer on the surface of the resistor and forming an end face electrode, a non-trimmed resistor was completed.

【0025】また従来の手法で同様に抵抗値の命中実験
を行った。同様に電極の形成されたアルミナ基板の上に
抵抗体ペーストを印刷し、この抵抗体ペーストを乾燥さ
せ、この乾燥膜厚と熱処理後の抵抗値の関係をグラフ化
した。この結果図6のような弱い相関関係が得られた。
そこでこれを検量線とした。次に同様に目的となる抵抗
値を10kΩとして、この10kΩが得られる抵抗体膜
厚(実験では15.0μm)になるように、抵抗体の印
刷膜厚を調整しながら連続して3000枚のアルミナ基
板を印刷した。しかし、アルミナ基板は表面粗さが大き
くうねりもあるため、抵抗体の印刷膜厚を高精度に測定
することは難しかった。また連続して印刷しているアル
ミナ基板を抜き取りで検査することは手間がかかり生産
コストを上げた。
A hit test of the resistance value was similarly performed by the conventional method. Similarly, a resistor paste was printed on an alumina substrate on which electrodes were formed, the resistor paste was dried, and the relationship between the dried film thickness and the resistance after heat treatment was graphed. As a result, a weak correlation as shown in FIG. 6 was obtained.
Therefore, this was used as a calibration curve. Next, similarly, the target resistance value is set to 10 kΩ, and 3,000 sheets are continuously formed while adjusting the printed film thickness of the resistor so that the resistance film thickness at which the 10 kΩ is obtained (15.0 μm in the experiment). An alumina substrate was printed. However, since the alumina substrate has a large surface roughness and undulation, it was difficult to measure the printed film thickness of the resistor with high accuracy. In addition, it is troublesome to inspect the alumina substrate which is continuously printed by sampling, and the production cost is increased.

【0026】更に詳しく説明する。なおトレーサーとし
てはルテニウム等の抵抗値を決定する元素を選ぶことも
できるが、それ以外にガラス成分を選ぶことができる。
この場合は、ガラス成分(鉛、珪素、アルミニウム、ホ
ウ素、亜鉛等)と、その抵抗値の関係を図3に示すよう
な検量線を作成するとよい。実際に検量線を作成したと
ころ、ガラス量が多いほど抵抗値が低く、ガラス量が少
ないほど抵抗値が高いという図3のような検量線が得ら
れた。一般的に抵抗体ペーストは数十kgのロットで大
量生産されるため、ロット内での組成比率は安定してい
るためトレーサーとしてガラス量を用いても問題はな
い。もし抵抗体ペーストの組成が変化したとしても、図
3と同様な検量線を取り直すことで対応できる。
This will be described in more detail. Note that, as the tracer, an element that determines the resistance value, such as ruthenium, can be selected, but other than that, a glass component can be selected.
In this case, it is advisable to create a calibration curve as shown in FIG. 3 for the relationship between the glass components (lead, silicon, aluminum, boron, zinc, etc.) and their resistance values. When a calibration curve was actually prepared, a calibration curve as shown in FIG. 3 was obtained, in which the larger the glass amount, the lower the resistance value, and the smaller the glass amount, the higher the resistance value. Generally, since the resistor paste is mass-produced in lots of several tens of kilograms, the composition ratio in the lot is stable, so that there is no problem even if the amount of glass is used as a tracer. Even if the composition of the resistor paste changes, it can be dealt with by taking a calibration curve similar to that of FIG.

【0027】(実施の形態2)実施の形態2では抵抗体
形成部材の熱処理温度を加減することで目的とする抵抗
値が得られることになる。
(Embodiment 2) In Embodiment 2, a desired resistance value can be obtained by adjusting the heat treatment temperature of the resistor forming member.

