JPH10274593A - Liquid crystal panel light transmittance measuring device - Google Patents

Liquid crystal panel light transmittance measuring device

Info

Publication number
JPH10274593A
JPH10274593A JP8048197A JP8048197A JPH10274593A JP H10274593 A JPH10274593 A JP H10274593A JP 8048197 A JP8048197 A JP 8048197A JP 8048197 A JP8048197 A JP 8048197A JP H10274593 A JPH10274593 A JP H10274593A
Authority
JP
Japan
Prior art keywords
liquid crystal
light transmittance
light
crystal panel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8048197A
Other languages
Japanese (ja)
Inventor
Takeshi Okubo
毅 大久保
Yasushi Tsushimi
靖 都志見
Teiichiro Chiba
貞一郎 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP8048197A priority Critical patent/JPH10274593A/en
Publication of JPH10274593A publication Critical patent/JPH10274593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal light transmittance measuring device that can measure light transmittance accurately over a wide range of 0-100% to liquid crystal with simple structure without needing complicated operation and long time and can easily measure the fluctuating characteristic or the like of light transmittance of liquid crystal based on the change of an irradiation angle. SOLUTION: Two sets of optical sensors 5, 6 are installed on a table 1, rotatable by a requested angle around a shaft part, so that inspection light intersect, and the intersection point of inspection light is made a light transmittance measuring point 0 of a liquid crystal panel. The sensor 5 with a characteristic that can detect micro transmitted light quantity of light transmittance 0-2% of the liquid crystal panel is used as one of two sets of optical sensors, and a sensor with a characteristic that can detect the transmitted light quantity over the detection area of the sensor 5 is used as the other optical sensor 6. High accuracy measurement over the whole area of light transmittance can be performed with simple operation of fixing the installed attitude of the liquid crystal panel 9 and rotating the rotating table 1 by a specified angle to measure light transmittance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶パネルの光透
過率を測定するための装置に関し、詳しくは簡単な操作
で同光透過率の全範囲にわたって精度の高い測定が可能
であり、同時に応答速度、温度特性、角度依存性、駆動
周波数依存性などの液晶パネルにおける諸特性の解析が
可能な光透過率の測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the light transmittance of a liquid crystal panel, and more particularly, to a device capable of performing highly accurate measurement over the entire range of the light transmittance with a simple operation, and at the same time, responding. The present invention relates to a light transmittance measurement device capable of analyzing various characteristics of a liquid crystal panel such as speed, temperature characteristics, angle dependence, and drive frequency dependence.

【0002】[0002]

【従来の技術】近年の液晶技術の発展は著しく、その利
用分野も一般の電卓用ディスプレィからパソコンやワー
プロ、各種コントローラ、デジタルカメラ類、各種のプ
リンタや刻印装置、果ては大型のディスプレィまで益々
拡大しつつある。
2. Description of the Related Art In recent years, the development of liquid crystal technology has been remarkable, and the field of use has expanded from general calculator displays to personal computers, word processors, various controllers, digital cameras, various printers and marking devices, and finally large displays. It is getting.

【0003】こうした各種多様な液晶パネルが広い分野
で利用されるようになると、その特性により周辺環境の
影響が無視できなくなる場合が多い。一般的に、液晶の
光透過率や応答速度は駆動電圧や液晶自体の温度が大き
く影響することが知られている。そのため、従来から前
記光透過率と応答速度について様々な要因に基づく影響
を調べるため、各種の測定がなされている。
When various types of liquid crystal panels are used in a wide range of fields, the effects of the surrounding environment cannot often be ignored due to their characteristics. Generally, it is known that the drive voltage and the temperature of the liquid crystal itself greatly affect the light transmittance and the response speed of the liquid crystal. Therefore, various measurements have conventionally been made to examine the effects of the light transmittance and the response speed based on various factors.

【0004】例えば、光透過率についてみると、一般的
な測定法は液晶パネルの測定点に所要の光量をもつ検査
光を照射し、その測定点を通過した出射光を受光器で受
け、その光量に基づく出力電圧を測定することにより行
われている。このときの測定環境は、周辺の光や温度の
影響を避けて一定の光照射量と温度を保障するため、通
常は測定装置を外部からの光を遮断した恒温槽に入れて
測定がなされるようにしている。
[0004] For example, regarding the light transmittance, a general measuring method is to irradiate a measuring point of a liquid crystal panel with inspection light having a required amount of light, receive an outgoing light passing through the measuring point with a light receiver, and receive the light. This is performed by measuring an output voltage based on the amount of light. The measurement environment at this time is usually measured by placing the measurement device in a thermostatic chamber in which light from outside is shut off, in order to guarantee a constant light irradiation amount and temperature while avoiding the influence of ambient light and temperature. Like that.

【0005】[0005]

【発明が解決しようとする課題】しかるに、従来の液晶
に対する光透過率の測定範囲は特にその受光器の分解能
やゲインの設定などにより決まり、微弱な光から強力な
光までの範囲を測定可能な受光器は存在しない。特に、
通常の光量を測定する受光器をもって液晶の透過率が0
%の付近、すなわち液晶が閉じて光の透過量が0に近く
なったときの高精度の測定を行おうとする場合には、改
めて受光器のゲインを調整する必要がある。この場合、
同時に測定試料である液晶パネルを一旦測定装置から外
し、前記調整が終了した時点で改めて液晶パネルを取り
付け直さなければならない。これは調整作業を煩雑にす
るばかりでなく、この取り付け直しによって、液晶パネ
ルの測定点が変動する可能性が高く、再現性に関する信
頼がなくなるという不都合が生じる。
However, the measuring range of the light transmittance of the conventional liquid crystal is determined by the resolution and gain setting of the photodetector, and the range from weak light to strong light can be measured. There is no receiver. Especially,
With a light receiver that measures the amount of normal light, the transmittance of the liquid crystal is 0
In order to perform high-precision measurement in the vicinity of%, that is, when the liquid crystal is closed and the light transmission amount is close to 0, it is necessary to adjust the gain of the photodetector again. in this case,
At the same time, the liquid crystal panel, which is the measurement sample, must be once removed from the measuring device, and the liquid crystal panel must be reattached when the adjustment is completed. This not only complicates the adjustment work, but also causes a problem that the re-attachment is likely to change the measurement points of the liquid crystal panel, and the reliability of reproducibility is lost.

