JPH10272361A - Methanol synthesis and reforming catalyst - Google Patents

Methanol synthesis and reforming catalyst

Info

Publication number
JPH10272361A
JPH10272361A JP9080936A JP8093697A JPH10272361A JP H10272361 A JPH10272361 A JP H10272361A JP 9080936 A JP9080936 A JP 9080936A JP 8093697 A JP8093697 A JP 8093697A JP H10272361 A JPH10272361 A JP H10272361A
Authority
JP
Japan
Prior art keywords
copper
catalyst
zinc
aluminum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9080936A
Other languages
Japanese (ja)
Inventor
Hideo Fukui
英夫 福井
Masayuki Kobayashi
正幸 小林
Masashi Yamaguchi
正志 山口
Hironori Arakawa
裕則 荒川
Kiyomi Okabe
清美 岡部
Kazuhiro Sayama
和弘 佐山
Hitoshi Kusama
仁 草間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
YKK Corp
Original Assignee
Agency of Industrial Science and Technology
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, YKK Corp filed Critical Agency of Industrial Science and Technology
Priority to JP9080936A priority Critical patent/JPH10272361A/en
Priority to US09/050,207 priority patent/US6114279A/en
Priority to DE69808983T priority patent/DE69808983T2/en
Priority to EP98105792A priority patent/EP0868943B1/en
Publication of JPH10272361A publication Critical patent/JPH10272361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst that can perform highly active catalytic performance by co-precipitating method, which is a catalyst producing method, by using an oxide containing copper, zinc, and aluminum in respectively specified ratios for producing the catalyst for synthesizing and reforming methanol. SOLUTION: An alkaline solution of such as an alkali carbonate, an alkali hydrogencarbonate, an alkali hydroxide, ammonia, etc., is added to aqueous solution mixture of copper nitrate, zinc nitrate, and aluminum nitrate to cause reactions. Then, a catalyst comprising copper, zinc, aluminum oxides is produced by so-called co-precipitation method carried out by washing and filtering the obtained precipitates and then firing the resultant precipitates. In the catalyst produced in such a manner, the composition is controlled as to contain 68.0-86.0 wt.% of copper and 4.5-21.0 wt.% of zinc to give high catalytic activity. Preferably, the catalyst is so produced as to contain 68.0-84.0 wt.% of copper and 4.0-17.0 wt.% of aluminum, and 5.0-21.0 wt.% of zinc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素又は一
酸化炭素もしくは二酸化炭素と一酸化炭素との混合ガス
を水素ガスと反応させてアルコール及び/又は炭化水素
を合成する際に用いる二酸化炭素又は一酸化炭素の水素
化反応用触媒、また、逆にアルコールと水とから水素を
製造する水蒸気改質用触媒に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to carbon dioxide or carbon dioxide used for synthesizing alcohol and / or hydrocarbon by reacting carbon dioxide or carbon monoxide or a mixed gas of carbon dioxide and carbon monoxide with hydrogen gas. The present invention relates to a catalyst for hydrogenation reaction of carbon monoxide and, on the contrary, to a catalyst for steam reforming for producing hydrogen from alcohol and water.

【0002】[0002]

【従来の技術】メタノール合成触媒の開発研究の歴史は
古く、とりわけ銅、亜鉛、アルミニウムの酸化物より構
成される共沈法により作製した触媒は高いメタノール合
成活性を有することが知られており、この触媒を用いた
合成ガスからのメタノール製造プラントは工業化されて
いる。
2. Description of the Related Art The research and development of methanol synthesis catalysts has a long history, and it is known that catalysts prepared by the coprecipitation method composed of oxides of copper, zinc and aluminum have high methanol synthesis activity. A plant for producing methanol from synthesis gas using this catalyst has been industrialized.

【0003】最近になってからは二酸化炭素による地球
温暖化問題解決の方法として、こういったメタノール合
成触媒を用いて、二酸化炭素をメタノールに変換しよう
という動きが活発化してきている。しかしながら、化石
燃料を燃焼させることによって発生するような大量の二
酸化炭素をメタノールに交換するためには、極めて速い
燃焼反応に追従できるだけの高速変換性が必要になる。
したがって、従来よりも更に高活性な触媒が切望されて
いる。
[0003] Recently, as a method of solving the global warming problem by carbon dioxide, a movement to convert carbon dioxide into methanol using such a methanol synthesis catalyst has been activated. However, in order to exchange a large amount of carbon dioxide generated by burning fossil fuel into methanol, a high-speed conversion property that can follow an extremely fast combustion reaction is required.
Therefore, a catalyst having a higher activity than before has been desired.

【0004】例えば、メタノールの水蒸気改質反応は下
記反応式(1)に示されるものである。
For example, a steam reforming reaction of methanol is represented by the following reaction formula (1).

【0005】 CH3OH+H2O → 3H2+CO2 …(1) また、メタノールの合成反応は下記反応式(2)に示さ
れるものである。
CH 3 OH + H 2 O → 3H 2 + CO 2 (1) Further, a synthesis reaction of methanol is represented by the following reaction formula (2).

【0006】 3H2+CO2 → CH3OH+H2O …(2) これらに関連した触媒としては次のようなものが知られ
ている。銅、亜鉛、アルミニウムの酸化物に更に添加物
を加えたものとして、特開昭60−209255では希
土類やジルコニウムの添加、特開昭60−147244
では、イットリウムやランタノイド、アクチノイドの添
加、特開平4−122450ではクロム酸化物、銀の添
加、特開平5−168936はクロム酸化物、ランタン
酸化物の添加、また特開平6−312138ではガリウ
ム、バナジウム、モリブデン、タングステンの添加、特
開平8−229399はチタン、ジルコニウムの酸化物
の添加が記載されている。銅、亜鉛、アルミニウムの酸
化物のみの三元系より構成された触媒についても、特開
昭50−68983、特開昭55−106543、特開
昭56−70836、特開昭57−130547、特開
昭57−7256、特開昭59−222232、特開昭
59−102443、特開昭60−190232、特開
昭60−179145、特開昭62−53739、特開
平3−68450、特開平6−170231等に示され
ている。又、これによると、銅、亜鉛、アルミニウムの
酸化物の組成範囲としては銅が30〜70重量%、亜鉛
が20〜70重量%、アルミニウムが15重量%以下の
範囲の有効性が実施例として示されている。
3H 2 + CO 2 → CH 3 OH + H 2 O (2) The following are known as catalysts related to these. Japanese Patent Application Laid-Open No. 60-209255 discloses the addition of rare earths and zirconium to copper, zinc, and aluminum oxides with additional additives.
In addition, addition of yttrium, lanthanoids and actinoids, addition of chromium oxide and silver in JP-A-4-122450, addition of chromium oxide and lanthanum oxide in JP-A-5-168936, and addition of gallium and vanadium in JP-A-6-313138 , Molybdenum and tungsten, and JP-A-8-229399 describes the addition of titanium and zirconium oxides. Catalysts composed of a ternary system containing only oxides of copper, zinc and aluminum are also disclosed in JP-A-50-68983, JP-A-55-106543, JP-A-56-70836, JP-A-57-13047, JP-A-57-7256, JP-A-59-222232, JP-A-59-102443, JP-A-60-190232, JP-A-60-179145, JP-A-62-53739, JP-A-3-68450, JP-A-3-68450 -170231. According to this, the composition range of the oxides of copper, zinc and aluminum is 30 to 70% by weight of copper, 20 to 70% by weight of zinc and 15% by weight or less of aluminum as an example. It is shown.

【0007】[0007]

【発明が解決しようとする課題】上記の従来技術のう
ち、銅、亜鉛、アルミニウム酸化物に添加物を加える方
法は、添加物としてチタン、ジルコニウム、ガリウム、
バナジウム、モリブデン、タングステン、イットリウ
ム、ランタノイド、アクチノイド等と、銅、亜鉛、アル
ミニウムに比べると極めて高価な元素を必要とするた
め、工業的には不向きである。
Among the above-mentioned prior arts, the method of adding an additive to copper, zinc, and aluminum oxide is as follows: titanium, zirconium, gallium,
Vanadium, molybdenum, tungsten, yttrium, lanthanoids, actinoids and the like, and extremely expensive elements as compared with copper, zinc and aluminum are not industrially suitable.

【0008】それに対して、銅、亜鉛、アルミニウムの
酸化物のみより構成されている触媒は、コスト面での問
題はないが、銅が30〜70重量%、亜鉛が20〜70
重量%、アルミニウムが15重量%以下の範囲において
は、共沈法などの一般的な触媒製造法では、高い触媒活
性は得られない。この範囲において我々が共沈法で作っ
た触媒の特性データから類推すると、最も有効な組成に
おいても、現状のメタノール合成に用いられている、
銅、亜鉛、アルミニウム酸化物系の工業触媒の2倍程度
の活性にしかならないことが予想される。したがって、
この範囲において更に高い性能を得るためには、例えば
特開平8−215571等に示されるような特殊な調製
法を用いない限り実現できないと思われる。
On the other hand, a catalyst composed only of oxides of copper, zinc and aluminum has no problem in cost, but contains 30 to 70% by weight of copper and 20 to 70% by weight of zinc.
When the amount of aluminum is less than 15% by weight or less, high catalyst activity cannot be obtained by a general catalyst production method such as a coprecipitation method. By analogy with the characteristics data of the catalyst we made by the coprecipitation method in this range, even the most effective composition is used for the current methanol synthesis,
It is expected that the activity is only about twice as high as that of copper, zinc and aluminum oxide-based industrial catalysts. Therefore,
In order to obtain even higher performance in this range, it is considered that it cannot be realized unless a special preparation method as shown in, for example, JP-A-8-215571 is used.

【0009】したがって、本発明では、銅、亜鉛、アル
ミニウムの酸化物に対して。それ以外の有害な添加元
素、あるいは高価な添加元素等は使わず、しかも製造コ
ストのかかる特別な手法を用いない、いわゆる最も一般
的な触媒製造法である共沈法で高活性が得られる触媒を
提供することを目的としている。
Therefore, in the present invention, oxides of copper, zinc and aluminum are used. A catalyst that does not use any other harmful additive elements or expensive additive elements, and does not use special methods that require high production costs. It is intended to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、上記問題点を
鑑みて、一般的に知られる硝酸銅、硝酸亜鉛、硝酸アル
ミニウムの混合水溶液に炭酸アルカリ、炭酸水素アルカ
リ、水酸化アルカリ、アンモニア等、アルカリ性溶液を
加え、反応させて得た沈殿物を洗浄、濾過し、焼成する
いわゆる共沈法を用いて作った、銅、亜鉛、アルミニウ
ム酸化物より構成される触媒において、詳細な組成調査
を行った。その結果、これらの最適な組み合わせにおい
て特異的に高い活性を示すポイントを見いだし、本発明
を完成させるに至った。この高活性を発現する組成とし
ては、銅:68.0〜86.0重量%、アルミニウム:
2.0〜20.0重量%、亜鉛:4.5〜21.0重量
%であり、好ましくは、銅:68.0〜84.0重量
%、アルミニウム:4.0〜17.0重量%、亜鉛:
5.0〜21.0重量%である。
SUMMARY OF THE INVENTION In view of the above problems, the present invention is directed to a generally known mixed aqueous solution of copper nitrate, zinc nitrate, and aluminum nitrate. A detailed composition study was conducted on a catalyst composed of copper, zinc, and aluminum oxide, which was formed using a so-called coprecipitation method in which an alkaline solution was added, the precipitate obtained by the reaction was washed, filtered, and calcined. went. As a result, a point showing specifically high activity in these optimal combinations was found, and the present invention was completed. As a composition exhibiting this high activity, copper: 68.0 to 86.0% by weight, aluminum:
2.0 to 20.0% by weight, zinc: 4.5 to 21.0% by weight, preferably copper: 68.0 to 84.0% by weight, aluminum: 4.0 to 17.0% by weight ,zinc:
5.0 to 21.0% by weight.

【0011】ここで銅:68.0〜86.0重量%とし
たのはこの反応における活性元素は銅であるため、6
8.0重量%より少ないと大きな活性の発現には至らな
い、逆に銅が86.0重量%を越えると、シンタリング
により銅の分散性が悪くなり、高い活性を発現できない
上、耐久性が著しく低下するためである。アルミニウム
においては、銅や亜鉛と相互作用し、更に活性を高める
働きと同時に、銅を安定に高分散させる作用を担ってい
る。したがって、アルミニウムの量が2.0重量%より
少ないと、銅の分散性が悪くなり、高活性を発現できな
い上、耐久性も著しく低下する。逆にアルミニウムが2
0.0重量%より多いと、銅や亜鉛と相互作用のバラン
スが崩れ、活性は著しく低下する。亜鉛については、触
媒表面に存在する銅の酸化状態のバランスを制御する働
きをし、これにより触媒活性が大きく左右される。銅、
アルミニウムが上記組成範囲をとる場合においては亜鉛
は4.5〜21.0重量%の存在で触媒活性を大きく発
現させるよう働く、逆にこの範囲からはずれると銅の酸
化状態のバランスが損なわれ、高い活性が得られない。
こういった理由から銅:68.0〜86.0重量%、ア
ルミニウム:2.0〜20.0重量%、亜鉛:4.5〜
21.0重量%において工業触媒並の耐久性を保持し
た。極めて高い触媒活性を有する触媒が、簡易な共沈法
で得られるわけである。
Here, copper: 68.0 to 86.0% by weight is used because the active element in this reaction is copper.
If the amount is less than 8.0% by weight, large activity is not exhibited. On the other hand, if the amount of copper exceeds 86.0% by weight, the dispersibility of copper is deteriorated due to sintering, high activity cannot be exhibited, and durability is high. Is significantly reduced. Aluminum interacts with copper and zinc to further increase the activity and at the same time to stably and highly disperse copper. Therefore, when the amount of aluminum is less than 2.0% by weight, the dispersibility of copper is deteriorated, high activity cannot be exhibited, and the durability is significantly reduced. Conversely, aluminum is 2
If the content is more than 0.0% by weight, the balance of the interaction with copper and zinc is lost, and the activity is significantly reduced. Zinc acts to control the balance of the oxidation state of copper present on the catalyst surface, which greatly affects the catalytic activity. copper,
In the case where aluminum has the above composition range, zinc acts to greatly develop catalytic activity in the presence of 4.5 to 21.0% by weight. Conversely, if it is out of this range, the balance of the oxidation state of copper is impaired, High activity cannot be obtained.
For these reasons, copper: 68.0-86.0% by weight, aluminum: 2.0-20.0% by weight, zinc: 4.5-8.5%
At 21.0% by weight, durability equivalent to that of an industrial catalyst was maintained. A catalyst having extremely high catalytic activity can be obtained by a simple coprecipitation method.

【0012】中でも、銅:72.0〜82.0重量%、
アルミニウム:6.0〜15.0重量%、亜鉛:7.7
〜18.0重量%の範囲では、銅、亜鉛、アルミニウム
酸化物より構成される市販の工業触媒の3倍以上、とり
わけ、銅:74.0〜81.0重量%、アルミニウム:
6.6〜13.0重量%、亜鉛:10.0〜14.0重
量%の範囲では工業触媒の3.5倍以上の活性が得られ
た。
Among them, copper: 72.0 to 82.0% by weight,
Aluminum: 6.0 to 15.0% by weight, zinc: 7.7
In the range of 〜18.0% by weight, it is more than three times that of a commercially available industrial catalyst composed of copper, zinc and aluminum oxide, especially copper: 74.0 to 81.0% by weight, aluminum:
In the range of 6.6 to 13.0% by weight and zinc in the range of 10.0 to 14.0% by weight, an activity 3.5 times or more that of the industrial catalyst was obtained.

【0013】[0013]

【発明の実施の形態】以下、発明の実施の形態を実施例
並びに比較例によって説明する。
Embodiments of the present invention will be described below with reference to examples and comparative examples.

【0014】実施例 硝酸銅3水和物、硝酸亜鉛6水和物、硝酸アルミニウム
9水和物の所定量を1リットルのイオン交換水に溶解し
たa液、および炭酸ナトリウム53gを1リットルのイ
オン交換水に溶解したb液を用意し、スターラーで撹拌
しながらb液をa液に滴下し、沈殿を形成させた。沈殿
物中のナトリウムイオンを取り除くため、洗浄を繰り返
した後、濾過し、80℃で12時間乾燥、その後300
℃で1時間、焼成を行い、上記請求範囲に示した組成の
触媒(実施例1〜20)を得た。この触媒について、二
酸化炭素の接触水素化反応に関する触媒特性を固定床加
圧流通式反応装置を用い、反応温度250℃、反応圧力
5MPaの条件下、H2/CO2混合ガス(H2:CO2
3:1)を流通させ、生成物をオンラインガスクロマト
グラフにより分析し、二酸化炭素からのメタノール合成
における触媒特性を調べた。なお、得られた触媒の組成
分析結果及び、10%の二酸化炭素転化率を示すように
触媒の重量に対するとH2/CO2混合ガス比〔W/F:
W=触媒重量(g)、F=混合ガス流速(mol/
h)〕を変化させた際の触媒特性〔メタノール空時収
量:接触単位重量(1kg)、単位反応時間(1hr)
当りのメタノール収量(g)〕を表1に示す。
Example 1 Liquid a prepared by dissolving predetermined amounts of copper nitrate trihydrate, zinc nitrate hexahydrate and aluminum nitrate nonahydrate in 1 liter of ion-exchanged water, and 53 g of sodium carbonate in 1 liter of ion Solution b dissolved in exchange water was prepared, and solution b was dropped into solution a while stirring with a stirrer to form a precipitate. To remove sodium ions in the precipitate, washing was repeated, followed by filtration and drying at 80 ° C. for 12 hours.
Calcination was performed at a temperature of 1 hour for 1 hour to obtain a catalyst having the composition shown in the claims (Examples 1 to 20). For this catalyst, the catalytic properties of the catalytic hydrogenation reaction of carbon dioxide were measured using a fixed bed pressurized flow reactor under the conditions of a reaction temperature of 250 ° C. and a reaction pressure of 5 MPa, and a mixed gas of H 2 / CO 2 (H 2 : CO 2). 2 =
3: 1), the product was analyzed by on-line gas chromatography, and the catalytic properties in methanol synthesis from carbon dioxide were examined. The H 2 / CO 2 mixed gas ratio [W / F: based on the weight of the catalyst so as to show a composition analysis result of the obtained catalyst and a carbon dioxide conversion of 10%.
W = catalyst weight (g), F = mixed gas flow rate (mol /
h)] [Methanol space-time yield: contact unit weight (1 kg), unit reaction time (1 hr)]
Table 1 shows the yield of methanol per unit (g).

【0015】比較例 硝酸銅3水和物、硝酸亜鉛6水和物、硝酸アルミニウム
9水和物、及び炭酸ナトリウムを用いて上記実施例と同
様な方法で請求範囲からはずれた組成の触媒(比較例1
〜13)を得た。また実施例と同様な方法で二酸化炭素
からのメタノール合成における触媒特性を評価した。得
られた触媒の組成分析結果及び触媒特性を表1に示す。
Comparative Example A catalyst having a composition deviating from the claims in the same manner as in the above example using copper nitrate trihydrate, zinc nitrate hexahydrate, aluminum nitrate nonahydrate, and sodium carbonate (comparative example) Example 1
To 13). The catalytic properties in the synthesis of methanol from carbon dioxide were evaluated in the same manner as in the examples. Table 1 shows the composition analysis results and catalyst characteristics of the obtained catalyst.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】また、表1の実施例及び比較例に示した触
媒の各組成(銅、亜鉛の重量%、残部はアルミニウム)
における触媒特性(メタノール空時収量)の関係を図1
に示す。●は実施例、▲は比較例の触媒特性のデータで
あるが、これより明らかに、実施例に示した範囲の組成
での触媒特性は、従来の発明により示されている範囲の
触媒特性より高いことがわかる。
Each composition of the catalysts shown in the examples and comparative examples in Table 1 (% by weight of copper and zinc, balance being aluminum)
Fig. 1 shows the relationship between catalyst characteristics (space-time yield of methanol)
Shown in The solid circles represent the catalyst characteristics of the examples and the solid triangles represent the data of the catalyst characteristics of the comparative examples. The catalyst characteristics of the compositions in the ranges shown in the examples are clearly clearer than those of the ranges shown by the conventional invention. It turns out that it is high.

【0019】[0019]

【発明の効果】本発明により従来より知られる銅、亜
鉛、アルミニウム酸化物より構成される触媒で、高価な
添加元素や、特殊な調製法を使用しなくても、非常に高
活性な二酸化炭素又は一酸化炭素の水素化反応用触媒を
含むメタノールの合成及び改質触媒を得ることができ
る。
According to the present invention, a catalyst composed of copper, zinc, and aluminum oxides which has been conventionally known, and has a very high activity of carbon dioxide without using an expensive additive element or a special preparation method. Alternatively, a catalyst for synthesizing and reforming methanol containing a catalyst for hydrogenating carbon monoxide can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例並びに比較例の触媒組成と触媒特性の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between catalyst composition and catalyst characteristics of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 29/154 C07C 29/154 31/04 31/04 // C07B 61/00 300 C07B 61/00 300 (72)発明者 小林 正幸 宮城県黒川郡富谷町富ケ丘1−15−22 (72)発明者 山口 正志 宮城県仙台市太白区泉崎1−16−23 (72)発明者 荒川 裕則 東京都千代田区霞が関1丁目3番1号 工 業技術院内 (72)発明者 岡部 清美 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内 (72)発明者 佐山 和弘 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内 (72)発明者 草間 仁 茨城県つくば市東1丁目1番 物質工学工 業技術研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 29/154 C07C 29/154 31/04 31/04 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Kobayashi Masayuki 1-15-22, Tomigaoka, Tomiya-cho, Kurokawa-gun, Miyagi Prefecture (72) Inventor Masashi Yamaguchi 1-16-23, Izumizaki, Taihaku-ku, Sendai, Miyagi Prefecture (72) Inventor Hironori Arakawa 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (72) Inventor, Kiyomi Okabe 1-1-1, Higashi, Tsukuba-shi, Ibaraki Pref. 72) Inventor Hitoshi Kusama 1-1-1 Higashi, Tsukuba, Ibaraki Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅、亜鉛、アルミニウムの酸化物より構
成され、かつ、それぞれの金属元素の割合が、銅:6
8.0〜86.0重量%、亜鉛:4.5〜21.0重量
%、アルミニウム:2.0〜20.0重量%であるメタ
ノール合成及び改質触媒。
1. An oxide of copper, zinc, or aluminum, and the ratio of each metal element is copper: 6.
A methanol synthesis and reforming catalyst containing 8.0 to 86.0% by weight, zinc: 4.5 to 21.0% by weight, and aluminum: 2.0 to 20.0% by weight.
【請求項2】 銅、亜鉛、アルミニウムの酸化物より構
成され、かつ、それぞれの金属元素の割合が、銅:6
8.0〜84.0重量%、亜鉛:5.0〜21.0重量
%、アルミニウム:4.0〜17.0重量%であるメタ
ノール合成及び改質触媒。
2. It is composed of oxides of copper, zinc and aluminum, and the ratio of each metal element is copper: 6.
A methanol synthesis and reforming catalyst containing 8.0 to 84.0% by weight, 5.0 to 21.0% by weight of zinc, and 4.0 to 17.0% by weight of aluminum.
【請求項3】 銅、亜鉛、アルミニウムの酸化物より構
成され、かつ、それぞれの金属元素の割合が、銅:7
2.0〜82.0重量%、亜鉛:7.7〜18.0重量
%、アルミニウム:6.0〜15.0重量%であるメタ
ノール合成及び改質触媒。
3. It is composed of an oxide of copper, zinc and aluminum, and the ratio of each metal element is copper: 7.
A methanol synthesis and reforming catalyst containing 2.0 to 82.0% by weight, zinc: 7.7 to 18.0% by weight, and aluminum: 6.0 to 15.0% by weight.
【請求項4】 銅、亜鉛、アルミニウムの酸化物より構
成され、かつ、それぞれの金属元素の割合が、銅:7
4.0〜81.0重量%、亜鉛:10.0〜14.0重
量%、アルミニウム:6.6〜13.0重量%であるメ
タノール合成及び改質触媒。
4. It is composed of oxides of copper, zinc and aluminum, and the ratio of each metal element is copper: 7
A methanol synthesis and reforming catalyst containing 4.0 to 81.0% by weight, zinc: 10.0 to 14.0% by weight, and aluminum: 6.6 to 13.0% by weight.
JP9080936A 1997-03-31 1997-03-31 Methanol synthesis and reforming catalyst Pending JPH10272361A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9080936A JPH10272361A (en) 1997-03-31 1997-03-31 Methanol synthesis and reforming catalyst
US09/050,207 US6114279A (en) 1997-03-31 1998-03-30 Catalyst for methanol synthesis and reforming
DE69808983T DE69808983T2 (en) 1997-03-31 1998-03-30 Methanol synthesis and reforming catalyst consisting of copper, zinc and aluminum
EP98105792A EP0868943B1 (en) 1997-03-31 1998-03-30 Copper, zinc and aluminium based catalyst for methanol synthesis and reforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080936A JPH10272361A (en) 1997-03-31 1997-03-31 Methanol synthesis and reforming catalyst

Publications (1)

Publication Number Publication Date
JPH10272361A true JPH10272361A (en) 1998-10-13

Family

ID=13732358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080936A Pending JPH10272361A (en) 1997-03-31 1997-03-31 Methanol synthesis and reforming catalyst

Country Status (1)

Country Link
JP (1) JPH10272361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185190A (en) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc Producing method of hydrogen for fuel cell
JP2013163675A (en) * 2007-10-30 2013-08-22 Toyama Univ Hydrogen reduction method of carbon dioxide
US8623782B2 (en) 2009-02-23 2014-01-07 Mitsui Chemicals, Inc. Process for preparing copper-based catalyst, copper-based catalyst, and pretreatment method of the same
US10252963B2 (en) 2014-10-20 2019-04-09 Mitsubishi Gas Chemical Company, Inc. Method for producing methanol and apparatus for producing methanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185190A (en) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc Producing method of hydrogen for fuel cell
JP2013163675A (en) * 2007-10-30 2013-08-22 Toyama Univ Hydrogen reduction method of carbon dioxide
US8623782B2 (en) 2009-02-23 2014-01-07 Mitsui Chemicals, Inc. Process for preparing copper-based catalyst, copper-based catalyst, and pretreatment method of the same
US10252963B2 (en) 2014-10-20 2019-04-09 Mitsubishi Gas Chemical Company, Inc. Method for producing methanol and apparatus for producing methanol

Similar Documents

Publication Publication Date Title
US6114279A (en) Catalyst for methanol synthesis and reforming
US5990040A (en) Promoted and stabilized copper oxide and zinc oxide catalyst and preparation
US6627572B1 (en) Water gas shift catalyst
CN102105222B (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
US5705136A (en) Catalyzed decomposition of nitrogen oxides on metal oxide supports
EP0938446B1 (en) Method of hydrocarbon reforming and catalyst and catalyst precursor therefor
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
WO2003082468A1 (en) Water gas shift catalysts
NZ210549A (en) Modified copper- and zinc- containing catalyst and methanol production
KR101359990B1 (en) Catalyst for Reforming of Methane with the Enhanced Stability for Sulfur components, Preparing Method Thereof and Methane Reforming Method Using The Catalyst
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
EP0721799B1 (en) Promoted and stabilized copper oxide and zinc oxide catalyst and preparation method
US5508246A (en) Catalysts for iso-alcohol synthesis from CO+H2
EP0110357B1 (en) Process for the production of mixed alcohols
US6926881B2 (en) Process for producing hydrogen-containing gas
JP3943648B2 (en) Methanol synthesis method
JPH10272361A (en) Methanol synthesis and reforming catalyst
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
JPH09141099A (en) Methanol synthesis catalyst
JPS5870839A (en) Catalyst for steam reforming of methanol
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP3527972B2 (en) Methanol synthesis catalyst
JPH09141101A (en) Methanol synthesizing catalyst
EP1287890A1 (en) Method for preparing catalyst for reforming methanol