【0028】まず実施の形態1と同様にアルミナ基板上
に電極を形成した。そしてこの上に連続して市販の抵抗
体ペーストを用いて連続して2000枚の印刷を行っ
た。そして印刷されたアルミナ基板を各温度で熱処理し
抵抗値変化を求めた。
First, electrodes were formed on an alumina substrate in the same manner as in the first embodiment. Then, 2,000 sheets were continuously printed thereon using a commercially available resistor paste. Then, the printed alumina substrate was heat-treated at each temperature to determine a change in resistance value.

【0029】この結果、図4に示すような熱処理温度と
抵抗値の相関関係が得られた。図4においてX軸は熱処
理温度(℃)、Y軸は抵抗値(Ω)である。なお抵抗体
材料によっては、相関関係は直線状にならないものが多
かった。こうしたものは、図1の計算機で処理して焼成
条件と抵抗値との間の相関関係を求めた。こうして求め
た相関関係を元にして、各印刷サンプルを目的となる抵
抗値になるように熱処理温度を加減してサンプルを熱処
理した。また同時に再焼成での抵抗値変動も色々実験し
てデータベース化した。こうして実際の焼成炉のバラツ
キをも考慮した焼成システムを構築し歩留まりを上げ
た。
As a result, a correlation between the heat treatment temperature and the resistance as shown in FIG. 4 was obtained. In FIG. 4, the X-axis represents the heat treatment temperature (° C.), and the Y-axis represents the resistance value (Ω). In some cases, the correlation did not become linear depending on the resistor material. These were processed by the computer of FIG. 1 to determine the correlation between firing conditions and resistance values. Based on the correlation obtained in this manner, each print sample was heat-treated while adjusting the heat-treatment temperature so as to have a target resistance value. At the same time, we made various experiments on resistance value fluctuations during refiring and made a database. In this way, a firing system was constructed in consideration of the variation of the actual firing furnace, and the yield was increased.

【0030】(実施の形態3)実施の形態3では基板上
の抵抗体形成部材の塗着量を加減することで調整するこ
とになる。
(Third Embodiment) In the third embodiment, the adjustment is made by adjusting the amount of the resistive member formed on the substrate.

【0031】更に詳しく説明する。まず抵抗体ペースト
としては市販の厚膜ペーストを用いた。そして目的とな
る抵抗値0.1Ωが得られる抵抗体材料の定量分析を行
った。このような低抵抗材料では、抵抗体内部にルテニ
ウム以外に銀やパラジウム等の金属材料が入っているた
めに、蛍光X線による測定ではこうした金属材料の分析
を行った。また抵抗体の両端の電極材料にも銀やパラジ
ウムが含まれていたが、こうした材料はフィルタをかけ
たり、コリメータ径を調整することで測定精度に影響を
与えることは無かった。
This will be described in more detail. First, a commercially available thick film paste was used as the resistor paste. Then, a quantitative analysis was performed on the resistor material having the target resistance value of 0.1Ω. In such a low-resistance material, since a metal material such as silver or palladium other than ruthenium is contained inside the resistor, such a metal material was analyzed in the measurement by fluorescent X-ray. Silver and palladium were also included in the electrode material at both ends of the resistor, but such a material did not affect the measurement accuracy by filtering or adjusting the collimator diameter.

【0032】ここでは、基板上への抵抗体形成部材の形
成部材の形成方法には描画法を用いた。これはシリンダ
に入れた抵抗体ペーストを小さなノズルから加圧して押
し出すものである。ここでノズルと基板の間は、ダイヤ
モンド製のスタイラスを用いることで一定とした。まず
いくつかの条件で所定量だけ抵抗体ペーストを塗出した
後、この抵抗体ペーストを蛍光X線分析し金属材料の定
量分析を行った。そしてこのサンプルを焼成した後、抵
抗値を測定し先ほどの定性分析と間で相関関係を求め
た。
Here, a drawing method was used as a method of forming the resistor forming member on the substrate. In this method, a resistor paste put in a cylinder is pressed and extruded from a small nozzle. The distance between the nozzle and the substrate was kept constant by using a diamond stylus. First, a predetermined amount of the resistor paste was applied under some conditions, and then the resistor paste was subjected to a fluorescent X-ray analysis to quantitatively analyze a metal material. After the sample was fired, the resistance was measured, and a correlation was obtained between the sample and the qualitative analysis.

