JPH10273359A - Highly strong aluminous sintered product and its production - Google Patents

Highly strong aluminous sintered product and its production

Info

Publication number
JPH10273359A
JPH10273359A JP9076026A JP7602697A JPH10273359A JP H10273359 A JPH10273359 A JP H10273359A JP 9076026 A JP9076026 A JP 9076026A JP 7602697 A JP7602697 A JP 7602697A JP H10273359 A JPH10273359 A JP H10273359A
Authority
JP
Japan
Prior art keywords
alumina
average particle
particle diameter
sialon
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9076026A
Other languages
Japanese (ja)
Other versions
JP3784129B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Koichi Niihara
晧一 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07602697A priority Critical patent/JP3784129B2/en
Publication of JPH10273359A publication Critical patent/JPH10273359A/en
Application granted granted Critical
Publication of JP3784129B2 publication Critical patent/JP3784129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminous sintered product having high strengths from room temperature to high temperatures, and to provide a method for producing the same. SOLUTION: Alumina powder having an average particle diameter of <=2 μm is mixed with 0.001-0.5 vol.% of silicon nitride and/or sialon having an average particle diameter of <=1 μm or an organic silicon compound, and subsequently sintered at a temperature of >=1200 deg.C to obtain the highly strong aluminous sintered product which has a relative density of >=96% and in which 0.001-0.5 vol.% of inorganic crystal particles 2 comprising the silicon nitride and/or the sialon and having an average particle diameter of <=1 μm are dispersed and contained in an alumina matrix comprising crystal particles 1 having an average particle diameter of 10 μm through a layer 2 reacting with the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウエハ研磨用プレ
ートや半導体製造装置用治具などの精密加工製品、ポン
プ、バルブ、粉砕機用部品、伸線機械用部品などの耐食
・耐摩耗・耐熱部品、切削工具、ICパッケージ基板、
高温で使用される耐熱部材などに使用される高強度アル
ミナ質焼結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to corrosion-resistant, abrasion-resistant and heat-resistant parts such as precision processed products such as wafer polishing plates and jigs for semiconductor manufacturing equipment, pumps, valves, parts for crushers, and parts for wire drawing machines. Parts, cutting tools, IC package substrates,
The present invention relates to a high-strength alumina sintered body used for a heat-resistant member used at a high temperature and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、アルミナ質焼結体は、その優
れた耐摩耗性、耐食性、適度な強度を有し、廉価である
ことから、広く産業機械部品に使用される他、高絶縁性
とメタライズ配線技術の確立によって、配線基板などの
絶縁基板として広く使用されている。
2. Description of the Related Art Conventionally, alumina-based sintered bodies have been widely used for industrial machine parts because of their excellent abrasion resistance, corrosion resistance, moderate strength, and low cost, and also have high insulation properties. With the establishment of metallized wiring technology, it is widely used as an insulating substrate such as a wiring substrate.

【0003】このアルミナ質焼結体は、一般には、アル
ミナ粉末に、焼結助剤としてSiO2 、CaO、MgO
などの酸化物を添加し成形後、1500〜1700℃の
温度で焼成することにより作製される。
This alumina-based sintered body is generally prepared by adding SiO 2 , CaO, MgO as a sintering aid to alumina powder.
It is produced by adding an oxide such as, for example, and then firing at a temperature of 1500 to 1700 ° C.

【0004】ところが、かかるアルミナ質焼結体の強度
はせいぜい300〜400MPa程度であることから、
産業機械部品としてさらに強度が要求される部品や切削
工具等に使用することができず、高強度化が進められて
きた。
However, since the strength of such an alumina-based sintered body is at most about 300 to 400 MPa,
Since it cannot be used as a part or a cutting tool that requires further strength as an industrial machine part, high strength has been promoted.

【0005】そこで、従来より、アルミナに対して、炭
化ケイ素やジルコニアを分散させることにより高強度化
が図ることが、特開昭61−122164号、特開昭6
3−139044号等にて提案されている。
Therefore, conventionally, it has been proposed to increase the strength by dispersing silicon carbide or zirconia in alumina, as disclosed in JP-A-61-122164 and JP-A-6-122164.
It has been proposed in, for example, JP-A-3-139044.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、アルミ
ナに炭化ケイ素等の炭化物を分散させた焼結体は、高温
の酸化性雰囲気で炭化物が酸化物に酸化されやすく焼結
体の耐酸化性に欠けるという問題があり、また、100
0℃を越える温度での強度が低いものであった。
However, in a sintered body in which a carbide such as silicon carbide is dispersed in alumina, the carbide is easily oxidized to an oxide in a high-temperature oxidizing atmosphere, and the sintered body lacks oxidation resistance. Problem, and 100
The strength at a temperature exceeding 0 ° C. was low.

【0007】また、ジルコニアを分散させた系は、室温
では高い強度を有するものの、900℃付近から強度が
極端に低下するために、それを越える温度領域では、使
用できないという問題があった。
Further, a system in which zirconia is dispersed has a high strength at room temperature, but has a problem that the strength is extremely reduced from around 900 ° C., so that it cannot be used in a temperature range exceeding that.

【0008】従って、本発明は、室温から高温まで高い
強度を有するアルミナ質焼結体とその製造方法を提供す
ることを目的とするものである。
Accordingly, an object of the present invention is to provide an alumina-based sintered body having high strength from room temperature to a high temperature and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明の高強度アルミナ
質焼結体は、平均粒径10μm以下の結晶粒子からなる
アルミナマトリックスに、該マトリックスとの反応層を
介して平均粒径1μm以下の窒化珪素および/またはサ
イアロンからなる無機質結晶粒子を0.001〜0.5
体積%の割合で分散含有するとともに、相対密度が96
%以上であることを特徴とするものである。
Means for Solving the Problems The high-strength alumina-based sintered body of the present invention comprises an alumina matrix composed of crystal grains having an average particle diameter of 10 μm or less, and a reaction layer with the matrix having an average particle diameter of 1 μm or less. 0.001 to 0.5 of inorganic crystal particles made of silicon nitride and / or sialon
% By volume, and the relative density is 96%.
% Or more.

【0010】また、かかる焼結体を作製する方法として
は、平均粒径が2μm以下のアルミナ粉末からなるマト
リックス形成成分に、平均粒径が1μm以下の窒化珪素
および/またはサイアロン粉末、あるいは熱分解によっ
てそれらに変化し得る有機ケイ素化合物を無機質結晶粒
子形成成分として窒化珪素またはサイアロン換算で0.
001〜0.5体積%の割合で混合し、該混合物を所定
形状に成形した後、1200℃以上の温度で焼成して、
前記マトリックスと前記無機質結晶粒子との間に反応層
を形成せしめつつ、相対密度96%以上に緻密化するこ
とを特徴とするものである。
In addition, as a method for producing such a sintered body, a matrix forming component comprising an alumina powder having an average particle size of 2 μm or less is added to a silicon nitride and / or sialon powder having an average particle size of 1 μm or less, An organosilicon compound which can be changed into them by an inorganic crystal particle forming component is defined as silicon nitride or sialon in an amount of 0.1%.
001 to 0.5% by volume, and the mixture was formed into a predetermined shape, and then fired at a temperature of 1200 ° C. or higher.
The method is characterized in that while forming a reaction layer between the matrix and the inorganic crystal particles, the relative density is increased to 96% or more.

【0011】[0011]

【発明の実施の形態】本発明のアルミナ質セラミックス
は、アルミナからなるマトリックスと、該マトリックス
中に分散する無機質結晶からなる分散粒子によって構成
される相対密度96%以上,特に98%以上の緻密体か
らなる。アルミナマトリックスは、その平均粒径が10
μm以下、特に5μm以下、さらには2μm以下の微細
な結晶粒子によって構成されることが必要である。な
お、アルミナ結晶の平均粒径が10μmよりも大きい
と、焼結体の強度が極端に低下してしまう。
BEST MODE FOR CARRYING OUT THE INVENTION The alumina ceramics of the present invention is a dense body having a relative density of 96% or more, particularly 98% or more, composed of a matrix composed of alumina and dispersed particles composed of inorganic crystals dispersed in the matrix. Consists of The alumina matrix has an average particle size of 10
It is necessary to be constituted by fine crystal grains of μm or less, particularly 5 μm or less, and further 2 μm or less. If the average grain size of the alumina crystals is larger than 10 μm, the strength of the sintered body will be extremely reduced.

【0012】一方、アルミナマトリックス中に分散する
無機質結晶粒子は、窒化珪素(Si3 4 )および/ま
たはサイアロンからなる。これらの分散粒子は、アルミ
ナマトリックス中に、0.001〜0.5体積%、特に
0.005〜0.1体積%、さらには、0.005〜
0.08体積%の割合で分散させることが必要であり、
分散粒子の量が0.001体積%よりも少ないと、強度
向上効果が得られず、0.5体積%を越えると緻密化す
ることが難しく相対密度96%以上が達成されなくな
る。なお、サイアロンは、Si6-Z AlZ Z
8-Z (ただし、0<z≦4)で表されるβ−サイアロ
ン、サイアロンの結晶格子中にY、希土類元素が侵入し
たものであってもよい。また、分散粒子は、平均粒径で
1μm以下、特に0.5μm以下の粒子として分散され
ることが重要であり、この粒径が1μmよりも大きいと
焼結体の強度が向上しない。なお、この分散粒子はアル
ミナ結晶粒子内およびその粒界に分散含有される。
On the other hand, the inorganic crystal particles dispersed in the alumina matrix are made of silicon nitride (Si 3 N 4 ) and / or sialon. These dispersed particles are contained in an alumina matrix in an amount of 0.001 to 0.5% by volume, particularly 0.005 to 0.1% by volume, and more preferably 0.005 to 0.1% by volume.
It is necessary to disperse at a rate of 0.08% by volume,
If the amount of the dispersed particles is less than 0.001% by volume, the effect of improving the strength cannot be obtained, and if the amount exceeds 0.5% by volume, it is difficult to densify and the relative density of 96% or more cannot be achieved. Sialon is Si 6-Z Al Z O Z N
The crystal lattice of β-sialon or sialon represented by 8-Z (where 0 <z ≦ 4), in which Y or a rare earth element penetrates, may be used. It is important that the dispersed particles are dispersed as particles having an average particle diameter of 1 μm or less, particularly 0.5 μm or less. If the particle diameter is larger than 1 μm, the strength of the sintered body does not improve. The dispersed particles are dispersed and contained in the alumina crystal particles and at the grain boundaries.

【0013】マトリックスを構成するアルミナは、それ
自体、高温での耐酸化性に優れるものの高温強度が低
く、一方、窒化珪素あるいはサイアロンは、高温での強
度には優れるが、酸化性雰囲気中では酸化される性質を
有する。
Alumina constituting the matrix itself is excellent in oxidation resistance at high temperatures but low in high-temperature strength, whereas silicon nitride or sialon is excellent in strength at high temperatures, but oxidized in an oxidizing atmosphere. It has the property to be.

【0014】本発明によれば、図1のアルミナ結晶粒内
の分散粒子の状態を示す図、あるいは図2のアルミナ結
晶粒界の分散粒子の状態を示す図から明らかなように、
アルミナマトリックスのアルミナ結晶粒子1の粒内、あ
るいはアルミナ結晶粒子1の粒界に、窒化珪素あるいは
サイアロンの結晶粒子2を反応層3を介して前述したよ
うに極微量分散させることで、アルミナの優れた耐酸化
性を損なうことなく、高温での強度を大幅に向上するこ
とができる。
According to the present invention, as shown in FIG. 1 showing the state of dispersed particles in the alumina crystal grains, or FIG. 2 showing the state of dispersed particles in the alumina crystal grain boundaries,
As described above, a very small amount of silicon nitride or sialon crystal particles 2 are dispersed through the reaction layer 3 within the alumina crystal particles 1 of the alumina matrix or at the grain boundaries of the alumina crystal particles 1, thereby improving the alumina properties. The strength at high temperatures can be significantly improved without impairing the oxidation resistance.

【0015】これは、図1においてアルミナ結晶粒子1
の粒内に反応層3を介して存在する無機質分散粒子2
が、両者の熱膨張差による残留応力場が広げるととも
に、図2において粒界に存在する分散粒子2は、反応層
3の形成により粒界を強固に結合させ、粒界破壊を抑制
する作用をなしているものと推察される。なお、反応層
3は、アルミナと微量の窒素、ケイ素を含む非晶質層に
より形成される。
This is because the alumina crystal particles 1 shown in FIG.
Inorganic dispersed particles 2 existing in the grains through the reaction layer 3
However, while the residual stress field due to the difference in thermal expansion between the two expands, the dispersed particles 2 present at the grain boundaries in FIG. It is presumed that they did. The reaction layer 3 is formed of an amorphous layer containing alumina, trace amounts of nitrogen and silicon.

【0016】かかる高強度アルミナ質焼結体を製造する
方法としては、マトリックスを形成する成分として、平
均粒径が2μm以下、好ましくは1μm以下のアルミナ
粉末を用いる。このアルミナ粉末の平均粒径が2μmを
越えると、緻密化不足を招いて、強度低下を引き起こす
ためである。
As a method for producing such a high-strength alumina sintered body, an alumina powder having an average particle diameter of 2 μm or less, preferably 1 μm or less is used as a component forming a matrix. If the average particle size of the alumina powder exceeds 2 μm, insufficient densification is caused, and the strength is reduced.

【0017】また、分散粒子形成成分としては、平均粒
径が1μm以下、特に0.5μm以下の窒化珪素粉末お
よび/またはサイアロン粉末、または熱分解によって窒
化珪素および/またはサイアロンに変化し得る有機ケイ
素化合物を添加する。かかる有機ケイ素化合物として
は、ポリシラザン、ポリカルボシラザン等が挙げられ
る。なお、窒化珪素粉末および/またはサイアロン粉末
を用いる場合、平均粒径が1μmを越えると、強度特性
の向上が図れず、また、酸窒化ケイ素粉末は、焼結体中
において粉末粒子とほぼ同様な粒子径で存在することか
ら、1μmを越えると、焼結体中での粒径も大きくなり
特性効果が達成されない。
Further, as the dispersed particle forming component, silicon nitride powder and / or sialon powder having an average particle diameter of 1 μm or less, especially 0.5 μm or less, or organosilicon which can be changed to silicon nitride and / or sialon by thermal decomposition. Add compound. Examples of such organosilicon compounds include polysilazane and polycarbosilazane. When silicon nitride powder and / or sialon powder is used, if the average particle size exceeds 1 μm, the strength characteristics cannot be improved, and the silicon oxynitride powder has substantially the same properties as the powder particles in the sintered body. Since it exists in a particle size, if it exceeds 1 μm, the particle size in the sintered body increases, and the characteristic effect cannot be achieved.

【0018】これら分散粒子源は、窒化珪素あるいはサ
イアロンに換算して、0.001〜0.5体積%、特に
0.005〜0.1体積%、さらには、0.005〜
0.08体積%の割合になるように混合する。この量が
0.001体積%よりも少ないと強度向上効果が望め
ず、0.5体積%を越えると、緻密化することが難しく
なる。なお、この配合量は、熱分解によって窒化珪素お
よび/またはサイアロンに変化し得る無機化合物を用い
た場合には熱分解後の形態に換算した量を示す。
These dispersed particle sources are converted to silicon nitride or sialon in an amount of 0.001 to 0.5% by volume, particularly 0.005 to 0.1% by volume, and more preferably 0.005 to 0.1% by volume.
Mix so that the ratio is 0.08% by volume. If the amount is less than 0.001% by volume, the effect of improving the strength cannot be expected, and if it exceeds 0.5% by volume, it becomes difficult to achieve a high density. When an inorganic compound that can be converted into silicon nitride and / or sialon by thermal decomposition is used, the amount is expressed in terms of the form after thermal decomposition.

【0019】次に、窒化珪素粉末あるいはサイアロン粉
末を添加した場合は、その混合粉末を所望の成形手段、
例えば、金型プレス、冷間静水圧プレス、射出成形、押
出し成形等により任意の形状に成形する。なお、前記有
機ケイ素化合物を添加した場合は、混合粉末を一旦熱分
解させて窒化珪素あるいはサイアロンを生成させた後、
前記の方法により成形するか、または、有機ケイ素化合
物を含む混合物を所定形状に成形した後、窒素ガス、ま
たは窒素ガスと水素ガスとの混合ガス中で熱分解させて
窒化珪素あるいはサイアロンを生成させる。
Next, when a silicon nitride powder or a sialon powder is added, the mixed powder is added to a desired molding means,
For example, it is formed into an arbitrary shape by a die press, a cold isostatic press, injection molding, extrusion molding, or the like. When the organic silicon compound is added, after the mixed powder is once thermally decomposed to generate silicon nitride or sialon,
Formed by the above method, or after forming a mixture containing an organosilicon compound into a predetermined shape, nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas is thermally decomposed to produce silicon nitride or sialon. .

【0020】有機ケイ素化合物を熱分解させる温度とし
ては、アルミナの緻密化が始まる温度以下であることが
望ましく、1000℃以下が望ましい。1000℃を越
えると、アルミナの緻密化が始まり、熱分解ガスが焼結
体内部にトラップされてしまい、緻密化を疎外し、密度
低下、強度低下を引き起こす場合があるためである。
The temperature at which the organosilicon compound is thermally decomposed is preferably equal to or lower than the temperature at which densification of alumina starts, and is preferably equal to or lower than 1000 ° C. If the temperature exceeds 1000 ° C., the densification of alumina starts, and the pyrolysis gas is trapped inside the sintered body, ignoring the densification, which may cause a decrease in density and a decrease in strength.

【0021】このようにして得られた成形体を窒素雰囲
気中で1200℃以上、好ましくは1300℃〜155
0℃の温度で焼成する。焼成方法としては、ホットプレ
ス、常圧焼成、または熱間静水圧焼成して作製する。こ
の時の焼成温度が1200℃に達しないと緻密化が不足
して密度が低下したり、反応層の形成が不十分となり強
度低下を引き起こす。また、ホットプレスを行う場合に
は、成形と焼成を同時に行うことができる。
The molded body obtained in this manner is heated to 1200 ° C. or more, preferably 1300 ° C. to 155 in a nitrogen atmosphere.
Bake at a temperature of 0 ° C. The sintering is performed by hot pressing, normal pressure sintering, or hot isostatic sintering. If the firing temperature at this time does not reach 1200 ° C., the densification is insufficient and the density is reduced, or the formation of the reaction layer is insufficient and the strength is reduced. When hot pressing is performed, molding and firing can be performed simultaneously.

【0022】[0022]

【実施例】【Example】

実施例1(試料No.1〜23、26、27) アルミナ粉末として純度99.99%、結晶粒径が0.
2μmの大明化学工業株式会社製のタイミクロンTM−
DAR(A−1)を用いた。窒化ケイ素粉末として平均
粒径が0.4μmの宇部興産製の窒化ケイ素粉末(B−
1)、サイアロン粉末として、z値が1〜3の平均粒径
が0.5μm前後になるように粉砕して作製した宇部興
産製のZ=1の粉末(C−1)、Z=2の粉末(C−
2)、Z=3の粉末(C−3)を準備した。比較のため
に、結晶粒径が1.2μmのAl23 粉末(A−2)
と、平均粒径が1.8μmの窒化ケイ素粉末(B−2)
を準備した。
Example 1 (Samples Nos. 1 to 23, 26 and 27) Alumina powder having a purity of 99.99% and a crystal grain size of 0.
2μm Taimicron TM- manufactured by Daimei Chemical Co., Ltd.
DAR (A-1) was used. As a silicon nitride powder, a silicon nitride powder (B-
1) As a sialon powder, a powder of Z = 1 (C-1) manufactured by Ube Industries, which was manufactured by pulverizing the zirconium powder having a z value of 1 to 3 so that the average particle size is about 0.5 μm, Powder (C-
2) A powder (C-3) with Z = 3 was prepared. For comparison, Al 2 O 3 powder having a crystal grain size of 1.2 μm (A-2)
And a silicon nitride powder having an average particle size of 1.8 μm (B-2)
Was prepared.

【0023】そして、上記アルミナ粉末と窒化ケイ素粉
末あるいはサイアロン粉末を表1および表2に示す組み
合わせおよび配合量で秤量し、アルミナのボールを用い
て有機溶媒中で混合し、エバポレーターを用いて乾燥粉
末を得た。
The above-mentioned alumina powder and silicon nitride powder or sialon powder are weighed in combinations and amounts shown in Tables 1 and 2, mixed in an organic solvent using alumina balls, and dried using an evaporator. I got

【0024】焼成は、ホットプレス焼成(H.P)と雰
囲気焼成(PLS)を用いた。ホットプレス焼成の場合
は、この粉末をカーボン型に入れ、窒素ガス中、30M
Pa圧力下で表に示す焼成温度で焼成した。雰囲気焼成
の場合は、この粉末を3t/cm2 の圧力で静水圧処理
をして成形体を作製し、常圧の窒素ガス中、表1、2に
示す焼成温度で焼成した。
For firing, hot press firing (HP) and atmosphere firing (PLS) were used. In the case of hot press firing, put this powder in a carbon mold and
It baked at the calcination temperature shown in a table under Pa pressure. In the case of firing in an atmosphere, the powder was subjected to hydrostatic pressure treatment at a pressure of 3 t / cm 2 to produce a molded body, and fired in a nitrogen gas at normal pressure at firing temperatures shown in Tables 1 and 2.

【0025】得られた焼結体から試験片を切り出し、研
磨加工した。そして比重をJISR2205に基づいて
求め、相対密度を求めた。強度値はJISR1601に
基づく4点曲げ試験より室温および1400℃の強度を
求めた。また、試験片表面を鏡面加工し窒素雰囲気中で
熱エッチングし、焼結体中の表面を観察した。また、電
子顕微鏡写真によりマトリックスや分散粒子の粒径を観
察測定測定した。結果は、表1、2に示した。
A test piece was cut out from the obtained sintered body and polished. Then, the specific gravity was determined based on JISR2205, and the relative density was determined. As the strength value, a strength at room temperature and 1400 ° C. was obtained from a four-point bending test based on JISR1601. The surface of the test piece was mirror-finished and thermally etched in a nitrogen atmosphere, and the surface in the sintered body was observed. Further, the particle size of the matrix and the dispersed particles was observed, measured and measured by an electron microscope photograph. The results are shown in Tables 1 and 2.

【0026】実施例2(試料No.24,25) アルミナ粉末をアルミナメデイアを用いて有機溶媒中で
解砕、分散させた後、窒素置換したグローボックス中で
東燃株式会社製のポリシラザンNーN510(D−1)
の有機ケイ素化合物を窒化珪素換算で各々表2に示す量
を添加し、密閉後、再度、混合した。そして、有機ケイ
素化合物を添加した混合粉末を乾燥し、窒素+4%水素
混合ガス中で800℃で熱分解させて窒化珪素を生成さ
せた後、再度軽く解砕し、整粒した。焼成は、上記のよ
うにして調製した整粒粉末をカーボン型に入れ、窒素ガ
ス中、30MPaの圧力を印加して表2の温度でホット
プレス焼成した。
Example 2 (Sample Nos. 24 and 25) Alumina powder was crushed and dispersed in an organic solvent using alumina media, and then polysilazane N-N510 manufactured by Tonen Co., Ltd. was placed in a glow box purged with nitrogen. (D-1)
Was added in the amount shown in Table 2 in terms of silicon nitride, and the mixture was sealed and mixed again. Then, the mixed powder to which the organosilicon compound was added was dried, thermally decomposed in a mixed gas of nitrogen and 4% hydrogen at 800 ° C. to produce silicon nitride, lightly crushed again, and sized. For sintering, the sized powder prepared as described above was placed in a carbon mold and subjected to hot press sintering at a temperature shown in Table 2 by applying a pressure of 30 MPa in nitrogen gas.

【0027】得られた焼結体から、実施例1と同様にし
て、相対密度、JISR1601に基づく室温および1
400℃における4点曲げ試験より求めた。また、試験
片表面を鏡面加工し、窒素雰囲気中で熱エッチングし、
焼結体中のアルミナマトリックスの平均粒径および分散
粒子の平均粒径を測定した。得られた結果を表2に示
す。
From the obtained sintered body, the relative density, the room temperature based on JISR1601 and
It was determined from a four-point bending test at 400 ° C. Also, the surface of the test piece is mirror-finished and thermally etched in a nitrogen atmosphere.
The average particle size of the alumina matrix and the average particle size of the dispersed particles in the sintered body were measured. Table 2 shows the obtained results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】測定の結果、分散粒子形成成分として、平
均粒径が1μm以下のB−1、C−1〜C−3を使用し
た場合、および有機ケイ素化合物を用いた場合、分散粒
子はいずれも平均粒径0.5μm以下の微細な粒子とし
て、アルミナ結晶粒内および粒界に分散していた。
As a result of the measurement, when the dispersion particles forming components B-1 and C-1 to C-3 having an average particle diameter of 1 μm or less were used, and when the organosilicon compound was used, the dispersion particles were all Fine particles having an average particle size of 0.5 μm or less were dispersed in the alumina crystal grains and at the grain boundaries.

【0031】しかし、平均粒径が1μmを越える粉末
(B−2)を使用した試料No.27では、分散粒子は
1.8μmの大きさとなっており、その結果、反応層は
形成されても強度の向上は見られなかった。
However, in sample No. 27 using powder (B-2) having an average particle size exceeding 1 μm, the dispersed particles had a size of 1.8 μm, and as a result, even if a reaction layer was formed. No improvement in strength was seen.

【0032】また、何ら分散粒子を含まない試料No.1
は、室温強度450MPa、1400℃強度では170
MPaと非常に低い。また、無機質結晶粒子の含有量が
0.5体積%を越える試料No.8、9、21、焼結体の
アルミナマトリックスの平均粒径が10μmを越える試
料No.13、無機質結晶粒子の平均粒径が1μmを越え
る試料No.27では、機械的強度の向上効果が得られな
かった。また、原料としてのアルミナ粉末の平均粒径が
2μmを越える試料No.26および焼成温度が1200
℃よりも低い試料No.10では、いずれも相対密度96
%以上が達成できなかった。
In addition, sample No. 1 containing no dispersed particles
Is 170 MPa at room temperature strength of 450 MPa and 1400 ° C. strength.
Very low with MPa. Samples Nos. 8, 9, and 21 in which the content of the inorganic crystal particles exceeded 0.5% by volume, Sample No. 13 in which the average particle size of the alumina matrix of the sintered body exceeded 10 μm, and the average particle size of the inorganic crystal particles In Sample No. 27 having a diameter exceeding 1 μm, no effect of improving mechanical strength was obtained. Sample No. 26, in which the average particle size of alumina powder as a raw material exceeds 2 μm, and a sintering temperature of 1200,
In sample No. 10 lower than 100 ° C., the relative density was 96%.
% Could not be achieved.

【0033】これらに対して、平均粒径1μm以下の窒
化珪素やサイアロンを0.001〜0.5体積%の割合
で含有せしめた本発明の焼結体は、いずれも室温強度6
00MPa以上、1400℃強度300MPa以上の優
れた機械的強度を示した。また、高温耐酸化性において
もアルミナと同等の優れた特性を示した。
On the other hand, the sintered body of the present invention containing silicon nitride or sialon having an average particle diameter of 1 μm or less at a ratio of 0.001 to 0.5% by volume has a room temperature strength of 6%.
It exhibited excellent mechanical strength of not less than 00 MPa and strength of 1400 ° C. not less than 300 MPa. In addition, it exhibited excellent properties equivalent to alumina in high-temperature oxidation resistance.

【0034】[0034]

【発明の効果】上述の如く、本発明のアルミナ質焼結体
は、室温から高温まで優れた抗折強度を有することか
ら、ウエハ研磨用プレートや半導体製造装置用治具など
の精密加工製品、ポンプ、バルブ、粉砕機用部品、伸線
機械用部品などの耐食・耐摩耗・耐熱部品、切削工具、
ICパッケージ基板、高温で使用する耐熱部材等に使用
できる。
As described above, since the alumina-based sintered body of the present invention has excellent bending strength from room temperature to high temperature, it can be used for precision processed products such as wafer polishing plates and jigs for semiconductor manufacturing equipment. Corrosion-, wear- and heat-resistant parts such as pumps, valves, parts for crushers, parts for wire drawing machines, cutting tools,
It can be used for IC package substrates, heat-resistant members used at high temperatures, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナ質焼結体のアルミナ結晶粒内
の分散粒子の状態を説明するための図である。
FIG. 1 is a view for explaining a state of dispersed particles in alumina crystal grains of an alumina sintered body of the present invention.

【図2】本発明のアルミナ質焼結体のアルミナ結晶粒界
の分散粒子の状態を説明するための図である。
FIG. 2 is a view for explaining a state of dispersed particles at an alumina crystal grain boundary of the alumina-based sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミナ結晶粒子 2 分散粒子 3 反応層 1 alumina crystal particles 2 dispersed particles 3 reaction layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径10μm以下の結晶粒子からなる
アルミナマトリックスに、該マトリックスとの反応層を
介して平均粒径1μm以下の窒化珪素および/またはサ
イアロンからなる無機質結晶粒子を0.001〜0.5
体積%の割合で分散含有するとともに、相対密度が96
%以上であることを特徴とする高強度アルミナ質焼結
体。
1. An alumina matrix composed of crystal grains having an average particle diameter of 10 μm or less, and inorganic crystal grains composed of silicon nitride and / or sialon having an average particle diameter of 1 μm or less interposed between 0.001 and 0.001 through a reaction layer with the matrix. 0.5
% By volume, and the relative density is 96%.
% High-strength alumina-based sintered body, wherein
【請求項2】前記無機質結晶粒子は、前記アルミナ結晶
粒子内およびその粒界に分散する請求項1記載の高強度
アルミナ質焼結体。
2. The high-strength alumina sintered body according to claim 1, wherein said inorganic crystal particles are dispersed in said alumina crystal particles and at grain boundaries thereof.
【請求項3】平均粒径が2μm以下のアルミナ粉末から
なるマトリックス形成成分に、平均粒径が1μm以下の
窒化珪素および/またはサイアロン粉末、あるいは熱分
解によってそれらに変化し得る有機ケイ素化合物を無機
質結晶粒子形成成分として窒化珪素またはサイアロン換
算で0.001〜0.5体積%の割合で混合し、該混合
物を所定形状に成形した後、1200℃以上の温度で焼
成して、前記マトリックスと前記無機質結晶粒子との間
に反応層を形成せしめつつ、相対密度96%以上に緻密
化することを特徴とする高強度アルミナ質焼結体の製造
方法。
3. A matrix-forming component comprising an alumina powder having an average particle diameter of 2 μm or less, and a silicon nitride and / or sialon powder having an average particle diameter of 1 μm or less, or an organosilicon compound which can be changed to them by thermal decomposition. As a crystal particle-forming component, silicon nitride or sialon is mixed at a ratio of 0.001 to 0.5% by volume, the mixture is formed into a predetermined shape, and then fired at a temperature of 1200 ° C. or more, and the matrix and the A method for producing a high-strength alumina-based sintered body, comprising densifying a relative density of 96% or more while forming a reaction layer with inorganic crystal particles.
JP07602697A 1997-03-27 1997-03-27 High strength alumina sintered body Expired - Fee Related JP3784129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07602697A JP3784129B2 (en) 1997-03-27 1997-03-27 High strength alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07602697A JP3784129B2 (en) 1997-03-27 1997-03-27 High strength alumina sintered body

Publications (2)

Publication Number Publication Date
JPH10273359A true JPH10273359A (en) 1998-10-13
JP3784129B2 JP3784129B2 (en) 2006-06-07

Family

ID=13593321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07602697A Expired - Fee Related JP3784129B2 (en) 1997-03-27 1997-03-27 High strength alumina sintered body

Country Status (1)

Country Link
JP (1) JP3784129B2 (en)

Also Published As

Publication number Publication date
JP3784129B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US5376602A (en) Low temperature, pressureless sintering of silicon nitride
KR100341696B1 (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
TW397807B (en) Aluminium nitride sintered body
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
KR101705024B1 (en) Aln substrate and method for producing same
JP2015086125A (en) Nitrogen and silicon-based sintered body and manufacturing method thereof
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP3784129B2 (en) High strength alumina sintered body
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JP3177650B2 (en) High-strength alumina sintered body and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2002294358A (en) Thermally conductive composite material
JPH10167808A (en) High strength aluminous sintered compact and its production
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JPS6121964A (en) Alumina sintered body and manufacture
JP2541150B2 (en) Aluminum nitride sintered body
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPS63277572A (en) Production of sintered aluminum nitride
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees