JPH10273800A - Production of one-side copper plated steel strip - Google Patents

Production of one-side copper plated steel strip

Info

Publication number
JPH10273800A
JPH10273800A JP9272797A JP9272797A JPH10273800A JP H10273800 A JPH10273800 A JP H10273800A JP 9272797 A JP9272797 A JP 9272797A JP 9272797 A JP9272797 A JP 9272797A JP H10273800 A JPH10273800 A JP H10273800A
Authority
JP
Japan
Prior art keywords
copper
plating
steel strip
electrolyte
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9272797A
Other languages
Japanese (ja)
Other versions
JP3698341B2 (en
Inventor
Yoshihisa Kakou
佳久 家口
Masayoshi Tatano
政義 多々野
Yukio Uchida
幸夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09272797A priority Critical patent/JP3698341B2/en
Publication of JPH10273800A publication Critical patent/JPH10273800A/en
Application granted granted Critical
Publication of JP3698341B2 publication Critical patent/JP3698341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a one-side copper plated steel sheet by executing electrolysis at a specified current density so as to make the width of a counter electrode narrower than the width of a steel strip by using an electrolyte in which the concn. of ammonium ions and pH are specified. SOLUTION: A copper plating layer on the face free from plating is melted away by electrolysis. As an electrolyte therefor, the one in which the electrolyte essentially contains ammonium ion and sulfate ions, the concn. of the ammonium ions is regulated to 13.5 to 80 g/l, and pH is regulated to 5 to 9 is used. Then, a counter electrode having a width narrower than that of the steel strip by >=50 mm is arranged on the side of the face free from the need of plating as a cathode, and the copper plating layer on the face free from plating is electrolyzed away under the condition of 1 to 30 A/dm<2> anodic current density. For the regulation of the concn. of the ammonium ions and pH at the time of initial make-up of electrolytic bath and after the electrolysis in the electrolyte, mainly, ammonium sulfate, sulfuric acid and aq. ammonia or their aq. solns. are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気めっき法によ
る片面銅めっき鋼帯の製造方法、特に、両面に電気銅め
っきを施した後、めっき不要面のめっき層を電解除去す
る片面銅めっき鋼帯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single-sided copper-plated steel strip by an electroplating method, and more particularly to a single-sided copper-plated steel strip which electrolytically removes a plating layer on a surface which does not require plating after both sides are subjected to electrolytic copper plating. The present invention relates to a method of manufacturing a belt.

【0002】[0002]

【従来の技術】コイル状の鋼帯を原板として連続ライン
で製造する各種電気めっき鋼帯は、製造性が優れており
安価なため、広い分野で使用されている。例えば、電気
銅めっき鋼帯の用途として、自動車のコネクティングロ
ッドの軸受けに用いられる軸受け焼結メタルが挙げられ
る。この焼結メタルは、銅めっき鋼板の上に銅系合金粉
末を載せた後加熱処理し、銅系合金粉末を焼結させて製
造される。この場合、銅粉を載せない面に銅めっき層が
存在すると、コネクティングロッドとの焼き付きが発生
するので片面めっきにするか、両面めっきの場合にはめ
っき不要面の銅めっき層を除去する必要がある。
2. Description of the Related Art Various types of electroplated steel strips manufactured in a continuous line using coiled steel strips as original plates are used in a wide range of fields because of their excellent manufacturability and low cost. For example, as a use of the electrolytic copper-plated steel strip, there is a bearing sintered metal used for a bearing of a connecting rod of an automobile. This sintered metal is manufactured by placing a copper-based alloy powder on a copper-plated steel sheet and then performing a heat treatment to sinter the copper-based alloy powder. In this case, if a copper plating layer is present on the surface on which the copper powder is not placed, seizure with the connecting rod will occur, so it is necessary to use single-side plating, or in the case of double-side plating, it is necessary to remove the copper plating layer on the plating unnecessary surface. is there.