【0033】次に実際の製品パターンで描画を行い、塗
出量(塗着量)が目的とする抵抗値になるように抵抗体
ペーストの塗出量を調整した。この塗出量の調整はシリ
ンダーに供給するエアー圧で調整した。なおシリンダー
の押圧に油圧等の非圧縮性材料を用いた場合は、より高
制度な制御を行うことができる。
Next, drawing was performed with an actual product pattern, and the application amount of the resistor paste was adjusted so that the application amount (application amount) became a target resistance value. This coating amount was adjusted by the air pressure supplied to the cylinder. When an incompressible material such as a hydraulic pressure is used for pressing the cylinder, more precise control can be performed.

【0034】(実施の形態4)実施の形態4では基板上
の抵抗体形成部材中の有機材料成分を加減することで調
整することになる。
(Fourth Embodiment) In the fourth embodiment, the adjustment is made by adjusting the amount of the organic material component in the resistor forming member on the substrate.

【0035】更に詳しく説明する。まず抵抗体ペースト
としては市販の厚膜ペーストを用いた。そしてこの厚膜
ペーストを溶剤で希釈し、グラビアインキとしグラビア
印刷機を用いてオフセット方式でアルミナ基板の上に高
速印刷した。グラビアインキ中の溶剤の乾燥による抵抗
値変動が発生しないように、粘度調整装置を用い希釈溶
剤を自動的に供給した。
This will be described in more detail. First, a commercially available thick film paste was used as the resistor paste. Then, this thick film paste was diluted with a solvent and used as gravure ink to perform high-speed printing on an alumina substrate by an offset method using a gravure printing machine. The diluting solvent was automatically supplied using a viscosity adjusting device so that the resistance value fluctuation due to drying of the solvent in the gravure ink did not occur.

【0036】こうして印刷された抵抗体ペースト皮膜を
蛍光X線により定量分析することで、でき上がりの抵抗
値を予想することができた。またこの予想を元にして焼
成後に求める抵抗値が得られるように、抵抗体グラビア
インキに添加する溶剤(あるいは樹脂量)等の有機成分
を加減することにより歩留まりよく抵抗部品を製造する
ことができた。
By performing quantitative analysis of the printed resistor paste film using fluorescent X-rays, the completed resistance value could be predicted. Also, by adjusting the organic components such as the solvent (or the amount of resin) added to the resistor gravure ink so as to obtain the desired resistance value after firing based on this expectation, it is possible to manufacture a resistance component with a high yield. Was.

【0037】(実施の形態5)実施の形態5では、異な
る抵抗値を示す複数の抵抗体形成部材を混合することで
調整することになる。
(Fifth Embodiment) In the fifth embodiment, adjustment is performed by mixing a plurality of resistor forming members having different resistance values.

【0038】更に詳しく説明する。まず抵抗体ペースト
としては、異なる抵抗値を示す市販の超低抵抗用のペー
ストA(0.005Ω用)とペーストB(0.015Ω
用)を用いた。そしてこのペーストAとペーストBをマ
イクロディスペンサー機内でブレンドしながら窒化アル
ミナ基板上に所定形状に塗布し低温で焼成した。この中
から目的となる抵抗値になるブレンド比を求め、オンラ
インで蛍光X線を用いてペーストAとペーストBのブレ
ンド量をモニターしながら試作した。
This will be described in more detail. First, as a resistor paste, paste A (for 0.005 Ω) and paste B (for 0.015 Ω), which are commercially available, which exhibit different resistance values, are used for ultra-low resistance.
For) was used. Then, the paste A and the paste B were applied to a predetermined shape on an alumina nitride substrate while being blended in a micro dispenser machine, and fired at a low temperature. From these, a blend ratio that would provide a target resistance value was determined, and a prototype was produced while monitoring the blend amount of paste A and paste B using fluorescent X-rays online.