【0006】また、上述のごとき測定環境を維持するに
は、測定装置を収容させるための恒温槽が必要となり、
装置全体が大型化するとともに、設備費が大幅に増加す
ることになり、極めて高価なものとなる。また、例えば
温度変化に伴う前記光透過率の変動を測定しようとする
場合には、恒温槽内の全体温度を所望の値に変更しなけ
ればならず、温度変更に長時間を要するばかりか、その
ための必要なエネルギーも無視できない。特に120度
以上の高温下での測定は不可能に近い。
In order to maintain the measurement environment as described above, a thermostat for accommodating the measurement device is required.
The size of the entire apparatus is increased, and the equipment cost is significantly increased, which makes the apparatus extremely expensive. Further, for example, when trying to measure the fluctuation of the light transmittance due to temperature change, it is necessary to change the entire temperature in the thermostat to a desired value, not only takes a long time to change the temperature, The energy required for that cannot be ignored. In particular, measurement at a high temperature of 120 ° C. or higher is almost impossible.

【0007】本発明は、上述の課題を解決するとともに
従来では測定に煩雑な操作性と長時間を要した、例えば
液晶パネルに対する照射角度の変更に対する光透過率の
変動特性等を簡単に測定可能とした構造と操作が簡単で
且つ高精度の測定が可能な液晶の光透過率測定装置を提
供することを目的としている。
[0007] The present invention solves the above-mentioned problems and, in the past, required complicated operability and long time for the measurement. For example, it is possible to easily measure the fluctuation characteristics of the light transmittance with respect to the change of the irradiation angle with respect to the liquid crystal panel. It is an object of the present invention to provide a liquid crystal light transmittance measuring apparatus which is simple in structure and operation and capable of performing high-precision measurement.

【0008】[0008]

【課題を解決するための手段】かかる目的は、本発明の
主要な構成をなす、軸部を中心として所望の角度を回動
可能なテーブルと、検査光が交差するように前記テーブ
ル上に固設された2組の光センサとを備えてなり、前記
検査光の交点が前記軸部の軸線上に設定され、前記交点
に前記液晶パネルの光透過率測定点を一致させて同液晶
パネルが交換可能に配設され、前記2組の光センサの一
方は前記液晶パネルの光透過率0〜2%の微小な透過光
量が検出可能であり、他方の光センサは前記一方の光セ
ンサの検出領域以外の透過光量が検出可能であることを
特徴とする液晶パネルの光透過率測定装置により達成さ
れる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a main structure of the present invention, in which a table capable of rotating a desired angle around a shaft and a test light are fixed on the table so as to intersect. And two sets of optical sensors provided, the intersection of the inspection light is set on the axis of the shaft portion, and the light transmission measurement point of the liquid crystal panel is made to coincide with the intersection and the liquid crystal panel is One of the two sets of optical sensors is replaceable, and one of the two sets of optical sensors can detect a very small amount of transmitted light having a light transmittance of 0 to 2% of the liquid crystal panel, and the other optical sensor detects the amount of light transmitted by the one optical sensor. This is achieved by a light transmittance measuring device for a liquid crystal panel, characterized in that the amount of transmitted light outside the region can be detected.

【0009】いま、液晶パネル上の同一測定点におい
て、微小な透過光量とその他の強力な透過光量とを正確
に測定しようとするときは、液晶の駆動電圧や温度を一
定に維持して、例えば先ず一方の光透過率0〜2%の微
小な透過光量が検出可能な光センサの投光器からの検査
光が液晶パネルの前記測定点に直角に入射するように、
テーブルを軸部を中心に回動させて位置決め固定し、検
査光を前記投光器から液晶パネルを通して受光器に向け
て照射する。この受光器は前述のように微小な透過光量
を正確に受光し、測定可能な電圧値に変換して出力す
る。この測定が終了すると、次いで光透過率0〜2%以
上の広い範囲の透過光量を正確に検出できる光センサの
他方の投光器から照射される検査光が液晶パネルの前記
測定点に直角に入射するように、テーブルを軸部を中心
に回動させて位置決め固定する。ここで、検査光を同投
光器から液晶パネルを通して相対する受光器に向けて照
射する。この受光器は前述のように光透過率0〜2%以
上の広い範囲の透過光量を正確に電圧値に変換して出力
する。こうして、本発明による測定装置によれば、回転
テーブルを所定角度回転させるだけの単純な操作で、液
晶の透過率0〜100%の全ての範囲の透過光量が正確
に測定できる。しかも、その測定点は常に回転軸部の中
心線上にあるため、測定点の変動が生じず信頼性も確保
される。
To accurately measure a very small amount of transmitted light and another strong amount of transmitted light at the same measurement point on the liquid crystal panel, the driving voltage and the temperature of the liquid crystal are kept constant, and for example, First, the inspection light from the light projector of the optical sensor capable of detecting a small amount of transmitted light having a light transmittance of 0 to 2% is incident on the measurement point of the liquid crystal panel at right angles.
The table is rotated around the shaft and fixed in position, and the inspection light is emitted from the light emitter to the light receiver through the liquid crystal panel. As described above, this light receiver accurately receives the minute amount of transmitted light, converts it into a measurable voltage value, and outputs it. When this measurement is completed, the inspection light emitted from the other projector of the optical sensor capable of accurately detecting the transmitted light amount in a wide range of light transmittance of 0 to 2% or more is perpendicularly incident on the measurement point of the liquid crystal panel. As described above, the table is rotated around the shaft portion and positioned and fixed. Here, the inspection light is emitted from the projector through the liquid crystal panel toward the opposing light receiver. As described above, this light receiver accurately converts the transmitted light amount in a wide range having a light transmittance of 0 to 2% or more into a voltage value and outputs the voltage value. Thus, according to the measuring device of the present invention, the transmitted light amount of the liquid crystal in the entire range of 0 to 100% can be accurately measured by a simple operation of simply rotating the turntable by a predetermined angle. In addition, since the measurement point is always on the center line of the rotating shaft, the measurement point does not fluctuate and the reliability is secured.

【0010】本発明の前記測定装置にあって、前記液晶
パネルの少なくとも前記光透過率測定点の液晶部分を制
御駆動する制御手段を有する場合には、例えば駆動電圧
や温度による透過率の変動をも同時に測定することが可
能となる。すなわち、前記液晶部分の駆動電圧を変化さ
せながら、上述の手順に従って逐次測定を行えば、前記
液晶部分の駆動電圧と光透過率との相関が得られ、或い
は前記制御手段により前記液晶部分の温度設定を多段階
に変動させれば、温度と光透過率との詳しい相関が求め
られる。更には、前記駆動電圧と温度とを互いに組み合
わせて多段階に変動させる場合には、例えば液晶を完全
に閉状態とするときの上記微小光量の範囲における適正
な温度と駆動電圧を選択することが可能となる。
In the measuring apparatus of the present invention, when a control means for controlling and driving at least the liquid crystal portion at the light transmittance measuring point of the liquid crystal panel is provided, for example, a change in transmittance due to a driving voltage or a temperature is measured. Can be measured at the same time. That is, if the measurement is performed sequentially according to the above procedure while changing the driving voltage of the liquid crystal portion, the correlation between the driving voltage of the liquid crystal portion and the light transmittance can be obtained, or the temperature of the liquid crystal portion can be controlled by the control means. If the setting is changed in multiple steps, a detailed correlation between the temperature and the light transmittance can be obtained. Further, when the drive voltage and the temperature are combined with each other and varied in multiple stages, for example, when the liquid crystal is completely closed, it is necessary to select an appropriate temperature and drive voltage in the range of the minute light amount. It becomes possible.