【0003】切板等を原板とするバッチ式の電気めっき
の場合、片面めっきを施すことは比較的容易であり、通
常は非めっき面を機械的にシールしたり、めっき浴外に
配置する等の手段により行われる。連続式電気めっきの
場合にも、片面をシールして電気めっきを行う技術が、
例えば特開昭49−28534号公報や特開昭63−9
6291号公報に開示されているが、この場合、被めっ
き物である鋼帯が連続的に走行・移動しているるため
に、非めっき面を効果的にシールすることは困難であっ
た。このため、連続式の片面電気めっき鋼帯の製造にお
いては、両面に所望のめっきを施した後、めっき不要面
のめっき層を除去するのが一般的である。
In the case of batch-type electroplating using a cut plate or the like as an original plate, it is relatively easy to apply one-side plating, and usually, the non-plated surface is mechanically sealed or placed outside the plating bath. This is performed by the following means. Even in the case of continuous electroplating, the technology to seal one side and perform electroplating,
For example, JP-A-49-28534 and JP-A-63-9
Although disclosed in Japanese Patent No. 6291, in this case, it is difficult to effectively seal the non-plated surface because the steel strip as the object to be plated continuously runs and moves. For this reason, in the production of a continuous single-sided electroplated steel strip, it is common to apply desired plating to both sides and then remove the plating layer on the plating-free side.

【0004】不要のめっき層を除去する手段としては、
機械的研削法、化学的溶解法、および電気化学的溶解
(電解)法等が挙げられる。ここで、機械的研削法は、
片面のめっき層のみを選択除去するには適した方法であ
るが、連続ライン内でインライン処理することが時間的
に困難であり、かつ粉塵発生等の作業環境上の問題も発
生する。また、化学的溶解法の場合には、片面めっきの
場合と同様に、非処理面を連続的にシールすることが困
難であり、片面のめっき層のみを選択的に除去すること
は困難である。電解法の場合には、対極をめっき不要面
側にのみ配設して陽極電解することにより、片面のめっ
き層を選択的に溶解除去することが可能である。
As means for removing unnecessary plating layers,
Examples include a mechanical grinding method, a chemical dissolution method, and an electrochemical dissolution (electrolysis) method. Here, the mechanical grinding method is
Although this method is suitable for selectively removing only one side of the plating layer, it is difficult to perform in-line processing in a continuous line in terms of time, and there is also a problem in working environment such as generation of dust. Further, in the case of the chemical dissolution method, similarly to the case of single-sided plating, it is difficult to continuously seal the non-treated surface, and it is difficult to selectively remove only the plating layer on one side. . In the case of the electrolytic method, it is possible to selectively dissolve and remove the plating layer on one side by disposing the counter electrode only on the side where plating is unnecessary and performing anodic electrolysis.

【0005】[0005]

【発明が解決しようとする課題】両面に亜鉛系の電気め
っきを施した鋼帯の片面のみを、電解法により選択的に
除去する技術が、例えば特開昭59−126786号公
報に開示されている。この場合、めっき不要面にも電気
めっきを施すのは、片面電気めっきを行う際の非めっき
面の酸焼けを防止するためであり、電解法に用いる電解
液も特にその種類を限定するものではない。
A technique for selectively removing only one side of a steel strip having zinc-based electroplating on both sides by electrolysis is disclosed in, for example, JP-A-59-126786. I have. In this case, the reason why the electroplating is performed also on the surface not requiring plating is to prevent acid burning of the non-plated surface when performing single-sided electroplating, and the electrolytic solution used in the electrolytic method is not particularly limited in its type. Absent.

【0006】これに対し、銅めっき鋼帯の場合には、通
常の酸またはアルカリの水溶液中で銅めっき層を溶解す
ると、電解液中に溶解した銅イオンが、露出した鋼素地
に置換反応により再析出するため、電解法による片面銅
めっき鋼帯の製造は従来より困難であった。
On the other hand, in the case of a copper-plated steel strip, when the copper plating layer is dissolved in an ordinary aqueous solution of an acid or alkali, the copper ions dissolved in the electrolytic solution are displaced to the exposed steel substrate by a substitution reaction. Because of the re-precipitation, it has been more difficult to produce a single-sided copper-plated steel strip by the electrolytic method.