【0039】参考までに、ペーストAとペーストBを予
めブレンドし、抵抗値を命中させようとしたが、この材
料はすぐに沈殿、分離しやすかったために機上でブレン
ドした方が抵抗値とTCR(温度特性)が安定してい
た。なおペーストAとペーストBには金属の超微粒子を
有機溶剤に拡散させたものを用いた。
For reference, Paste A and Paste B were blended in advance to try to hit the resistance value. However, since this material was easy to precipitate and separate easily, it was better to blend it on the machine to obtain the resistance value and TCR. (Temperature characteristic) was stable. The paste A and the paste B were obtained by diffusing ultrafine metal particles into an organic solvent.

【0040】(実施の形態6)実施の形態6では、抵抗
体形成工程を経て基板上に形成された抵抗体形成部材を
熱処理前もしくは後に元素分析し、この結果を前記抵抗
体形成工程にフィードバックすることで抵抗値精度を向
上させることになる。
(Embodiment 6) In Embodiment 6, before or after heat treatment, a resistor forming member formed on a substrate through a resistor forming step is subjected to elemental analysis, and the result is fed back to the resistor forming step. By doing so, the resistance value accuracy is improved.

【0041】更に詳しく説明する。まず抵抗体形成工程
を経て基板上に抵抗体形成部材を形成した。そしてこの
基板上の抵抗体形成部材を蛍光X線を用いて定量分析し
た。そしてこの結果を前記抵抗体形成工程にフィードバ
ックすることで抵抗値精度を向上させた。なおこの定量
分析は抵抗体を熱処理する前でも同じ効果が得られたこ
とから、熱処理前に抵抗体形成部材を定量分析し、この
結果をフィードバックすることも可能である。
This will be described in more detail. First, a resistor forming member was formed on a substrate through a resistor forming step. Then, the resistor forming member on this substrate was quantitatively analyzed using fluorescent X-rays. The result is fed back to the resistor forming step to improve the resistance value accuracy. Since the same effect was obtained before the heat treatment of the resistor in this quantitative analysis, it is also possible to quantitatively analyze the resistor forming member before the heat treatment and feed back the result.

【0042】抵抗体形成材料として、エポキシ樹脂やフ
ェノール樹脂にカーボンブラックを分散させて作成した
硬化型抵抗体を用いた場合は、硬化温度は80℃以上3
00℃以下が可能であるが、基板に樹脂を用いた場合は
150℃以下が望ましい。
When a curable resistor prepared by dispersing carbon black in an epoxy resin or a phenol resin is used as a resistor forming material, the curing temperature is 80 ° C. or higher.
Although the temperature can be lower than 00 ° C., it is preferably lower than 150 ° C. when a resin is used for the substrate.

【0043】抵抗体形成材料に、金属粉末あるいはルテ
ニウム(もしくは酸化ルテニウム)をガラス粉末と同時
に樹脂溶液に分散させて作成した焼成型厚膜抵抗体の場
合は、焼成温度は850℃が普通であるが、低温化仕様
(500℃程度)のものを用いることもできる。
In the case of a fired thick film resistor made by dispersing a metal powder or ruthenium (or ruthenium oxide) in a resin solution simultaneously with a glass powder as a resistor forming material, the firing temperature is usually 850 ° C. However, a low temperature specification (about 500 ° C.) can be used.

【0044】また抵抗体形成材料に、金属の超微粒子を
溶剤中に分散させて作成した電極液を用いた場合150
℃以上での製膜も可能である。この場合、蛍光X線を用
いることで高精度に金属の塗着量(単位面積当たりの塗
着重量)を測定することができた。
In the case where an electrode solution prepared by dispersing ultrafine metal particles in a solvent is used as the resistor forming material,
It is also possible to form a film at a temperature of at least ° C. In this case, the amount of metal applied (the weight applied per unit area) could be measured with high accuracy by using fluorescent X-rays.

【0045】なお、各種抵抗体材料の塗着量と抵抗値の
相関を求めたところ、抵抗体形成部材の中の熱処理によ
り飛散しない材料成分を用いることが良いことが判っ
た。こうした材料としては、ルテニウム、ニッケル、
銀、銅、金、白金のような金属材料や、鉛、ビスマス、
亜鉛、珪素、ホウ素等のガラス材料を一元素以上選ぶこ
とができる。あるいは蛍光X線で分析した際の各元素の
ピーク高さの比率を用いることで、熱処理前もしくは後
に抵抗値やTCRを高精度に命中させることもできる。
When the correlation between the amount of application of various resistor materials and the resistance value was determined, it was found that it would be better to use a material component that does not scatter due to heat treatment in the resistor forming member. Such materials include ruthenium, nickel,
Metal materials such as silver, copper, gold, platinum, lead, bismuth,
One or more glass materials such as zinc, silicon, and boron can be selected. Alternatively, by using the ratio of the peak height of each element when analyzed by fluorescent X-ray, the resistance value or TCR can be hit with high accuracy before or after the heat treatment.

【0046】また抵抗体形成部材の定量分析方法として
は、蛍光X線を用いる以外にアルファ線、ベータ線、ガ
ンマ線等を用いることもできる。こうして非接触で高速
測定することができる。また蛍光X線等の検出器にエネ
ルギー分散型の代わりに、波長分散型を用いることでよ
り原子番号の隣接した材料(例えばルテニウム、銀、パ
ラジウム)で有っても高精度に分離できる。
As a method for quantitatively analyzing the resistor forming member, alpha-rays, beta-rays, gamma-rays and the like can be used in addition to fluorescent X-rays. Thus, high-speed measurement can be performed without contact. In addition, by using a wavelength dispersion type detector instead of an energy dispersion type detector for fluorescent X-rays or the like, it is possible to separate with high precision even if the material has a more adjacent atomic number (for example, ruthenium, silver or palladium).

【0047】またチップ抵抗器のような一枚の基板内に
100個から2000個程度の抵抗体を同時に形成し、
焼成後に個片に分割させるような抵抗部品の製造におい
ては、基板内の抵抗体形成部材のマッピング(例0.1
mmφスポットで数cm角の基板全面の元素分布を定量分析
する)を行うことで、基板内の抵抗値分布を小さくする
こともできる。こうしたマッピングにより、例えばスク
リーン印刷におけるスキージ(印圧)のアンバランスを
発見できる。具体的には、スクリーン印刷機等に基板を
セットし、この上に製品パターンで多数の抵抗体形成部
材を印刷し、これをマッピング機能付きの蛍光X線等に
よる定量分析を行うことで抵抗体形成部材の厚みムラや
塗布ムラを検出できる。またこの結果を印刷機にフィー
ドバックすることで、スキージバランスや版と被印刷体
のギャップバランス等も自動校正することもでき、より
一層バラツキの少ない印刷を行うことができる。
Further, about 100 to 2000 resistors are simultaneously formed on one substrate such as a chip resistor,
In the production of a resistance component that is divided into individual pieces after firing, mapping of a resistor forming member in a substrate (eg, 0.1)
Quantitative analysis of the element distribution over the entire surface of the substrate of several cm square with the mmφ spot) can also reduce the resistance value distribution in the substrate. By such mapping, for example, an imbalance of squeegee (printing pressure) in screen printing can be found. Specifically, a substrate is set on a screen printing machine or the like, and a number of resistor forming members are printed on the substrate in a product pattern, and this is subjected to quantitative analysis using fluorescent X-rays or the like with a mapping function. It is possible to detect thickness unevenness and coating unevenness of the formed member. By feeding back this result to the printing press, the squeegee balance, the gap balance between the plate and the printing medium, and the like can be automatically calibrated, and printing with even less variation can be performed.

【0048】またこうして作成したノントリミング抵抗
器は、ノイズ特性が従来のトリミング品に比べて10デ
シベルから20デシベル以上優れている結果が得られ
た。またトリミングする場合でもトリミング可能な抵抗
値領域内への作り込みの歩留まりを向上でき、コストダ
ウンが可能となった。
The non-trimming resistor thus produced has a result that the noise characteristic is superior to the conventional trimming product by 10 dB to 20 dB or more. Further, even in the case of trimming, the production yield in the trimmable resistance value region can be improved, and the cost can be reduced.

【0049】[0049]

【発明の効果】以上のように本発明によれば、熱処理し
て抵抗体とする抵抗部品の製造方法において、前記抵抗
体形成部材を熱処理する前もしくは後に抵抗値を高精度
に予想し、求める抵抗値が得られるようにすることで抵
抗部品の製造コストを下げられ、更にトリミング工程も
省略できる有利な効果が得られる。
As described above, according to the present invention, in a method of manufacturing a resistance component which is made into a resistor by heat treatment, a resistance value is predicted and obtained with high accuracy before or after heat treatment of the resistor forming member. By obtaining the resistance value, it is possible to obtain an advantageous effect that the manufacturing cost of the resistance component can be reduced and the trimming step can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による抵抗値を蛍光X線
測定装置を用いて予測する様子を示す概略構成図
FIG. 1 is a schematic configuration diagram showing a state in which a resistance value according to an embodiment of the present invention is predicted using a fluorescent X-ray measurement apparatus.

【図2】本発明の一実施の形態による蛍光X線強度と物
質量の相関関係を示す説明図
FIG. 2 is an explanatory diagram showing a correlation between a fluorescent X-ray intensity and a substance amount according to an embodiment of the present invention.

【図3】本発明の一実施の形態による抵抗体形成部材の
蛍光X線強度と熱処理後の抵抗体の抵抗値の関係を示す
説明図
FIG. 3 is an explanatory diagram showing the relationship between the fluorescent X-ray intensity of the resistor forming member and the resistance of the resistor after heat treatment according to one embodiment of the present invention;

【図4】本発明の一実施の形態による熱処理温度と抵抗
値の相関関係を示す説明図
FIG. 4 is an explanatory diagram showing a correlation between a heat treatment temperature and a resistance value according to one embodiment of the present invention.

【図5】従来の抵抗器の構造を示す一部切欠斜視図FIG. 5 is a partially cutaway perspective view showing the structure of a conventional resistor.

【図6】従来の抵抗値の命中率改善の一例を示す説明図FIG. 6 is an explanatory diagram showing an example of a conventional improvement in the hit rate of a resistance value.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 抵抗体 4 トリミング部分 5 マイクロクラック 6 X線発生管 7 X線 8 フィルタ 9 コリメータ 10 基板 11 抵抗体形成部材 12 蛍光X線 13 フィルタ 14 検出器 15 計算機 DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3 Resistor 4 Trimming part 5 Micro crack 6 X-ray generating tube 7 X-ray 8 Filter 9 Collimator 10 Substrate 11 Resistor forming member 12 Fluorescent X-ray 13 Filter 14 Detector 15 Computer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された抵抗体形成部材を熱
処理して抵抗体とする抵抗部品の製造方法において、前
記抵抗体形成部材を熱処理する前もしくは後に前記抵抗
体形成部材の中の少なくとも1元素以上を非破壊で定量
分析し、求める抵抗値が得られるように前記抵抗体形成
部材の形成量を加減する抵抗部品の製造方法。
In a method of manufacturing a resistance component, wherein a resistor forming member formed on a substrate is heat-treated to be a resistor, at least one of the resistor forming members before or after heat-treating the resistor forming member. A method for manufacturing a resistance component, wherein one or more elements are quantitatively analyzed in a non-destructive manner, and a formation amount of the resistor forming member is adjusted so as to obtain a desired resistance value.
【請求項2】 基板上に形成された抵抗体形成部材を熱
処理して抵抗体とする抵抗部品の製造方法において、前
記抵抗体形成部材を熱処理する前もしくは後に前記抵抗
体形成部材の中の少なくとも1元素以上を非破壊で定量
分析し、目的とする抵抗値が得られるように抵抗体形成
部材の熱処理温度プロファイルを加減する抵抗部品の製
造方法。
2. A method for manufacturing a resistance component, wherein a resistor forming member formed on a substrate is heat-treated to form a resistor, wherein at least one of the resistor forming members is provided before or after the resistor forming member is heat-treated. A method for manufacturing a resistance component, wherein one or more elements are non-destructively quantitatively analyzed and a heat treatment temperature profile of a resistor forming member is adjusted so as to obtain a desired resistance value.
【請求項3】 基板上に形成された抵抗体形成部材を熱
処理して抵抗体とする抵抗部品の製造方法において、前
記抵抗体形成部材が基板上で目的とする抵抗値に相当す
る塗着量になるように塗出された抵抗体形成部材の中の
少なくとも1元素以上を非破壊で定量分析し、求める抵
抗値が得られるように前記抵抗体形成部材の塗出量を加
減する抵抗部品の製造方法。
3. A method of manufacturing a resistance component, wherein a resistor forming member formed on a substrate is heat-treated to form a resistor, wherein the resistor forming member has a coating amount corresponding to a target resistance value on the substrate. A non-destructive quantitative analysis of at least one or more elements of the resistive member formed so as to be applied, and a resistive component for adjusting the amount of coating of the resistive member so as to obtain a desired resistance value. Production method.
【請求項4】 基板上に形成された抵抗体形成部材を熱
処理して抵抗体とする抵抗部品の製造方法において、前
記抵抗体形成部材を熱処理する前もしくは後に前記抵抗
体形成部材の中の少なくとも1元素以上の非有機元素を
非破壊で定量分析し、求める抵抗値が得られるように前
記抵抗体形成部材中の有機成分量を増減する抵抗部品の
製造方法。
4. A method of manufacturing a resistance component, wherein a resistor forming member formed on a substrate is heat-treated to form a resistor, wherein at least one of the resistor forming members is provided before or after the resistor forming member is heat-treated. A method for manufacturing a resistance component, wherein one or more non-organic elements are quantitatively analyzed in a non-destructive manner, and the amount of an organic component in the resistor forming member is increased or decreased so as to obtain a desired resistance value.
【請求項5】 基板上に形成された抵抗体形成部材を熱
処理して抵抗体とする抵抗部品の製造方法において、前
記抵抗体形成部材が基板上で目的とする抵抗値が得られ
るように異なる抵抗値を示す複数の抵抗体形成部材を混
合する抵抗部品の製造方法。
5. A method of manufacturing a resistance component, wherein a resistor forming member formed on a substrate is heat-treated to form a resistor, wherein the resistor forming member is different so that a desired resistance value is obtained on the substrate. A method of manufacturing a resistance component in which a plurality of resistor forming members exhibiting a resistance value are mixed.
【請求項6】 基板上に形成された抵抗体形成部材は、
熱処理前もしくは後に蛍光X線によって元素分析される
請求項1から請求項5のいずれかに記載の抵抗部品の製
造方法。
6. A resistor forming member formed on a substrate,
The method for manufacturing a resistance component according to any one of claims 1 to 5, wherein elemental analysis is performed by X-ray fluorescence before or after the heat treatment.
【請求項7】 抵抗体形成工程を経て基板上に形成され
た抵抗体形成部材を熱処理前もしくは後に元素分析し、
この結果を前記抵抗体形成工程にフィードバックするこ
とで抵抗値精度を向上させる請求項1から請求項6のい
ずれかに記載の抵抗部品の製造方法。
7. Elemental analysis of a resistor forming member formed on a substrate through a resistor forming step before or after heat treatment,
7. The method for manufacturing a resistance component according to claim 1, wherein the result is fed back to said resistor formation step to improve resistance value accuracy.
JP8183016A 1996-07-12 1996-07-12 Manufacture of resistive part Pending JPH1027704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183016A JPH1027704A (en) 1996-07-12 1996-07-12 Manufacture of resistive part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183016A JPH1027704A (en) 1996-07-12 1996-07-12 Manufacture of resistive part

Publications (1)

Publication Number Publication Date
JPH1027704A true JPH1027704A (en) 1998-01-27

Family

ID=16128269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183016A Pending JPH1027704A (en) 1996-07-12 1996-07-12 Manufacture of resistive part

Country Status (1)

Country Link
JP (1) JPH1027704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025532A1 (en) * 2001-09-17 2003-03-27 Matsushita Electric Industrial Co., Ltd. Strain sensor and production method therefor
JP2008108671A (en) * 2006-10-27 2008-05-08 Auto Network Gijutsu Kenkyusho:Kk Branching connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025532A1 (en) * 2001-09-17 2003-03-27 Matsushita Electric Industrial Co., Ltd. Strain sensor and production method therefor
US7043996B2 (en) 2001-09-17 2006-05-16 Matsushita Electric Industrial Co., Inc. Strain sensor and production method therefor
JP2008108671A (en) * 2006-10-27 2008-05-08 Auto Network Gijutsu Kenkyusho:Kk Branching connector

Similar Documents

Publication Publication Date Title
DE69730699T2 (en) differential scanning calorimeter
DE112013005159T5 (en) Method and apparatus for measuring thin film thickness using X-radiation
DE10307939A1 (en) Contactless high-frequency heating with temperature and / or conductivity monitoring
CN112772992A (en) Multi-electrode temperature control ceramic atomizing core and application and manufacturing method thereof
DE102018122860A1 (en) Method for operating a sensor device
Sanchez‐Botero et al. Are liquid metals bulk conductors?
JPH1027704A (en) Manufacture of resistive part
JP6134388B2 (en) Sensor integration and its application in lateral flow immunoassay
Chen et al. Toward quantitative SERS detection in low analyte concentration by investigating the immersion volume and time of SERS substrate in analyte solution
Finšgar et al. Novel in situ Bi− Sb‐Film Electrodes for Trace Heavy Metal Analysis
DE19708053B4 (en) Method and sensor arrangement for the detection of condensation on surfaces
DE4132441A1 (en) THICKNESS GUIDE ELECTRODES AS BIOSENSOR
Türkmen et al. Lamination curing method for silver nanoparticle inkjet printed flexible electronics: design, uncertainty and performance analysis
JP2004003872A (en) Evaluating method of thermoelectric transducing material
EP0953398A1 (en) Process and chip for calibrating a wire bonder
Lawniczak et al. Characterization of Sinter Materials and Processes by Scratch Test
EP2795274A1 (en) Infrared light sensor chip with high measurement accuracy and method for producing the infrared light sensor chip
Tomaszewski et al. Investigation of inkjet printed path resistance in the context of manufacture and flexible application
DE10225994B3 (en) Device and method for testing numerous, different material samples
DE102018130547A1 (en) Sensor element, method for its production and thermal flow sensor
JPH07211507A (en) Resistance parts and its producrtion
JP2021120199A (en) Analysis method, analysis device, printer, and printing system
CN109855549A (en) A kind of method of selective laser sintering powdering thickness measurement and uniformity characterization
JP2021120198A (en) Analysis method, analysis device, printer, and printing system
Kim et al. Fabrication of activation foil arrays using printing techniques for evaluation of spatial distribution of neutron flux and energy