【0011】前記駆動電圧の制御手段は通常の駆動制御
手段でよいが、前記温度については液晶パネルの前記測
定点のみならず、その周辺をも同一の温度に保持するこ
とが好ましく、また前述のように意図的に温度を様々に
変化させることをできるようにし、しかも前記測定点の
液晶温度を直接的に測定できるようにすることが好まし
い。そこで、本発明にあっては前記液晶パネルの加熱制
御手段として、前記光透過率測定点の加熱手段、同測定
点の温度検出手段及び同検出手段による検出信号に基づ
き前記加熱手段による加熱量を制御する加熱制御手段を
有していることが望ましい。
The drive voltage control means may be a normal drive control means, but it is preferable that the temperature is maintained not only at the measurement point of the liquid crystal panel but also at the periphery thereof at the same temperature. Thus, it is preferable that the temperature can be intentionally changed in various ways and that the liquid crystal temperature at the measurement point can be directly measured. Therefore, in the present invention, as the heating control means of the liquid crystal panel, the heating means of the light transmittance measurement point, the temperature detection means of the measurement point, and the heating amount by the heating means based on the detection signal by the detection means. It is desirable to have heating control means for controlling.

【0012】特に、前述の要求を満足させるには、前記
加熱手段が透明フィルムヒータであり、前記測定点の温
度検出手段が非接触式の赤外線検出器であって、前記液
晶パネルをそれぞれに透明電極を有する第1及び第2の
透明基板の間に液晶を配設して構成するとともに、前記
第1透明基板の背面に前記透明フィルムヒータを配し、
前記第1透明基板との間で前記透明フィルムヒータを挟
んで第3の透明基板を配設する。このとき、前記第3の
透明基板の肉厚を前記第1透明基板の肉厚に等しくする
と、前記赤外線検出器の測定点を前記液晶パネルの透過
率測定点の延長線上にあたる第3の透明基板の板面上の
一点に設定し、同赤外線検出器の赤外線検出部を前記第
3透明基板の検査光透過点に向けて対設するようにする
と、前記透明フィルムヒータの加熱による第1及び第2
の透明基板の肉厚方向の温度分布が透明フィルムヒータ
を挟んで左右対称となるため、前記液晶パネルの測定点
と第3の透明基板上の測定点における温度が一致するこ
とになり、液晶パネル上の測定点の温度を直接的に検出
しているのと同等になる。
In particular, in order to satisfy the above-mentioned requirements, the heating means is a transparent film heater, and the temperature detecting means at the measurement point is a non-contact infrared detector, and the liquid crystal panels are transparent. A liquid crystal is disposed between first and second transparent substrates having electrodes, and the transparent film heater is disposed on a back surface of the first transparent substrate.
A third transparent substrate is provided between the first transparent substrate and the transparent film heater. At this time, assuming that the thickness of the third transparent substrate is equal to the thickness of the first transparent substrate, the measurement point of the infrared detector is located on an extension of the transmittance measurement point of the liquid crystal panel. When the infrared detector is set at one point on the plate surface and the infrared detector of the infrared detector is opposed to the inspection light transmission point of the third transparent substrate, the first and second light sources are heated by the transparent film heater. 2
Since the temperature distribution in the thickness direction of the transparent substrate is symmetrical with respect to the transparent film heater, the temperature at the measurement point of the liquid crystal panel and the temperature at the measurement point on the third transparent substrate coincide with each other. This is equivalent to directly detecting the temperature at the above measurement point.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図示実施例に基づいて具体的に詳述する。図1は本発
明の代表的な実施例である液晶パネルの光透過率測定装
置の全体の概略構成を示す斜視図、図2は同測定装置の
詳細を示す平面図、図3は同側面図である。また、図4
は本発明に係る光透過率の測定原理と機能の説明図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a perspective view showing the overall schematic structure of a light transmittance measuring device for a liquid crystal panel which is a typical embodiment of the present invention, FIG. 2 is a plan view showing details of the measuring device, and FIG. It is. FIG.
FIG. 4 is an explanatory diagram of a measurement principle and a function of a light transmittance according to the present invention.

【0014】これらの図において、符号1は回動テーブ
ルを示し、同回動テーブル1は図2及び図3に示すごと
く略方形状をなす固定台2の上面に軸部3を介して所定
の角度を回転可能に支持されている。このときの回動テ
ーブル1の回動角度は、例えば図2に示すように位置決
めピン4などにより所望の回転角で回動固定させること
を可能にしている。図示例によれば、この回動角を30
°に設定されているが、これに限定されるものではな
く、例えば液晶に照射される検査光の入射角度による光
透過率の変化を測定するには、所望の回動角度で多段的
に回動固定できるようにすることが好ましい。
In these figures, reference numeral 1 denotes a rotary table, which is provided on a top surface of a fixed base 2 having a substantially square shape as shown in FIGS. The angle is supported rotatably. At this time, the rotation angle of the rotation table 1 can be fixed at a desired rotation angle by, for example, a positioning pin 4 as shown in FIG. According to the illustrated example, this rotation angle is 30 degrees.
Although it is set to °, the present invention is not limited to this. For example, in order to measure the change in light transmittance due to the incident angle of the inspection light applied to the liquid crystal, the light is rotated in multiple stages at a desired rotation angle. It is preferable to be able to move and fix.