【0007】本発明の目的は、上記の問題を解決し、片
面銅めっき鋼帯を安定的に製造する方法を提供すること
である。
An object of the present invention is to solve the above problems and to provide a method for stably producing a single-sided copper-plated steel strip.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、鋼帯の両面に電気銅めっきを
施した後、めっき不要面の銅めっき層を電解法により溶
解除去する片面銅めっき鋼帯の製造方法において、めっ
き層溶解除去用の電解液として、電解質が主としてアン
モニウムイオンおよび硫酸塩イオンからなり、そのアン
モニウムイオン濃度が13.5〜80g/lであり、か
つpHが5〜9の水溶液を用い、鋼帯の幅より50mm
もしくはそれ以上狭い幅を有する対極をめっき不要面側
に配設して陰極とし、陽極電流密度が1〜30A/dm
2 の条件で銅めっき層を電解除去することを特徴とする
片面銅めっき鋼帯の製造方法が提供される。
In order to achieve the above object, in the present invention, after electrolytic copper plating is performed on both surfaces of a steel strip, a copper plating layer on a surface not requiring plating is dissolved and removed by an electrolytic method. In the method for producing a single-sided copper-plated steel strip, as an electrolytic solution for dissolving and removing the plating layer, the electrolyte is mainly composed of ammonium ions and sulfate ions, the ammonium ion concentration of which is 13.5 to 80 g / l, and the pH of which is 13.5 to 80 g / l. Using an aqueous solution of 5 to 9, 50 mm from the width of the steel strip
Alternatively, a counter electrode having a width narrower than that is disposed on the side where plating is not required to serve as a cathode, and the anode current density is 1 to 30 A / dm.
A method for producing a single-sided copper-plated steel strip is provided, wherein the copper-plated layer is electrolytically removed under the condition ( 2 ).

【0009】[0009]

【発明の実施の形態】銅めっき層を電解除去することに
より露出した鋼素地上への置換銅の再析出を抑制するた
めには、電解液中に存在する銅イオンを錯イオン化し、
銅の析出電位を低下する必要がある。このような作用を
示す錯化剤にはアンモニウムイオン、シアン化物イオ
ン、ピロりん酸塩イオン等の無機イオンやEDTA等の
有機キレート化合物がある。この中でシアン化物は有毒
であり、作業環境および廃液処理の面で工業的に使用す
ることは困難である。またピロりん酸塩および各種の有
機キレート剤は高価であり、コスト上昇を招くため、工
業的な電解除去に使用することはやはり困難である。
BEST MODE FOR CARRYING OUT THE INVENTION In order to suppress the reprecipitation of substituted copper on a steel substrate exposed by electrolytically removing a copper plating layer, copper ions present in an electrolytic solution are complex-ionized.
It is necessary to lower the deposition potential of copper. Complexing agents exhibiting such an action include inorganic ions such as ammonium ion, cyanide ion and pyrophosphate ion, and organic chelate compounds such as EDTA. Among them, cyanide is toxic, and it is difficult to use it industrially in terms of working environment and waste liquid treatment. Further, pyrophosphate and various organic chelating agents are expensive and increase the cost, so that it is still difficult to use them for industrial electrolytic removal.

【0010】上記の錯化剤の中でアンモニウム塩は安価
であり、かつ入手が容易であり、電解除去に用いるもの
として好適である。電解液中のアンモニウムイオン濃度
としては、13.5〜80g/lが好ましい。濃度が1
3.5g/l未満では錯化能力が不足であり、銅めっき
層の電解除去後に置換銅の再析出が起こってしまう。ま
た、濃度が80g/lを超える場合には、錯化能力の点
で問題はないが、走行する鋼帯に付着して電解槽外に持
ち出される電解質の量が増大し、電解液の濃度調整に要
する費用が上昇するので好ましくない。
[0010] Among the above complexing agents, ammonium salts are inexpensive and easily available, and are suitable for use in electrolytic removal. The concentration of ammonium ion in the electrolyte is preferably 13.5 to 80 g / l. Concentration 1
If it is less than 3.5 g / l, the complexing ability is insufficient, and the replacement copper is reprecipitated after electrolytic removal of the copper plating layer. When the concentration exceeds 80 g / l, there is no problem in terms of complexing ability, but the amount of the electrolyte attached to the running steel strip and taken out of the electrolytic cell increases, and the concentration of the electrolyte is adjusted. This is not preferred because the cost required for

【0011】アンモニウムイオンと対をなすアニオン種
としては、硫酸塩イオン、硝酸塩イオンや塩化物イオン
等の通常用いられる無機酸塩イオンを含め、いかなるア
ニオン種も使用可能であるが、連続電気銅めっき工程の
場合、ストライクめっき後の本めっきには、通常、大電
流密度での電解が可能な硫酸銅浴を用いることが多いの
で、電解質の持ち込み・混入を考慮すると、硫酸塩イオ
ンの使用が好ましい。また、硝酸塩イオンや塩化物イオ
ン等の一塩基酸塩イオンを用いると、電解除去により鋼
素地が露出した際に、鋼素地表面の荒れが起こり易くな
るので、その点からも硫酸塩イオンの使用が好ましい。
As the anion species paired with the ammonium ion, any anion species can be used, including commonly used inorganic acid ions such as sulfate ion, nitrate ion and chloride ion. In the case of the process, for the main plating after the strike plating, usually, a copper sulfate bath capable of electrolysis at a large current density is often used. Therefore, the use of sulfate ions is preferable in consideration of the carry-in and mixing of the electrolyte. . In addition, when monobasic acid ions such as nitrate ions and chloride ions are used, when the steel substrate is exposed by electrolytic removal, the surface of the steel substrate is likely to be roughened. Is preferred.

【0012】電解液のpHとしては5〜9が好適であ
る。pHが4以下では、アンモニウムイオン濃度を上述
の範囲に調整しても、置換銅の再析出が起こるために不
適当である。またpHが10以上では、電解除去時の電
流効率が低下するために、コスト上昇となり、好ましく
ない。なお、電解浴の建浴時や電解後のアンモニウムイ
オン濃度およびpHの調整には、主として硫酸アンモニ
ウム、硫酸およびアンモニア水またはそれらの水溶液を
用いる。また、電解除去のための電解液は、電解質とし
て主としてアンモニウムイオンと硫酸塩イオンとを含む
ものであるが、これら以外に、他の支持電解質、鋼素地
の腐食を抑制するインヒビター、鋼素地より溶解した鉄
イオンを錯化するための錯化剤や、pH調整剤等を添加
することも可能である。
The pH of the electrolyte is preferably from 5 to 9. When the pH is 4 or less, even if the ammonium ion concentration is adjusted to the above-mentioned range, re-deposition of the substituted copper occurs, which is inappropriate. On the other hand, if the pH is 10 or more, the current efficiency at the time of electrolytic removal is reduced, and the cost is increased, which is not preferable. In addition, ammonium sulfate, sulfuric acid, aqueous ammonia, or an aqueous solution thereof is mainly used for adjusting the ammonium ion concentration and the pH at the time of building the electrolytic bath or after the electrolysis. The electrolytic solution for electrolytic removal mainly contains ammonium ions and sulfate ions as electrolytes.In addition to these, other supporting electrolytes, inhibitors for suppressing corrosion of the steel base, and iron dissolved from the steel base. It is also possible to add a complexing agent for complexing ions, a pH adjuster, and the like.

【0013】片面のめっき層のみを電解除去するために
は、電解槽中のめっき不要面側のみに対極を配設して陰
極とし、非処理物である銅めっき鋼帯を陽極として電解
を行い、銅めっき層を電気化学的に溶解する。その際、
本発明の電解液は多量の電解質を含み導電性が高いた
め、非電解面(めっき層が必要な面)への電流の回り込
みが起こり、この面のエッジ部のめっき層が一部溶解す
る。なお、本発明の実施にあたり、めっき不要面のめっ
き層は最終的には電解除去するものであるため、この面
への銅めっき厚さは、めっき必要面のそれよりも薄くす
ることが経済的である。
In order to electrolytically remove only the plating layer on one side, a counter electrode is provided only on the side of the electrolytic cell that does not require plating to serve as a cathode, and electrolysis is performed using a copper-plated steel strip as an untreated material as an anode. Then, the copper plating layer is dissolved electrochemically. that time,
Since the electrolytic solution of the present invention contains a large amount of electrolyte and has high conductivity, current spills to a non-electrolytic surface (a surface requiring a plating layer), and the plating layer at the edge portion of this surface is partially dissolved. In the practice of the present invention, since the plating layer on the surface that does not require plating is ultimately electrolytically removed, it is economical to make the copper plating thickness on this surface thinner than that of the surface requiring plating. It is.

【0014】電流の回り込みを防止する手段としては、
対極と銅めっき鋼帯の中間で、鋼帯の両エッジ部に絶縁
性の電流遮蔽板を配設する方法や、対極の幅を非処理物
のそれよりも狭くする方法がある。前者の方法は、処理
する銅めっき鋼帯の幅に合わせて電解槽の配置を変更す
る必要があり、実用上困難である。後者の場合には、電
解に必要な対極の幅に許容度があり、同一の対極幅で複
数の幅の銅めっき鋼帯の処理が可能であり、工業的な製
造に好適である。本発明において、電解除去に用いる対
極は、その幅が被処理物である銅めっき鋼帯のそれより
も50mmもしくはそれ以上狭いものとすることが必要
である。
As means for preventing the current from sneaking,
Between the counter electrode and the copper-plated steel strip, there are a method in which insulating current shielding plates are provided at both edges of the steel strip, and a method in which the width of the counter electrode is narrower than that of the non-processed material. In the former method, it is necessary to change the arrangement of the electrolytic cell in accordance with the width of the copper-plated steel strip to be treated, which is practically difficult. In the latter case, the width of the counter electrode required for electrolysis has an allowance, and a copper-plated steel strip having a plurality of widths with the same counter electrode width can be processed, which is suitable for industrial production. In the present invention, the counter electrode used for electrolytic removal needs to have a width 50 mm or more narrower than that of the copper-plated steel strip to be processed.

【0015】電解除去の電流密度としては、1〜30A
/dm2 の範囲が好ましい。電流密度が1A/dm2
満では処理速度が遅く、製造コストが増大するので好ま
しくない。電流密度が30A/dm2 を超える場合、電
解電圧が上昇して、対極の幅を上述の範囲に設定しても
電流の回り込みが起こり、非電解面エッジ部の溶解が起
こるため不適当である。
The current density for electrolytic removal is 1 to 30 A
/ Dm 2 is preferred. If the current density is less than 1 A / dm 2 , the processing speed is low, and the manufacturing cost is undesirably increased. If the current density exceeds 30 A / dm 2 , the electrolytic voltage rises, and even if the width of the counter electrode is set in the above range, the current wraps around and the edge portion of the non-electrolytic surface dissolves, which is inappropriate. .

【0016】表1に、好適な電解条件を設定するための
予備的調査の結果を示す。板厚2mm(面積1dm2
の無酸素銅板を陽極とし、硫酸アンモニウム50〜30
0g/l(アンモニウムイオン濃度13.5〜80g/
lに相当)、pH4〜10、浴温45℃の電解液中、電
流密度20A/dm2 で10分間電解を行い、銅板の重
量減少量を測定して電流効率を算出した。また、常法に
従って電解脱脂および酸洗処理を施した冷延鋼板を、上
述の電解を行った後の電解液中に1分間浸漬し、冷延鋼
板表面への置換銅析出の有無を目視にて評価した。
Table 1 shows the results of a preliminary investigation for setting suitable electrolysis conditions. Board thickness 2mm (area 1dm 2 )
Oxygen-free copper plate as an anode, ammonium sulfate 50 to 30
0 g / l (ammonium ion concentration 13.5 to 80 g /
1), electrolysis was performed at a current density of 20 A / dm 2 for 10 minutes in an electrolytic solution having a pH of 4 to 10 and a bath temperature of 45 ° C., and the weight loss of the copper plate was measured to calculate the current efficiency. In addition, the cold-rolled steel sheet subjected to electrolytic degreasing and pickling according to a conventional method was immersed in the electrolytic solution after the above-described electrolysis for 1 minute, and the presence or absence of substitution copper on the surface of the cold-rolled steel sheet was visually observed. Was evaluated.

【0017】[0017]

【表1】 [Table 1]

【0018】本発明の電解条件に相当する試料番号1か
ら6の場合は何れも、電流効率が100%であり、冷延
鋼板表面に置換銅の析出も起こらなかった。電解液濃度
の低い試料番号7およびpHの低い試料番号8および9
では、冷延鋼板表面に置換銅の析出が起こった。電解液
pHの高い試料番号10および11では、置換銅の析出
は起こらないが、電流効率が低下した。
In each of the samples Nos. 1 to 6 corresponding to the electrolysis conditions of the present invention, the current efficiency was 100%, and the substitution copper did not precipitate on the surface of the cold-rolled steel sheet. Sample No. 7 with low electrolyte concentration and Sample Nos. 8 and 9 with low pH
Then, precipitation of substituted copper occurred on the surface of the cold-rolled steel sheet. In Sample Nos. 10 and 11 having a high electrolyte pH, the deposition of substituted copper did not occur, but the current efficiency was reduced.