【0015】前記回動テーブル1は対向する2辺の長さ
が上記固定台2の一辺の長さに略等しく、他の対向する
2辺が上記固定台2の一辺の長さより短い矩形状をなし
ており、その長手方向の両端部に2組の光センサ5,6
をそれぞれ載置固定するための一対2組の載置柱7,8
が立設されている。2組の前記光センサ5,6は本発明
の主要な構成部材の一部をなしており、2個の投光器5
a,6aと各投光器5a,6aから照射される検査光を
それぞれに受光する2個の受光器5b,6bとから構成
される。そして、一方の光センサ5は液晶の透過光が0
%付近の微小な光量を正確に検出可能な特性を備えてお
り、他方の光センサ5は液晶の透過光が前記微小な光量
以上の光量を正確に検出可能な特性を備えている。
The rotary table 1 has a rectangular shape in which two opposing sides are substantially equal to the length of one side of the fixed base 2 and the other two opposing sides are shorter than the length of one side of the fixed base 2. And two sets of optical sensors 5 and 6 at both ends in the longitudinal direction.
And two sets of mounting columns 7 and 8 for mounting and fixing the
Is erected. The two sets of optical sensors 5 and 6 form a part of the main constituent members of the present invention, and the two projectors 5
a, 6a and two light receivers 5b, 6b that respectively receive the inspection light emitted from the light projectors 5a, 6a. One of the optical sensors 5 detects that the transmitted light of the liquid crystal is zero.
%, And the other optical sensor 5 has a characteristic that the transmitted light of the liquid crystal can accurately detect a light amount equal to or more than the minute light amount.

【0016】一般的に、この種の光センサは図5に実線
で示すように非線形性の領域(A)をもっており、その
非線形性領域(A)のゲインを調整しながら測定を行わ
ないかぎり、微小な光量から多量の光量までの全てを単
一のセンサにより正確に検出することは不可能である。
特に通常の光センサによれば、同図に実線で示すごとく
液晶が閉鎖状態にあるときの光透過率が0付近にあって
は、その透過光を正確に検出することは極めて難しく、
不可能に近い。また逆に、図5に破線で示すように透過
光量が微小な領域からある程度大きな光量領域まで正確
に検出光センサが存在する。
Generally, this type of optical sensor has a non-linear region (A) as shown by a solid line in FIG. 5, and unless measurement is performed while adjusting the gain of the non-linear region (A), It is impossible to accurately detect everything from a small amount of light to a large amount of light with a single sensor.
In particular, according to a normal optical sensor, as shown by a solid line in the figure, when the light transmittance when the liquid crystal is in a closed state is near 0, it is extremely difficult to accurately detect the transmitted light,
Near impossible. Conversely, as shown by the broken line in FIG. 5, a detection light sensor exists accurately from a region where the amount of transmitted light is small to a region where the amount of transmitted light is large to some extent.

【0017】一方、液晶の駆動電圧を上げたり液晶の温
度が高くしたりすると、光透過率は大きくなり、前述の
ごとく光透過率が0付近であったものが、例えば駆動電
圧が同一であっても液晶温度を高くすると閉鎖状態が崩
れ、それまで透過しなかったはずの微小な光量が透過す
るようになり、閉鎖状態が維持できなくなる。かかる場
合には、通常、その液晶温度を下げ、或いは駆動電圧を
下げるように制御して液晶の閉鎖状態を維持させる。
On the other hand, when the drive voltage of the liquid crystal is increased or the temperature of the liquid crystal is increased, the light transmittance increases. As described above, the light transmittance is near 0, but the drive voltage is the same, for example. However, when the liquid crystal temperature is increased, the closed state is broken, and a very small amount of light that should not have been transmitted is transmitted, and the closed state cannot be maintained. In such a case, normally, the liquid crystal temperature is controlled or the drive voltage is controlled so as to be lowered so that the liquid crystal is kept closed.

【0018】従って、こうした制御にあたっては、液晶
の光透過率と液晶温度又は駆動電圧との正確な相関を知
っておく必要がある。それを知るために最も重要な測定
対象は液晶の光透過率であり、特にその光透過率に影響
を与える他の要因となる温度変化及び駆動電圧の変化に
基づく光透過率の変動を知ることである。本発明に係る
液晶の光透過率測定装置は、上述のごとく非線形性領域
(A)が異なっている第1の光センサ5及び第2の光セ
ンサ6とを併用するとともに、以下に具体的に説明する
装置の他の構成に基づき、簡単な操作で前記2組の光セ
ンサ5,6の切り替えが可能であり、しかも液晶パネル
の同一測定点における光透過率を0〜100%の全範囲
にわたって正確に測定を可能なものにしている。更に
は、本実施例では前述の各相関をも正確に且つ簡単に求
めることを可能にする。
Therefore, in such control, it is necessary to know the exact correlation between the light transmittance of the liquid crystal and the liquid crystal temperature or drive voltage. The most important measurement object to know it is the light transmittance of the liquid crystal, especially to know the fluctuation of light transmittance due to temperature change and change of driving voltage which are other factors affecting the light transmittance. It is. The liquid crystal light transmittance measuring device according to the present invention uses the first optical sensor 5 and the second optical sensor 6 having different non-linear regions (A) as described above, and specifically as follows. Based on another configuration of the device to be described, the two sets of optical sensors 5 and 6 can be switched by a simple operation, and the light transmittance at the same measurement point of the liquid crystal panel can be changed over the entire range of 0 to 100%. Makes accurate measurements possible. Further, in the present embodiment, it is possible to accurately and easily obtain each of the above-mentioned correlations.

【0019】前記回動テーブル1の中心部からは、上記
軸部3が垂直下方に向けて突設されており、同軸部3が
上記固定台2に図示せぬ軸受を介して回転可能に嵌着さ
れ、回動テーブル1を前記軸部3を中心として水平面内
で回動可能にしている。
The shaft portion 3 projects vertically downward from the center of the rotary table 1, and the coaxial portion 3 is rotatably fitted to the fixed base 2 via a bearing (not shown). The rotation table 1 is rotatable in a horizontal plane about the shaft 3.

【0020】符号9は本発明に係る光透過率の測定試料
となる液晶パネルであって、本実施例による同液晶パネ
ル9の基本的な構成は従来のそれと実質的に異なるもの
ではないが、例えば図6に示す例では、それぞれの透明
電極同士を対向させて図示せぬスペーサを介して配され
る第1のガラス基板9a及び第2のガラス基板9bと前
記スペーサとの間に液晶9cが封入固定されており、更
に本実施例にあっては検出光が入射する側の前記第1ガ
ラス基板9aの板面に透明フィルムヒータ10を貼着す
るとともに、その透明フィルムヒータ10を挟むように
して第3の透明基板である押さえガラス板11が配され
ている。この押さえガラス11の材質と厚さは前記第1
ガラス基板9aの材質と肉厚に一致させている。
Reference numeral 9 denotes a liquid crystal panel serving as a light transmittance measurement sample according to the present invention. The basic configuration of the liquid crystal panel 9 according to the present embodiment is not substantially different from that of the conventional liquid crystal panel. For example, in the example shown in FIG. 6, a liquid crystal 9c is provided between the first glass substrate 9a and the second glass substrate 9b, which are disposed with a transparent electrode facing each other via a spacer (not shown), and the spacer. In the present embodiment, a transparent film heater 10 is adhered to the plate surface of the first glass substrate 9a on the side where the detection light is incident, and the transparent film heater 10 is sandwiched therebetween. A holding glass plate 11, which is a transparent substrate of No. 3, is provided. The material and thickness of the holding glass 11 are the first
The material and thickness of the glass substrate 9a are matched.

【0021】かかる構成を備えた本実施例における液晶
パネル9は、図2及び図3に示すように前記回動テーブ
ル1の軸部3の上方延長線上に光透過率の測定点Oを位
置させるとともに、その液晶面を上記第1及び第2の光
センサ5,6の各投受光器5a,6a:5b,6bに対
応する上記固定台2の対向する2辺に対して互いが平行
になるように支持部材12を介して固定台2に支持固定
されている。図示例にあっては、前記支持部材12は枠
体12aと同枠体12aの上下中間部で左右の枠材12
a′に固設された一対のブラケット12bとからなり、
左右のブラケット12bの対向端部に前記液晶パネル9
が交換可能に支持固定される。
In the liquid crystal panel 9 according to the present embodiment having such a configuration, as shown in FIGS. 2 and 3, the measurement point O of the light transmittance is positioned on the extension line above the shaft portion 3 of the rotary table 1. At the same time, their liquid crystal surfaces are parallel to each other on two opposite sides of the fixed base 2 corresponding to the light emitting and receiving devices 5a, 6a: 5b, 6b of the first and second optical sensors 5, 6. As described above, it is supported and fixed to the fixed base 2 via the support member 12. In the illustrated example, the support member 12 includes a frame 12a and left and right frame members 12 at upper and lower intermediate portions of the frame 12a.
a 'and a pair of brackets 12b fixed to
The liquid crystal panel 9 is provided at opposite ends of the left and right brackets 12b.
Are exchangeably supported and fixed.

【0022】また、前記固定台2には温度検出端13a
を上記押さえガラス11の光透過測定点O′に向けて非
接触型の温度センサ13が設置されている。この温度セ
ンサ13としては赤外線検出器が使われている。同温度
センサ13は、前記第1及び第2光センサ5,6の各投
光器5a,6aが配設される側の前記固定台2の端部に
ビスなどにより固設された門型の温度センサ載置台14
の上方にブラケット14aを介して固定支持されてい
る。前記温度センサ載置台14は金属製の板材から構成
されており、上記第1及び第2光センサ5,6の各投光
器5a,6aを前記温度センサ載置台14から上方に露
呈させる必要性があることから、前記各投光器5a,6
aの回動範囲と干渉する同温度センサ載置台14の載置
面の一部が切り欠かれている。
The fixed base 2 has a temperature detecting end 13a.
A non-contact type temperature sensor 13 is provided so as to face the light transmission measurement point O ′ of the holding glass 11. As the temperature sensor 13, an infrared detector is used. The temperature sensor 13 is a gate-type temperature sensor fixed with screws or the like to the end of the fixed base 2 on the side where the light projectors 5a and 6a of the first and second optical sensors 5 and 6 are disposed. Mounting table 14
Is fixedly supported above the bracket through a bracket 14a. The temperature sensor mounting table 14 is made of a metal plate, and it is necessary to expose the light projectors 5a and 6a of the first and second optical sensors 5 and 6 upward from the temperature sensor mounting table 14. Therefore, each of the projectors 5a, 6
A part of the mounting surface of the temperature sensor mounting table 14 that interferes with the rotation range of a is cut out.

【0023】前記温度センサ13は、図1に示すように
温度制御部15及びヒータ用アンプ16を介して上記透
明フィルムヒータ10に接続されており、温度センサ1
3により検出された温度は前記温度制御部15において
設定温度と比較され、その設定温度から外れた場合には
同制御部15からの制御信号に基づき前記透明フィルム
ヒータ10の印加電圧が制御されて、液晶パネル9の測
定点における温度を一定に維持させる。なお、前記設定
温度は適宜変更が可能である。
The temperature sensor 13 is connected to the transparent film heater 10 via a temperature controller 15 and a heater amplifier 16 as shown in FIG.
The temperature detected by 3 is compared with a set temperature in the temperature control unit 15, and when the temperature deviates from the set temperature, the voltage applied to the transparent film heater 10 is controlled based on a control signal from the control unit 15. The temperature at the measurement point of the liquid crystal panel 9 is kept constant. The set temperature can be changed as appropriate.

【0024】ここで、前記温度センサ13による温度測
定点O′を前記液晶9cの透過率測定点Oの延長線上に
あたる押さえガラス11の板面上の一点に設定するとと
もに、既述したように液晶パネル11における押さえガ
ラス11の材質と厚さを前記第1ガラス基板9aの材質
と肉厚に一致させる場合には、図6に示すように前記透
明フィルムヒータ10の加熱によって生じる第1ガラス
基板9aと押さえガラス9との肉厚方向の温度分布は透
明フィルムヒータ10を挟んで左右対称となる。従っ
て、前記温度センサ13の温度検出端13aを前記押さ
えガラス11の温度測定点O′に向けて対設すれば、液
晶9cの温度測定点と押さえガラス11上の温度測定点
O′との温度が一致することになり、押さえガラス11
上の測定点O′における測定温度を液晶9cの測定温度
に実質的に一致させることができる。
Here, the temperature measurement point O 'by the temperature sensor 13 is set to one point on the plate surface of the holding glass 11 which is on the extension of the transmittance measurement point O of the liquid crystal 9c. When the material and thickness of the holding glass 11 in the panel 11 are made to match the material and thickness of the first glass substrate 9a, the first glass substrate 9a generated by heating the transparent film heater 10 as shown in FIG. The temperature distribution in the thickness direction between the pressure glass 9 and the holding glass 9 is symmetrical with respect to the transparent film heater 10. Therefore, if the temperature detecting end 13a of the temperature sensor 13 is opposed to the temperature measuring point O 'of the holding glass 11, the temperature between the temperature measuring point of the liquid crystal 9c and the temperature measuring point O' of the holding glass 11 can be obtained. And the holding glass 11
The measurement temperature at the upper measurement point O 'can be made substantially equal to the measurement temperature of the liquid crystal 9c.

【0025】かかる構成からなる本実施例装置により、
液晶パネル9の同一光透過率測定点Oにおいて、微小な
光量の透過光と光量の多い透過光とを正確に検出しよう
とするときは、液晶9cの駆動電圧を一定に保持すると
共に、前述のようにして液晶自体の光透過率測定点Oに
おける液晶温度を一定に制御して、例えば先ず光透過率
0〜2%の微小な透過光量を検出しようとする場合に、
第1の光センサ5の投光器5aからの検査光が液晶パネ
ルの前記測定点に直角に入射するように、回動テーブル
1を軸部3を中心に図2に実線で示す位置になるまで回
動させて位置決め固定し、前記投光器5aから検査光を
液晶パネル9を通して相対する受光器5bに向けて照射
する。この受光器5bは前述のように微小な透過光量を
正確に受光し、測定可能な電圧値に変換して出力する。
With the apparatus of this embodiment having the above configuration,
At the same light transmittance measurement point O of the liquid crystal panel 9, when it is desired to accurately detect a small amount of transmitted light and a large amount of transmitted light, the drive voltage of the liquid crystal 9c is kept constant, In this way, when the liquid crystal temperature at the light transmittance measurement point O of the liquid crystal itself is controlled to be constant, for example, when a small amount of transmitted light having a light transmittance of 0 to 2% is to be detected,
The rotating table 1 is rotated around the shaft 3 until the inspection light from the projector 5a of the first optical sensor 5 is incident on the measurement point of the liquid crystal panel at right angles until the position shown by the solid line in FIG. The projector 5a is moved and fixed in position, and the inspection light is emitted from the light emitter 5a through the liquid crystal panel 9 toward the opposing light receiver 5b. As described above, the light receiver 5b accurately receives a very small amount of transmitted light, converts it into a measurable voltage value, and outputs it.

【0026】この測定が終了すると、次いで光透過率2
〜100%の広い範囲の透過光量を正確に検出できる他
方の光センサ6の投光器6aから照射される検査光が液
晶パネルの前記測定点に直角に入射するように、回動テ
ーブル1を軸部3を中心に図2に示す実線位置から仮想
線位置まで30°回動させて位置決め固定する。次い
で、検査光を同投光器6aから液晶パネル9を通して相
対する受光器6bに向けて照射する。この受光器6bは
前述のように光透過率2〜100%の広い範囲の透過光
量を正確に電圧値に変換して出力する。
When this measurement is completed, the light transmittance 2
The rotary table 1 is pivoted so that the inspection light emitted from the projector 6a of the other optical sensor 6 that can accurately detect the transmitted light amount in a wide range of about 100% enters the measurement point of the liquid crystal panel at right angles. 2 is rotated by 30 ° from the solid line position to the virtual line position shown in FIG. Next, the inspection light is irradiated from the light projector 6a to the opposing light receiver 6b through the liquid crystal panel 9. As described above, the light receiver 6b accurately converts the transmitted light amount in a wide range of the light transmittance of 2 to 100% into a voltage value and outputs the voltage value.

【0027】こうして、本発明による測定装置によれ
ば、回転テーブルを所定角度回転させるだけの単純な操
作で、液晶の透過率0〜100%の全ての範囲の透過光
量が正確に測定できる。しかも、その測定点Oは従来の
ように液晶パネル9を取り外す必要がないため、常に回
転軸部3の中心線上にあり測定点Oに変動を生じさせる
ことがなく高信頼性が確保される。更に、液晶パネル9
は固定台2に固設された支持部材12の左右ブラケット
12a,12bにより定位置に固定できるため、液晶パ
ネル9の固定仕様を一致させておけば、他の液晶パネル
に交換しても測定精度に影響することはない。
As described above, according to the measuring apparatus of the present invention, the amount of transmitted light of the liquid crystal in the entire range of 0 to 100% can be accurately measured by a simple operation of rotating the rotary table by a predetermined angle. Moreover, since the measurement point O does not need to be detached from the liquid crystal panel 9 as in the prior art, the measurement point O is always on the center line of the rotating shaft 3 and the measurement point O does not fluctuate, and high reliability is secured. Furthermore, the liquid crystal panel 9
Can be fixed at a fixed position by the left and right brackets 12a, 12b of the support member 12 fixed to the fixing base 2, so that if the fixing specification of the liquid crystal panel 9 is matched, the measurement accuracy can be changed even if it is replaced with another liquid crystal panel. Has no effect.

【0028】上述の測定は駆動電圧と液晶温度を一定に
維持しながら行われたものであるが、本実施例にあって
は図示を省略するが液晶に対する通常の駆動電圧を制御
するための制御部を備えており、また既述した温度セン
サ13の設置により、液晶9cの駆動電圧及び/又は設
定温度の変更による透過率の変化をも同時に測定するこ
とが可能となる。すなわち、前記液晶9cの設定駆動電
圧を変化させながら、上述の手順に従って逐次測定を行
えば、前記液晶9cの駆動電圧と光透過率との相関を正
確に求めることが可能であり、或いは前記温度センサ1
3により前記液晶9cの設定温度を変更すれば、温度と
光透過率との詳しい相関が求められる。また、前記設定
駆動電圧と設定温度とを互いに組み合わせて変更させる
場合には、例えば液晶を完全に閉状態とするときの上記
微小光量の範囲における適正な温度と駆動電圧とを選択
することが可能となる。
Although the above-described measurement is performed while maintaining the drive voltage and the liquid crystal temperature constant, in this embodiment, although not shown, a control for controlling a normal drive voltage for the liquid crystal is omitted. With the provision of the temperature sensor 13 described above, it is possible to simultaneously measure a change in transmittance due to a change in the drive voltage of the liquid crystal 9c and / or a set temperature. That is, by sequentially performing the measurement according to the above-described procedure while changing the set driving voltage of the liquid crystal 9c, the correlation between the driving voltage of the liquid crystal 9c and the light transmittance can be obtained accurately, or the temperature can be obtained. Sensor 1
By changing the set temperature of the liquid crystal 9c in step 3, a detailed correlation between the temperature and the light transmittance can be obtained. When the set drive voltage and the set temperature are changed in combination with each other, for example, it is possible to select an appropriate temperature and drive voltage in the range of the minute light amount when the liquid crystal is completely closed. Becomes

【0029】また、上記実施例装置において、回動テー
ブル1の回動角度を多段階に変更可能となるように、例
えば図2に示す位置決めピン4を弾性的に突出・退入自
在として固定台2に取り付けると共に、回動テーブル1
の回動時にあって前記位置決めピン4に対応する部位に
所定のピッチをもって前記位置決めピン4に係着するピ
ン孔を設ければ、液晶面に対する光の入射角度を多段階
に変更することができ、入射角度の変更に基づく液晶9
cの光透過率の変化をも正確に測定することが可能にな
る。
In the apparatus of the above embodiment, for example, the positioning pin 4 shown in FIG. 2 is elastically protruded and retractable so that the rotation angle of the rotation table 1 can be changed in multiple stages. 2 and a rotating table 1
If a pin hole engaging with the positioning pin 4 is provided at a predetermined pitch in a portion corresponding to the positioning pin 4 at the time of turning, the incident angle of light on the liquid crystal surface can be changed in multiple stages. , Liquid crystal 9 based on change of incident angle
It is also possible to accurately measure the change in the light transmittance of c.

【0030】以上の説明からも理解できるように、本発
明は上述の実施例に限定されるものではなく、特許請求
の範囲に記載した範囲において多様な変更が可能であ
る。
As can be understood from the above description, the present invention is not limited to the above-described embodiment, and various changes can be made within the scope of the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の代表的な実施例装置を模式的に示した
全体斜視図である。
FIG. 1 is an overall perspective view schematically showing a typical embodiment device of the present invention.

【図2】同実施例装置の詳細な構成を示す上面図であ
る。
FIG. 2 is a top view showing a detailed configuration of the apparatus of the embodiment.

【図3】同側面図である。FIG. 3 is a side view of the same.

【図4】本発明の操作及び機能を示す概略説明図であ
る。
FIG. 4 is a schematic explanatory diagram showing operations and functions of the present invention.

【図5】光センサの一般的な測定特性を示す線図であ
る。
FIG. 5 is a diagram showing general measurement characteristics of an optical sensor.

【図6】本発明の実施例による液晶パネルの構成とその
透明フィルムヒータによる温度分布との概略を示す説明
図である。
FIG. 6 is an explanatory diagram schematically showing a configuration of a liquid crystal panel according to an embodiment of the present invention and a temperature distribution by a transparent film heater thereof.

【符号の説明】[Explanation of symbols]

1 回動テーブル 2 固定台 3 軸部 4 位置決めピン 5 第1光センサ 6 第2光センサ 5a,6a 投光器 5b,6b 受光器 7,8 第1及び第2センサ載置柱 9 液晶パネル 9a 第1透明基板(ガラス基板) 9b 第2透明基板(ガラス基板) 9c 液晶 10 透明フィルムヒータ 11 押さえガラス 12 支持部材 12a 枠体 12a′ 枠材 12b ブラケット 13 温度センサ 14 温度センサ載置台 14a ブラケット 15 温度制御部 16 ヒータ用アンプ DESCRIPTION OF SYMBOLS 1 Rotating table 2 Fixed base 3 Shaft part 4 Positioning pin 5 1st optical sensor 6 2nd optical sensor 5a, 6a Projector 5b, 6b Light receiver 7, 8 1st and 2nd sensor mounting pillar 9 Liquid crystal panel 9a 1st Transparent substrate (glass substrate) 9b Second transparent substrate (glass substrate) 9c Liquid crystal 10 Transparent film heater 11 Holding glass 12 Support member 12a Frame 12a 'Frame 12b Bracket 13 Temperature sensor 14 Temperature sensor mounting table 14a Bracket 15 Temperature controller 16 Heater amplifier

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 液晶パネルの光透過率測定装置であっ
て、 軸部を中心として所望の角度を回動可能なテーブルと、 検査光が交差するように前記テーブル上に固設された2
組の光センサとを備えてなり、 前記検査光の交点が前記軸部の軸線上に設定され、 前記交点に前記液晶パネルの光透過率測定点を一致させ
て同液晶パネルが交換可能に配設され、 前記2組の光センサの一方は前記液晶パネルの光透過率
0〜2%の微小な透過光量が検出可能であり、他方の光
センサは前記一方の光センサの検出領域以外の透過光量
が検出可能であることを特徴とする液晶パネルの光透過
率測定装置。
1. A light transmittance measuring device for a liquid crystal panel, comprising: a table capable of rotating a desired angle around a shaft portion; and a table fixed to the table so that inspection light intersects the table.
A set of optical sensors, wherein the intersection of the inspection light is set on the axis of the shaft portion, and the light transmittance measurement point of the liquid crystal panel is made coincident with the intersection, so that the liquid crystal panel is replaceably arranged. One of the two sets of optical sensors is capable of detecting a very small amount of transmitted light having a light transmittance of 0 to 2% of the liquid crystal panel, and the other optical sensor is configured to transmit light in areas other than the detection area of the one optical sensor. An apparatus for measuring the light transmittance of a liquid crystal panel, wherein the light amount can be detected.
【請求項2】 前記液晶パネルにおける少なくとも前記
光透過率測定点の液晶部分を制御駆動するための制御手
段を有してなる請求項1記載の光透過率測定装置。
2. The light transmittance measuring apparatus according to claim 1, further comprising control means for controlling and driving at least a liquid crystal portion of said liquid crystal panel at said light transmittance measuring point.
【請求項3】 前記制御手段が前記液晶部分に印加する
電圧を制御する電圧制御回路である請求項2記載の光透
過率測定装置。
3. The light transmittance measuring apparatus according to claim 2, wherein said control means is a voltage control circuit for controlling a voltage applied to said liquid crystal portion.
【請求項4】 前記制御手段が前記液晶部分の温度を制
御する温度制御手段である請求項2又は3記載の光透過
率測定装置。
4. The light transmittance measuring device according to claim 2, wherein said control means is a temperature control means for controlling a temperature of said liquid crystal portion.
【請求項5】 前記温度制御手段が前記光透過率測定点
の加熱手段、同測定点の温度検出手段及び同検出手段に
よる検出信号に基づき前記加熱手段による加熱量を制御
する加熱制御手段を有してなる請求項4記載の光透過率
測定装置。
5. The apparatus according to claim 1, wherein the temperature control means includes a heating means for the light transmittance measurement point, a temperature detection means for the measurement point, and a heating control means for controlling a heating amount by the heating means based on a detection signal from the detection means. The light transmittance measurement device according to claim 4, wherein
【請求項6】 前記加熱手段が透明フィルムヒータであ
り、前記測定点の温度検出手段が赤外線検出器である請
求項5記載の光透過率測定装置。
6. The light transmittance measuring apparatus according to claim 5, wherein the heating means is a transparent film heater, and the temperature detecting means at the measurement point is an infrared detector.
【請求項7】 前記液晶パネルはそれぞれに透明電極を
有する第1及び第2の透明基板の間に液晶が配設されて
構成され、前記赤外線検出器の赤外線入射部が前記液晶
パネルの検査光透過点に向けて対設されてなる請求項6
記載の光透過率測定装置。
7. The liquid crystal panel includes a liquid crystal disposed between first and second transparent substrates each having a transparent electrode, and an infrared incident portion of the infrared detector detects an inspection light of the liquid crystal panel. 7. The device according to claim 6, which is opposed to the transmission point.
The light transmittance measuring device as described in the above.
【請求項8】 前記第1透明基板の背面に前記透明フィ
ルムヒータが配されるとともに同透明フィルムヒータを
挟んで第3の透明基板が配設されてなり、前記赤外線検
出器の赤外線検出部が前記第3透明基板の検査光透過点
に向けて対設されてなる請求項7記載の光透過率測定装
置。
8. The transparent film heater is disposed on the back surface of the first transparent substrate, and a third transparent substrate is disposed with the transparent film heater interposed therebetween, wherein the infrared detector of the infrared detector is The light transmittance measurement device according to claim 7, wherein the light transmittance measurement device is provided to face the inspection light transmission point of the third transparent substrate.
【請求項9】 前記第3の透明基板の材質及び肉厚が前
記第1の透明基板の材質及び肉厚と同等である請求項8
記載の光透過率測定装置。
9. The material and thickness of the third transparent substrate are equal to the material and thickness of the first transparent substrate.
The light transmittance measuring device as described in the above.
JP8048197A 1997-03-31 1997-03-31 Liquid crystal panel light transmittance measuring device Pending JPH10274593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8048197A JPH10274593A (en) 1997-03-31 1997-03-31 Liquid crystal panel light transmittance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8048197A JPH10274593A (en) 1997-03-31 1997-03-31 Liquid crystal panel light transmittance measuring device

Publications (1)

Publication Number Publication Date
JPH10274593A true JPH10274593A (en) 1998-10-13

Family

ID=13719478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8048197A Pending JPH10274593A (en) 1997-03-31 1997-03-31 Liquid crystal panel light transmittance measuring device

Country Status (1)

Country Link
JP (1) JPH10274593A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698625A1 (en) * 2012-08-16 2014-02-19 Boe Technology Group Co. Ltd. A device and a method for detecting a transmittivity spectrum of a light guiding plate
CN104180899A (en) * 2014-08-20 2014-12-03 广东美的集团芜湖制冷设备有限公司 Vertical air conditioner and photometric compensation device and method
KR20150034465A (en) * 2013-09-26 2015-04-03 엘지디스플레이 주식회사 Measuring System Including Transparency Measurement Device And Measurement Method Of Transparency
KR20150125070A (en) * 2014-04-29 2015-11-09 엘지디스플레이 주식회사 System For Evaluating Displaying Quality Of Transparent Display And Method Thereof
CN108801943A (en) * 2018-04-19 2018-11-13 西安近代化学研究所 A kind of self-checking device of smog transmission measurement system
CN109445141A (en) * 2018-12-27 2019-03-08 浙江晶鲸科技有限公司 For multistable state liquid srystal dimming glass device for detecting light transmittance
CN112444504A (en) * 2020-11-26 2021-03-05 江西捷美软包装有限公司 High temperature bag light-shielding property detection device of cooking
CN117783062A (en) * 2024-02-23 2024-03-29 山东晶成玻璃科技有限公司 Intelligent detection device for laminated glass

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698625A1 (en) * 2012-08-16 2014-02-19 Boe Technology Group Co. Ltd. A device and a method for detecting a transmittivity spectrum of a light guiding plate
US9442068B2 (en) 2012-08-16 2016-09-13 Boe Technology Group Co., Ltd. Device and a method for detecting a transmittivity spectrum of a light guiding plate
KR20150034465A (en) * 2013-09-26 2015-04-03 엘지디스플레이 주식회사 Measuring System Including Transparency Measurement Device And Measurement Method Of Transparency
KR20150125070A (en) * 2014-04-29 2015-11-09 엘지디스플레이 주식회사 System For Evaluating Displaying Quality Of Transparent Display And Method Thereof
CN104180899A (en) * 2014-08-20 2014-12-03 广东美的集团芜湖制冷设备有限公司 Vertical air conditioner and photometric compensation device and method
CN108801943A (en) * 2018-04-19 2018-11-13 西安近代化学研究所 A kind of self-checking device of smog transmission measurement system
CN109445141A (en) * 2018-12-27 2019-03-08 浙江晶鲸科技有限公司 For multistable state liquid srystal dimming glass device for detecting light transmittance
CN109445141B (en) * 2018-12-27 2023-11-24 重庆汉朗精工科技有限公司 Light transmittance detection device for multistable liquid crystal dimming glass
CN112444504A (en) * 2020-11-26 2021-03-05 江西捷美软包装有限公司 High temperature bag light-shielding property detection device of cooking
CN117783062A (en) * 2024-02-23 2024-03-29 山东晶成玻璃科技有限公司 Intelligent detection device for laminated glass

Similar Documents

Publication Publication Date Title
TW477897B (en) Liquid crystal display device, method and device to measure cell thickness of liquid crystal display device, and phase difference plate using the method thereof
US6268914B1 (en) Calibration Process For Birefringence Measurement System
JPH11344436A (en) Method and device for automatically adjusting sample for elliptical polarimeter
JPH0262930A (en) Method and device for inspecting optical device
JP2002504673A (en) Method and apparatus for measuring birefringence characteristics
JPH10274593A (en) Liquid crystal panel light transmittance measuring device
CN104062049A (en) Substrate detection method and device
JP4349585B2 (en) Apparatus and method for measuring optical axis alignment error of sample in which polarizing plate and retardation plate are joined
JP4270648B2 (en) Spectral measurement accessory for ATR measurement in spectrometer
US5966195A (en) Method of determining cell thickness and twist angle parameters of liquid crystal cell
US6697157B2 (en) Birefringence measurement
US4549081A (en) Spectrophotometer for measuring absorption characteristics of a complex lens
CN109991179A (en) Use environment simulator and measurement method for optical thin film spectral measurement
US7933008B2 (en) Positioning a first surface in a pre-determined position relative to a second surface
WO2018223903A1 (en) Optical measurement device and method
US20060220670A1 (en) Method for measuring cell gap variation of liquid crystal panel and apparatus thereof
JP3142805B2 (en) Liquid crystal cell parameter detection method and apparatus
JP2002062218A (en) Optical anisotropic substance evaluating device
JP2000321546A (en) Liquid crystal display device, device and method to measure cell thickness of the device, and phase difference plate
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JPH1164214A (en) Angle-of-rotation measuring instrument
Schulz et al. High accuracy polarimetric calibration of quartz control plates
JPH11166888A (en) Reflection type measuring device
CN116176100A (en) Film pasting equipment and film pasting method for pasting optical film
JP2016095320A (en) Polarized light irradiation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040917

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050817