【0019】[0019]

【実施例1】板厚0.5mmで板幅300mmの冷延鋼
帯に、常法に従って電解脱脂および酸洗処理を施した
後、ピロりん酸銅めっき浴(ストライクめっき)および
硫酸銅めっき浴(本めっき)で、めっき不要面には0.
4μm、めっき必要面には8μmの銅めっきを施した
後、板幅の異なる無酸素銅板を陰極として、硫酸アンモ
ニウム200g/l、pH7、浴温45℃の電解液中、
電流密度20A/dm2 でめっき不要面の銅めっき層が
全量溶解するまで電解し、めっき必要面の銅めっき層の
溶解量を調査した。
EXAMPLE 1 A cold-rolled steel strip having a thickness of 0.5 mm and a width of 300 mm was subjected to electrolytic degreasing and pickling in a conventional manner, followed by copper pyrophosphate plating bath (strike plating) and copper sulfate plating bath. (Main plating)
After applying 4 μm of copper plating of 8 μm to the surface requiring plating, using an oxygen-free copper plate having a different width as a cathode, ammonium sulfate 200 g / l, pH 7, bath temperature of 45 ° C. in an electrolytic solution,
Electrolysis was performed at a current density of 20 A / dm 2 until the entire copper plating layer on the plating-unnecessary surface was dissolved, and the amount of the copper plating layer on the plating-necessary surface was dissolved.

【0020】めっき不要面の銅めっき層の全量を電解除
去後に、鋼帯エッジから5mmの位置のめっき必要面の
銅めっき層厚さを蛍光X線膜厚計により5点測定した平
均値につき、電解前後の膜厚の差を溶解膜厚とし、その
値が銅めっき鋼帯製造時に通常発生するエッジオーバー
コート量(2μm)以下のものを良、それを超えるもの
を不良と判定した。測定結果を表2に示す。鋼帯の幅と
対極の幅の差を50mm以上にすると、溶解膜厚が2μ
m以下になり、片面銅めっき鋼帯の製造上問題がない。
After electrolytically removing the entire amount of the copper plating layer on the plating-free surface, the thickness of the copper plating layer on the plating-requiring surface at a position 5 mm from the edge of the steel strip was measured by an X-ray fluorescent film thickness meter at an average value of 5 points. The difference between the film thickness before and after the electrolysis was defined as the dissolved film thickness. A film having a value equal to or less than the edge overcoat amount (2 μm) normally generated during the production of a copper-plated steel strip was determined to be good, and a film exceeding this amount was determined to be defective. Table 2 shows the measurement results. When the difference between the width of the steel strip and the width of the counter electrode is set to 50 mm or more, the dissolved film thickness becomes 2 μm.
m or less, and there is no problem in producing a single-sided copper-plated steel strip.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【実施例2】実施例1と同じ条件で両面に厚さの異なる
銅めっきを施した鋼帯を、同一条件の電解液中、対極幅
を鋼帯のそれよりも50mm狭くし、電流密度1〜50
A/dm2 でめっき不要面の銅めっき層が全量溶解する
まで電解し、めっき必要面の銅めっき層の溶解量を調査
した。調査結果を表3に示す。電流密度1〜30A/d
2 の範囲で溶解膜厚が2μm以下になり、片面銅めっ
き鋼帯の製造上問題がない。
Example 2 A steel strip having copper plating of different thicknesses on both sides under the same conditions as in Example 1 was made to have a counter electrode width 50 mm narrower than that of the steel strip in an electrolytic solution under the same conditions, and a current density of 1 mm. ~ 50
Electrolysis was performed at A / dm 2 until the entire copper plating layer on the plating-unnecessary surface was dissolved, and the amount of dissolution of the copper plating layer on the plating-necessary surface was investigated. Table 3 shows the survey results. Current density 1 to 30 A / d
In the range of m 2, the thickness of the dissolved film becomes 2 μm or less, and there is no problem in producing a single-sided copper-plated steel strip.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上説明したとおり、両面に銅めっきを
施した鋼帯を、アンモニウムイオンを含有する電解液中
で、対極幅を鋼帯幅より50mm以上狭くして電解する
ことにより、片面銅めっき鋼帯を簡易に製造することが
可能になった。
As described above, a steel strip having copper plating on both sides is electrolyzed in an electrolytic solution containing ammonium ions with a counter electrode width narrower than the steel strip width by 50 mm or more, thereby obtaining a copper foil on one side. It has become possible to easily manufacture a plated steel strip.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼帯の両面に電気銅めっきを施した後、め
っき不要面の銅めっき層を電解法により溶解除去する片
面銅めっき鋼帯の製造方法において、めっき層溶解除去
用の電解液として、電解質が主としてアンモニウムイオ
ンおよび硫酸塩イオンからなり、そのアンモニウムイオ
ン濃度が13.5〜80g/lであり、かつpHが5〜
9の水溶液を用い、鋼帯の幅より50mmもしくはそれ
以上狭い幅を有する対極をめっき不要面側に配設して陰
極とし、陽極電流密度が1〜30A/dm2 の条件で銅
めっき層を電解除去することを特徴とする片面銅めっき
鋼帯の製造方法。
An electrolytic solution for dissolving and removing a plating layer in a method for producing a single-sided copper-plated steel strip in which an electrolytic copper plating is applied to both sides of a steel strip and then a copper plating layer on a plating unnecessary surface is dissolved and removed by an electrolytic method. The electrolyte is mainly composed of ammonium ions and sulfate ions, the ammonium ion concentration of which is 13.5 to 80 g / l, and the pH of which is 5 to 80 g / l.
Using the aqueous solution of No. 9, a counter electrode having a width narrower than 50 mm or more than the width of the steel strip is disposed on the side where plating is not required to serve as a cathode, and the copper plating layer is formed under the conditions of an anode current density of 1 to 30 A / dm 2. A method for producing a single-sided copper-plated steel strip, wherein the strip is electrolytically removed.
JP09272797A 1997-03-28 1997-03-28 Method for producing single-sided copper-plated steel strip Expired - Fee Related JP3698341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09272797A JP3698341B2 (en) 1997-03-28 1997-03-28 Method for producing single-sided copper-plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09272797A JP3698341B2 (en) 1997-03-28 1997-03-28 Method for producing single-sided copper-plated steel strip

Publications (2)

Publication Number Publication Date
JPH10273800A true JPH10273800A (en) 1998-10-13
JP3698341B2 JP3698341B2 (en) 2005-09-21

Family

ID=14062474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09272797A Expired - Fee Related JP3698341B2 (en) 1997-03-28 1997-03-28 Method for producing single-sided copper-plated steel strip

Country Status (1)

Country Link
JP (1) JP3698341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938244B (en) * 2014-05-11 2016-07-06 山东建筑大学 A kind of electroplating technology of continuous copper-plating of steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof
JP4650275B2 (en) * 2004-08-10 2011-03-16 日立金属株式会社 Rare earth permanent magnet with copper plating film on the surface

Also Published As

Publication number Publication date
JP3698341B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US10422049B2 (en) Method for plating a moving metal strip and coated metal strip produced thereby
Pecequilo et al. Study of copper electrodeposition mechanism from a strike alkaline bath prepared with 1-hydroxyethane-1, 1-diphosphonic acid through cyclic voltammetry technique
CN110062819B (en) Method for electroplating uncoated steel strip with a coating
Torrent-Burgués et al. Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate
Lin et al. Through-hole filling in a Cu plating bath with functional insoluble anodes and acetic acid as a supporting electrolyte
JP2002322593A (en) Electrolytic phosphate chemical conversion treatment method
Carlos et al. Study of the influence of glycerol on the cathodic process of lead electrodeposition and on its morphology
JPH09195083A (en) Tin halide composition and electroplating method
JP3698341B2 (en) Method for producing single-sided copper-plated steel strip
US4264419A (en) Electrochemical detinning of copper base alloys
WO1996002689A1 (en) Process for electrochemically dissolving a metal such as zinc or tin
JPH11323565A (en) Pretreatment of electroless nickel plating
JPH10273798A (en) Production of one-side copper plated stainless steel strip
WO2021079279A1 (en) Process for producing a zinc-plated steel substrate
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
CA2112592C (en) Phosphate chemical treatment method
JP2982658B2 (en) Method of lowering metal concentration in electroplating solution
US3880730A (en) Electro-galvanic gold plating process
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
JP2004265695A (en) Separator for fuel cell
Dini et al. Preparation of uranium for electroplating with nickel
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
Wilcox et al. The kinetics of electrode reactions III practical aspects
JPS61163292A (en) One-side electroplating method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees