JPH10270076A - Secondary lithium battery electrolyte - Google Patents

Secondary lithium battery electrolyte

Info

Publication number
JPH10270076A
JPH10270076A JP9072235A JP7223597A JPH10270076A JP H10270076 A JPH10270076 A JP H10270076A JP 9072235 A JP9072235 A JP 9072235A JP 7223597 A JP7223597 A JP 7223597A JP H10270076 A JPH10270076 A JP H10270076A
Authority
JP
Japan
Prior art keywords
ppm
electrolyte
less
aqueous solvent
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9072235A
Other languages
Japanese (ja)
Other versions
JP3087956B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Atsuo Hidaka
敦男 日高
Koji Abe
浩司 安部
Yosuke Ueno
洋介 上野
Noriyuki Ohira
則行 大平
Masahiko Watabe
昌彦 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13483430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10270076(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP09072235A priority Critical patent/JP3087956B2/en
Priority to FR9803615A priority patent/FR2761531B1/en
Priority to US09/046,964 priority patent/US6045945A/en
Priority to KR19980010319A priority patent/KR100282037B1/en
Publication of JPH10270076A publication Critical patent/JPH10270076A/en
Application granted granted Critical
Publication of JP3087956B2 publication Critical patent/JP3087956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery which has good cycle characteristics and has good battery characteristics such as the electric capacity or storage stability, by specifying the HF value in electrolyte. SOLUTION: The secondary lithium battery electrolyte contains nonaqueous solvent and fluorine-containing electrolyte which can release lithium ions, and concentration of an alcohol group in the nonaqueous solvent is less than 50 ppm, especially, concentration of a diol group is less than 20 ppm, and that of a moon-alcohol group is less than 30 ppm. HF value in the electrolyte which consists of nonaqueous solvent and fluorine containing electrolyte is less than 30 ppm, preferably less than 20 ppm, especially preferably less than 15 ppm. Battery members other than electrolyte are specified especially, various members used in the past can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サイクル特性に優
れ、更に電気容量、保存安定性などの電池特性にも優れ
たリチウム二次電池を構成できるリチウム二次電池用電
解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery, which can form a lithium secondary battery having excellent cycle characteristics and also excellent battery characteristics such as electric capacity and storage stability.

【0002】[0002]

【従来の技術】リチウム二次電池用電解液としては、環
状カーボネートや、鎖状カーボネート、エーテルなどの
溶媒にLiPF6 などの含フッ素電解質を溶解した非水
系電解液が、高電圧及び高容量の電池を得るのに好適で
あることからよく利用されている。しかしながら、この
ような非水電解液を用いるリチウム二次電池は、サイク
ル特性、電気容量、保存安定性などの電池特性において
必ずしも満足できるものではなく、特に電池性能の低下
を起こさないサイクル特性に優れたリチウム二次電池用
電解液が望まれている。電池特性を向上させるために種
々の方法が提案されており、例えば特開平7−2113
49号公報には含フッ素電解質を溶解した非水電解液を
フッ素吸着剤であるMgOなどの金属酸化物により処理
してHFのような遊離酸を20〜25ppmとする方法
が開示されている。しかしながら、従来より金属酸化物
とHFとの反応により金属フッ化物と水が生成すること
が知られている。また、水がLiPF6 、LiBF4
LiAsF6 などの含フッ素電解質と反応してHFを生
成することは公知であることから、該公報の方法では、
この反応により水が生成し、生成した水と電解液中のL
iPF6 との加水分解反応により再びHFを生成し、電
解液中のHF量は時間の経過とともに再び増加すること
が懸念される。一方、環状カーボネートからジオール類
を除去する方法として、シリカゲル、活性炭、活性アル
ミナ、モレキュラーシーブス等の吸着剤による吸着法が
知られている。例えば、特開平5−74485号には、
非水電解液の溶媒として環状カーボネートを含む溶液が
開示され、非水電解液中のジオールを1500ppm以
下の低濃度にするために、環状カーボネートを蒸留する
方法や、吸着剤により処理する方法が記載されている。
また、ジオールを不純物として含有する環状カーボネー
トを鎖状カーボネートの存在下に合成ゼオライトと接触
させて、環状カーボネート中のジオールを除去する方法
が報告されている。すなわち、特開平8−325208
号に環状カーボネートと鎖状カーボネートの共存下にゼ
オライトでエチレングリコールと鎖状カーボネートを反
応させてモノアルコールを生成させ、このアルコールを
モレキュラーシーブスで除去処理する方法が記載されて
いる。
2. Description of the Related Art As an electrolyte for a lithium secondary battery, a non-aqueous electrolyte obtained by dissolving a fluorine-containing electrolyte such as LiPF 6 in a solvent such as a cyclic carbonate, a chain carbonate, or an ether has a high voltage and a high capacity. It is often used because it is suitable for obtaining batteries. However, lithium secondary batteries using such a non-aqueous electrolyte are not always satisfactory in battery characteristics such as cycle characteristics, electric capacity, storage stability, etc., and are particularly excellent in cycle characteristics which do not cause a decrease in battery performance. Further, an electrolyte for a lithium secondary battery has been desired. Various methods have been proposed to improve battery characteristics.
No. 49 discloses a method in which a non-aqueous electrolyte solution in which a fluorine-containing electrolyte is dissolved is treated with a metal oxide such as MgO as a fluorine adsorbent to reduce free acid such as HF to 20 to 25 ppm. However, it is conventionally known that a reaction between a metal oxide and HF generates a metal fluoride and water. In addition, water is LiPF 6 , LiBF 4 ,
It is known that HF is produced by reacting with a fluorinated electrolyte such as LiAsF 6 .
Water is generated by this reaction, and the generated water and L in the electrolyte are removed.
HF is generated again by the hydrolysis reaction with iPF 6, and there is a concern that the amount of HF in the electrolytic solution will increase again with the passage of time. On the other hand, as a method for removing diols from cyclic carbonate, an adsorption method using an adsorbent such as silica gel, activated carbon, activated alumina, and molecular sieves is known. For example, in Japanese Patent Application Laid-Open No. 5-74485,
A solution containing a cyclic carbonate as a solvent of the non-aqueous electrolyte is disclosed, and in order to make the diol in the non-aqueous electrolyte a low concentration of 1500 ppm or less, a method of distilling the cyclic carbonate and a method of treating with a sorbent are described. Have been.
Further, a method has been reported in which a cyclic carbonate containing a diol as an impurity is brought into contact with a synthetic zeolite in the presence of a chain carbonate to remove the diol in the cyclic carbonate. That is, JP-A-8-325208
Japanese Patent Application Laid-Open No. H10-163,086 describes a method in which ethylene glycol and a chain carbonate are reacted with zeolite in the presence of a cyclic carbonate and a chain carbonate to form a monoalcohol, and the alcohol is removed with a molecular sieve.

【0003】[0003]

【発明が解決しようとする課題】前記のようなリチウム
二次電池用電解液が有する問題を鑑みて、非水溶媒中の
アルコール類を除去することにより、該非水溶媒と含フ
ッ素電解質からなる電解液中のHF量を低減し、電池特
性、特にサイクル特性に優れたリチウム二次電池を構成
できるリチウム二次電池用電解液を提供することを課題
とする。
In view of the above-mentioned problems of the electrolyte solution for a lithium secondary battery, by removing alcohols in a non-aqueous solvent, an electrolyte comprising the non-aqueous solvent and a fluorine-containing electrolyte is removed. It is an object of the present invention to provide an electrolyte for a lithium secondary battery capable of reducing the amount of HF in a liquid and forming a lithium secondary battery having excellent battery characteristics, particularly excellent cycle characteristics.

【0004】[0004]

【課題を解決するための手段】本発明者らは、電解液中
のHFの含有量が多くなると、リチウム二次電池のサイ
クル特性が低下し、更に電気容量、保存安定性などの電
池特性も低下してくることから、電解液中のHFを低減
させるために鋭意検討を行った。その結果、エチレンカ
ーボネートのような高誘電率溶媒やジメチルカーボネー
トのような低粘度溶媒に含まれているジオール類やモノ
アルコール類と含フッ素電解質とが常温で徐々に反応し
てHFが生成するということを見い出し、これによって
電解液中のHFが、時間の経過と共に増大し、電池のサ
イクル特性を低下させていることが分かり本発明に至っ
た。本発明は、アルコール類が50ppm未満の非水溶
媒及びリチウムイオンを放出できる含フッ素電解質から
なるリチウム二次電池用電解液において、HF量が30
ppm未満であることを特徴とするリチウム二次電池用
電解液に関する。
The inventors of the present invention have found that when the content of HF in the electrolytic solution increases, the cycle characteristics of the lithium secondary battery deteriorate, and the battery characteristics such as electric capacity and storage stability also increase. Since it is decreasing, intensive studies were carried out to reduce HF in the electrolytic solution. As a result, diols or monoalcohols contained in a high-dielectric solvent such as ethylene carbonate or a low-viscosity solvent such as dimethyl carbonate gradually react with the fluorine-containing electrolyte at room temperature to generate HF. From this, it was found that the HF in the electrolytic solution increased with the passage of time, thereby deteriorating the cycle characteristics of the battery, leading to the present invention. The present invention relates to a lithium secondary battery electrolyte comprising a non-aqueous solvent in which alcohols are less than 50 ppm and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the HF content is 30%.
The present invention relates to an electrolyte solution for a lithium secondary battery, which has a concentration of less than 1 ppm.

【0005】[0005]

【発明の実施の形態】本発明で使用される非水溶媒とし
ては、高誘電率溶媒と低粘度溶媒とからなるものが好ま
しい。高誘電率溶媒としては、例えば、エチレンカーボ
ネート(EC)、プロピレンカーボネート(PC)、ブ
チレンカーボネート(BC)などの環状カーボネート類
が好適に挙げられる。これらの高誘電率溶媒は一種類で
使用してもよく、また二種類以上組み合わせて使用して
もよい。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous solvent used in the present invention is preferably a solvent comprising a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0006】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。前記高誘電率溶媒と低粘度溶媒とはそ
れぞれ任意に選択され組み合わせて使用される。なお、
前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘
電率溶媒:低粘度溶媒)で通常1:9〜4:1、好まし
くは1:4〜7:3の割合で使用される。
As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are each arbitrarily selected and used in combination. In addition,
The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3.

【0007】本発明で使用されるリチウムイオンを放出
できる含フッ素電解質としては、例えば、LiPF6
ようなフルオロリン酸塩、LiBF4 のようなフルオロ
ホウ素酸塩、LiAsF6 のようなフルオロヒ素酸塩、
またはLiOSO2 CF3 などのトリフレート塩などが
挙げられる。これらの電解質は、少なくとも1種類が選
択されて使用される。これら含フッ素電解質は前記非水
溶媒に通常0.1M〜3M、好ましくは0.5〜1.5
Mの濃度で溶解されて使用される。
The fluorine-containing electrolyte capable of releasing lithium ions used in the present invention includes, for example, fluorophosphates such as LiPF 6 , fluoroborates such as LiBF 4 , and fluoroarsenic acids such as LiAsF 6 salt,
Or a triflate salt such as LiOSO 2 CF 3 . At least one of these electrolytes is selected and used. These fluorinated electrolytes are usually added to the non-aqueous solvent in an amount of 0.1 M to 3 M, preferably 0.5 to 1.5 M.
It is used after being dissolved at a concentration of M.

【0008】本発明のリチウム二次電池用電解液として
は、非水溶媒及びリチウムイオンを放出できる含フッ素
電解質とからなるものであって、前記非水溶媒中のアル
コール類の含有量が50ppm未満、中でもジオール類
が20ppm未満、モノアルコール類が30ppm未満
であることを特徴とし、この非水溶媒と含フッ素電解質
からなるリチウム二次電池用電解液中のHF量が、30
ppm未満、好ましくは20ppm未満、特に好ましく
は15ppm未満であるリチウム二次電池用電解液であ
る。
The electrolyte for a lithium secondary battery of the present invention comprises a non-aqueous solvent and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the content of alcohols in the non-aqueous solvent is less than 50 ppm. In particular, diols are less than 20 ppm and monoalcohols are less than 30 ppm, and the amount of HF in the lithium secondary battery electrolytic solution comprising the non-aqueous solvent and the fluorine-containing electrolyte is less than 30 ppm.
An electrolyte for a lithium secondary battery having a content of less than 20 ppm, preferably less than 20 ppm, and particularly preferably less than 15 ppm.

【0009】そこで、各使用原料を以下のような方法に
より精製して、アルコール類を除去した。非水溶媒を構
成する市販の高誘電率溶媒及び低粘度溶媒は、まずエチ
レンカーボネートのような常温で固体の原料は晶析処理
を行うことが好ましく、またジエチルカーボネートのよ
うな常温で液体の原料は、還流比率0.01〜300、
理論段数5〜90段で精密蒸留したものを使用すること
が好ましい。晶析は、アセトニトリル、アセトン、トル
エンのような溶媒を使用して行うことが望ましい。精密
蒸留の条件は、使用される市販原料に不純物として含ま
れるアルコールの種類と量によっても異なるが、通常上
記条件で精製するのが好ましい。なお、市販原料の精製
に際し、晶析に代えて精密蒸留を採用することもでき、
また晶析を行った後、精密蒸留することもできる。次い
で前記非水溶媒を構成する高誘電率溶媒と低粘度溶媒
は、それぞれモレキュラーシーブス(商品名。以下同
じ。)4A及び/またはモレキュラーシーブス5Aのよ
うな吸着剤により精製処理しアルコール類を除去するの
が好ましい。これら高誘電率溶媒と低粘度溶媒とを所定
の比率となるように調製した後、更に精製するために前
記と同様なモレキュラーシーブス4A及び/またはモレ
キュラーシーブス5Aのような吸着剤により精製処理し
アルコール類を除去するようにしても良い。以上のよう
に吸着剤処理した非水溶媒に、LiPF6 のような含フ
ッ素電解質を所定濃度となるように溶解した。
Therefore, each raw material used was purified by the following method to remove alcohols. Commercially available high-dielectric solvent and low-viscosity solvent constituting the non-aqueous solvent are preferably first subjected to crystallization treatment at room temperature such as ethylene carbonate, and also at room temperature as raw material such as diethyl carbonate. Is a reflux ratio of 0.01 to 300,
It is preferable to use one that has been subjected to precision distillation with 5 to 90 theoretical plates. The crystallization is desirably performed using a solvent such as acetonitrile, acetone, and toluene. The conditions for precision distillation vary depending on the type and amount of alcohol contained as impurities in the commercially available raw materials to be used, but it is usually preferable to purify under the above conditions. In the purification of commercial raw materials, precision distillation can be used instead of crystallization,
After crystallization, precision distillation can also be performed. Next, the high dielectric constant solvent and the low viscosity solvent constituting the non-aqueous solvent are purified by an adsorbent such as Molecular Sieves (trade name; the same applies hereinafter) 4A and / or Molecular Sieves 5A to remove alcohols. Is preferred. After preparing such a high dielectric constant solvent and a low viscosity solvent at a predetermined ratio, the alcohol is purified by an adsorbent such as Molecular Sieves 4A and / or Molecular Sieves 5A similar to the above for further purification. Classes may be removed. In the non-aqueous solvent treated as described above, a fluorinated electrolyte such as LiPF 6 was dissolved to a predetermined concentration.

【0010】以下に非水溶媒の具体的な精製処理方法に
ついて詳述する。高誘電率溶媒及び低粘度溶媒のそれぞ
れの精製処理も同様な方法で行われる。前記精製処理に
用いられる吸着剤として、シリカゲル、アルミナ、活性
炭、モレキュラーシーブス4A、モレキュラーシーブス
5Aなどが挙げられる。接触方法は非水溶媒を連続的に
通液する方法(以下、連続法という。)、または、非水
溶媒中に吸着剤を添加し、静置または攪拌する方法(以
下、バッチ法という。)が挙げられる。連続法の場合、
接触時間は液空間速度(LHSV)として0.1〜4/
時間であることが好ましい。また、接触温度は10℃〜
60℃が好ましい。バッチ法の場合は非水溶媒に対して
0.1〜30重量%を添加し、0.5時間〜24時間処
理することが好ましい。非水溶媒中に含まれるアルコー
ル量が多い場合は、蒸留や晶析を繰り返したり、吸着法
の滞留時間あるいは接触時間を長くして十分に精製して
非水溶媒中のアルコール量を50ppm未満とすること
ができる。前記吸着剤の中でモレキュラーシーブス4A
を使用した場合にはアルコール類の選択的な吸着能が高
く、しかも吸着破過時間が大きいので好ましい。
Hereinafter, a specific method for purifying a non-aqueous solvent will be described in detail. The respective purification treatments of the high dielectric constant solvent and the low viscosity solvent are performed in the same manner. Examples of the adsorbent used for the purification treatment include silica gel, alumina, activated carbon, molecular sieves 4A, and molecular sieves 5A. The contact method is a method in which a non-aqueous solvent is passed continuously (hereinafter, referred to as a continuous method), or a method in which an adsorbent is added to a non-aqueous solvent and allowed to stand or stirred (hereinafter, referred to as a batch method). Is mentioned. In the case of the continuous method,
The contact time is 0.1 to 4 / liquid hourly space velocity (LHSV).
It is preferably time. The contact temperature is 10 ° C ~
60 ° C. is preferred. In the case of a batch method, it is preferable to add 0.1 to 30% by weight based on the non-aqueous solvent, and to process for 0.5 to 24 hours. When the amount of alcohol contained in the non-aqueous solvent is large, distillation and crystallization are repeated, or the residence time or contact time of the adsorption method is lengthened to sufficiently purify the alcohol and the amount of alcohol in the non-aqueous solvent is reduced to less than 50 ppm. can do. Molecular sieves 4A among the adsorbents
The use of is preferred because the ability to selectively adsorb alcohols is high and the adsorption breakthrough time is long.

【0011】精製方法や精製条件は使用される各原料の
種類やその中に含まれるアルコールの種類と量により異
なるので、適宜、適切な精製方法や精製条件を選択する
ことが必要である。これらの原料を用いて作製した非水
溶媒中のアルコール含有量は50ppm未満となり、こ
の非水溶媒と含フッ素電解質からなる電解液中のHF含
有量は30ppm未満となる。特に電解液を調製した後
のHF量が、経時的に増大することも殆ど無く、リチウ
ム二次電池を構成した場合にサイクル特性が向上する。
Since the purification method and purification conditions vary depending on the type of each raw material used and the type and amount of alcohol contained therein, it is necessary to appropriately select appropriate purification methods and purification conditions. The alcohol content in the non-aqueous solvent produced using these raw materials is less than 50 ppm, and the HF content in the electrolytic solution comprising the non-aqueous solvent and the fluorinated electrolyte is less than 30 ppm. Particularly, the amount of HF after the preparation of the electrolytic solution hardly increases with time, and the cycle characteristics are improved when a lithium secondary battery is formed.

【0012】本発明のリチウム二次電池用電解液を用い
たリチウム二次電池は、サイクル特性が良好であり、さ
らに電気容量、保存安定性などの電池特性に優れてい
る。電解液以外のリチウム二次電池の構成部材について
は特に限定されず、従来使用されている種々の構成部材
を使用できる。例えば、正極材料(正極活物質)として
は、クロム、バナジウム、マンガン、鉄、コバルト及び
ニッケルよりなる群から選ばれる少なくとも一種の金属
とリチウムとの複合金属酸化物が使用される。このよう
な複合金属酸化物としては、例えば、LiCoO2 、L
iMn2 4 、LiNiO2 などが挙げられる。
A lithium secondary battery using the electrolyte solution for a lithium secondary battery of the present invention has good cycle characteristics, and also has excellent battery characteristics such as electric capacity and storage stability. The constituent members of the lithium secondary battery other than the electrolyte are not particularly limited, and various conventionally used constituent members can be used. For example, as the positive electrode material (positive electrode active material), a composite metal oxide of lithium and at least one metal selected from the group consisting of chromium, vanadium, manganese, iron, cobalt, and nickel is used. Examples of such a composite metal oxide include LiCoO 2 , L
iMn 2 O 4 , LiNiO 2 and the like can be mentioned.

【0013】正極は、前記の正極材料をアセチレンブラ
ック、カーボンブラック等の導電剤及びポリテトラフル
オロエチレン(PTFE)、ポリフッ化ビニリデン(P
VDF)等の結着剤と混練して正極合剤とした後、この
正極合剤を集電体としてアルミニウムやステンレス製の
箔またはラス板に圧延して、50〜250℃程度の温度
で2時間程度真空下で加温処理することによって作製さ
れる。
The positive electrode is made of a conductive material such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (P).
VDF) and the like to form a positive electrode mixture, and this positive electrode mixture is rolled as a current collector into an aluminum or stainless steel foil or lath plate at a temperature of about 50 to 250 ° C. It is produced by heating under vacuum for about an hour.

【0014】負極材料(負極活物質)としては、リチウ
ム金属、リチウム合金、炭素材料(熱分解炭素類、コー
クス類、グラファイト類、ガラス状炭素類、有機高分子
化合物燃焼体、炭素繊維、活性炭等)やスズ複合酸化物
などのリチウムを吸蔵・放出することが可能な物質が使
用される。なお、炭素材料のような粉末の材料はエチレ
ンプロピレンジエンモノマー(EPDM)、ポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)等の結着剤と混練して負極合剤として使用
される。
Examples of the negative electrode material (negative electrode active material) include lithium metals, lithium alloys, carbon materials (pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound burners, carbon fibers, activated carbon, etc. ) Or a compound capable of occluding and releasing lithium, such as a tin composite oxide. A powder material such as a carbon material is kneaded with a binder such as ethylene propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF) to be used as a negative electrode mixture.

【0015】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極及び単層又は複層のセパレー
ターを有するコイン型電池、更に正極、負極及びロール
状のセパレーターを有する円筒型電池や角型電池などが
一例として挙げられる。なお、セパレーターとしては、
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator, and the like. A prismatic battery is an example. In addition, as a separator,
Known microporous polyolefin membranes, woven fabrics, nonwoven fabrics and the like are used.

【0016】[0016]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明するが、これらは本発明を何ら限定するもの
ではない。 実施例1 〔電解液の調製〕市販のECをアセトニトリルで2回晶
析した後、モレキュラーシーブス4Aで吸着処理(50
℃、LHSV;1/時間)を行った。一方、DMCは還
流比1、理論段数30段で十分に精密蒸留した後、LH
SVを1/時間としてモレキュラーシーブス4Aで吸着
処理(25℃)した。その後、EC:DMC(容量比)
=1:2の非水溶媒を調製した。その時、非水溶媒中の
ジオール類、モノアルコール類は検出されなかった。こ
れにLiPF6 を0.8Mの濃度になるように溶解し
た。その結果、1日後の電解液中のHF量は10ppm
であった。2週間後に再度電解液中のHF量を測定した
が10ppmと変わらなかった。
EXAMPLES Next, the present invention will be described specifically with reference to examples and comparative examples, but these do not limit the present invention in any way. Example 1 [Preparation of electrolytic solution] Commercially available EC was crystallized twice with acetonitrile, and then adsorbed with molecular sieves 4A (50).
C., LHSV; 1 / hour). On the other hand, DMC was subjected to sufficiently precise distillation at a reflux ratio of 1 and a theoretical plate number of 30.
An adsorption treatment (25 ° C.) was performed with molecular sieves 4A at an SV of 1 / hour. After that, EC: DMC (volume ratio)
A 1: 2 non-aqueous solvent was prepared. At that time, diols and monoalcohols in the non-aqueous solvent were not detected. LiPF 6 was dissolved therein to a concentration of 0.8M. As a result, the amount of HF in the electrolyte one day later was 10 ppm
Met. Two weeks later, the amount of HF in the electrolytic solution was measured again, but was unchanged at 10 ppm.

【0017】〔リチウム二次電池の作製及び電池特性の
測定〕LiCoO2 (正極活物質)を70重量%、アセ
チレンブラック(導電剤)を20重量%、ポリテトラフ
ルオロエチレン(結着剤)を10重量%の割合で混合
し、これを圧縮成型して正極を調製した。天然黒鉛(負
極活物質)を95重量%、エチレンプロピレンジエンモ
ノマー(結着剤)を5重量%の割合で混合し、これを圧
縮成型して負極を調製した。そして、ポリプロピレン微
孔性フィルムのセパレーターを用い、上記の電解液を含
浸させてコイン型電池(直径20mm、厚さ3.2m
m)を作製した。このコイン型電池を用いて、室温(2
0℃)下、0.8mAの定電流で、充電終止電圧4.2
V、放電終止電圧2.7Vの電位規制として充放電を繰
り返したところ、100サイクル後の放電容量維持率は
90%であった。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (cathode active material) was 70% by weight, acetylene black (conductive agent) was 20% by weight, and polytetrafluoroethylene (binder) was 10% by weight. The mixture was mixed at a ratio of weight%, and this was compression molded to prepare a positive electrode. 95% by weight of natural graphite (negative electrode active material) and 5% by weight of ethylene propylene diene monomer (binder) were mixed and compression molded to prepare a negative electrode. Then, using a separator made of polypropylene microporous film, impregnated with the above-mentioned electrolytic solution, a coin-type battery (diameter: 20 mm, thickness: 3.2 m)
m) was prepared. Room temperature (2
0 ° C.) at a constant current of 0.8 mA and a charge end voltage of 4.2
When charge and discharge were repeated as a potential regulation of 2.7 V and a discharge end voltage of 2.7 V, the discharge capacity retention rate after 100 cycles was 90%.

【0018】実施例2 市販のEC及びDMCをそれぞれ別個に、還流比1、理
論段数30段で、精密蒸留した後、それぞれをLHSV
を2/時間として、ECについては50℃、DMCにつ
いては25℃でモレキュラーシーブス4A吸着処理を行
った。その後、EC:DMC(容量比)=1:2の非水
溶媒を調製し、LHSVを2/時間として、モレキュラ
ーシーブス4A(25℃)で処理した。その時、非水溶
媒中のジオール含有量2ppm、モノアルコール含有量
1ppm、アルコール類の総含有量3ppmであった。
これにLiPF6 を0.8Mの濃度になるように溶解し
た。その結果、1日後の電解液のHF量は11ppmで
あり、2週間後は11ppmであった。この電解液を用
いて実施例1と同様にコイン型電池を作製し、充放電を
繰り返したところ100サイクル後の放電容量維持率は
88%であった。
Example 2 Commercially available EC and DMC were each separately subjected to precision distillation at a reflux ratio of 1 and a theoretical plate number of 30 and then each was subjected to LHSV.
2 / hour, the molecular sieve 4A adsorption treatment was performed at 50 ° C. for EC and 25 ° C. for DMC. Thereafter, a non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared, and treated with Molecular Sieves 4A (25 ° C.) at an LHSV of 2 / hour. At that time, the diol content in the non-aqueous solvent was 2 ppm, the monoalcohol content was 1 ppm, and the total content of alcohols was 3 ppm.
LiPF 6 was dissolved therein to a concentration of 0.8M. As a result, the HF content of the electrolytic solution after 1 day was 11 ppm and after 2 weeks was 11 ppm. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 88%.

【0019】実施例3 市販のECをアセトニトリルで1回晶析した後、モレキ
ュラーシーブス5Aで処理(50℃、LHSV;2/時
間)を行った。一方、DECは還流比0.5、理論段数
30段で十分に精密蒸留した後、LHSVを2/時間と
してモレキュラーシーブス4Aで吸着処理(25℃)を
行った。その後、EC:DEC(容量比)=1:2の非
水溶媒を調製し、モレキュラーシーブス4Aで処理(2
5℃、LHSV;2/時間)した。その時、非水溶媒中
のジオール含有量3ppm、モノアルコール含有量2p
pm、アルコール類の総含有量5ppmであった。これ
にLiPF6 を0.8Mの濃度になるように溶解した。
その結果、1日後の電解液中のHF量は13ppmであ
り、2週間後は13ppmであった。この電解液を用い
て実施例1と同様にコイン型電池を作製し、充放電を繰
り返したところ100サイクル後の放電容量維持率は8
7%であった。
Example 3 Commercially available EC was crystallized once with acetonitrile, and then treated with molecular sieves 5A (50 ° C., LHSV; 2 / hour). On the other hand, DEC was subjected to sufficiently precise distillation at a reflux ratio of 0.5 and a theoretical plate number of 30 and then subjected to an adsorption treatment (25 ° C.) with molecular sieves 4A at a LHSV of 2 / hour. Thereafter, a non-aqueous solvent of EC: DEC (volume ratio) = 1: 2 was prepared, and treated with molecular sieves 4A (2
5 ° C., LHSV; 2 / hour). At that time, the diol content in the non-aqueous solvent was 3 ppm, and the monoalcohol content was 2 p.
pm, and the total content of alcohols was 5 ppm. LiPF 6 was dissolved therein to a concentration of 0.8M.
As a result, the amount of HF in the electrolytic solution after 1 day was 13 ppm, and after 2 weeks, it was 13 ppm. Using this electrolytic solution, a coin-type battery was manufactured in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 8%.
7%.

【0020】実施例4 市販のEC及びDMCをそれぞれ別個に、還流比0.
5、理論段数30段で精密蒸留した。その後、EC:D
MC(容量比)=1:2の非水溶媒を調製し、モレキュ
ラーシーブス5A(25℃、LHSV;4/時間)及び
4A(25℃、LHSV;4/時間)で処理した。その
時、非水溶媒中のジオール含有量3ppm、モノアルコ
ール含有量3ppm、アルコール類の総含有量6ppm
であった。これにLiPF6 を0.8Mの濃度になるよ
うに溶解した。その結果、1日後の電解液のHF量は1
3ppmであり、2週間後は14ppmであった。この
電解液を用いて実施例1と同様にコイン型電池を作製
し、充放電を繰り返したところ100サイクル後の放電
容量維持率は87%であった。
Example 4 Commercially available EC and DMC were each separately subjected to a reflux ratio of 0.1.
5. Precision distillation was performed with 30 theoretical plates. After that, EC: D
A non-aqueous solvent having a MC (volume ratio) of 1: 2 was prepared and treated with Molecular Sieves 5A (25 ° C., LHSV; 4 / hour) and 4A (25 ° C., LHSV; 4 / hour). At that time, the diol content in the non-aqueous solvent was 3 ppm, the monoalcohol content was 3 ppm, and the total content of alcohols was 6 ppm.
Met. LiPF 6 was dissolved therein to a concentration of 0.8M. As a result, the amount of HF in the electrolyte one day later was 1
It was 3 ppm and 14 ppm after 2 weeks. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 87%.

【0021】実施例5 市販のECをモレキュラーシーブス4Aで処理(50
℃、LHSV;1/時間)を行った。一方、DMCを還
流比0.5、理論段数30段で精密蒸留した後、モレキ
ュラーシーブス4Aで吸着処理(25℃、LHSV;1
/時間)を行った。その後、EC:DMC(容量比)=
1:2の非水溶媒を調製し、モレキュラーシーブス4A
で処理(25℃、LHSV;2/時間)した。その時、
非水溶媒中のジオール含有量10ppm、モノアルコー
ル含有量11ppm、アルコール類の総含有量21pp
mであった。これにLiPF6 を0.8Mの濃度になる
ように溶解した。その結果、1日後の電解液のHF量は
16ppmであり、2週間後は18ppmであった。こ
の電解液を用いて実施例1と同様にコイン型電池を作製
し、充放電を繰り返したところ100サイクル後の放電
容量維持率は83%であった。
Example 5 Commercially available EC was treated with Molecular Sieves 4A (50
C., LHSV; 1 / hour). On the other hand, DMC was subjected to precision distillation at a reflux ratio of 0.5 and a theoretical plate number of 30 and then subjected to adsorption treatment with molecular sieves 4A (25 ° C., LHSV; 1).
/ Hour). Then, EC: DMC (volume ratio) =
A 1: 2 non-aqueous solvent was prepared, and molecular sieves 4A was prepared.
(25 ° C., LHSV; 2 / hour). At that time,
Diol content in non-aqueous solvent 10 ppm, monoalcohol content 11 ppm, total content of alcohols 21 pp
m. LiPF 6 was dissolved therein to a concentration of 0.8M. As a result, the amount of HF in the electrolytic solution after one day was 16 ppm, and the amount after two weeks was 18 ppm. Using this electrolytic solution, a coin-type battery was fabricated in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 83%.

【0022】実施例6 市販のECと還流比0.5、理論段数30段で精密蒸留
したDMCを、EC:DMC(容量比)=1:2の非水
溶媒となるように調製し、モレキュラーシーブス5Aで
処理(25℃、LHSV;4/時間)し、続いてモレキ
ュラーシーブス4Aで処理(25℃、LHSV;4/時
間)した。その時、非水溶媒中のジオール含有量16p
pm、モノアルコール含有量19ppm、アルコール類
の総含有量35ppmであった。これにLiPF6
0.8Mの濃度になるように溶解した。その結果、1日
後の電解液のHF量は18ppmであり、2週間後は2
5ppmであった。この電解液を用いて実施例1と同様
にコイン型電池を作製し、充放電を繰り返したところ1
00サイクル後の放電容量維持率は79%であった。
Example 6 A commercially available EC was subjected to precision distillation with a reflux ratio of 0.5 and a theoretical plate number of 30 to prepare DMC, which was prepared as a non-aqueous solvent of EC: DMC (volume ratio) = 1: 2. Treatment with Sieves 5A (25 ° C., LHSV; 4 / hour) was followed by treatment with molecular sieves 4A (25 ° C., LHSV; 4 / hour). At that time, the diol content in the non-aqueous solvent was 16p
pm, the content of monoalcohol was 19 ppm, and the total content of alcohols was 35 ppm. LiPF 6 was dissolved therein to a concentration of 0.8M. As a result, the HF content of the electrolyte solution after 1 day was 18 ppm, and 2 hours after 2 weeks.
It was 5 ppm. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charging and discharging were repeated.
The discharge capacity retention rate after the 00 cycles was 79%.

【0023】実施例7 市販のEC及び1,2−ジメトキシエタン(DME)を
それぞれ別個に、還流比0.7、理論段数30段で、精
密蒸留した。その後、EC:DME(容量比)=1:2
の非水溶媒を調製し、モレキュラーシーブス5A(25
℃、LHSV;4/時間)及び4A(25℃、LHS
V;4/時間)で処理した。その時、非水溶媒中のジオ
ール含有量2ppm、モノアルコール含有量0ppm、
アルコール類の総含有量2ppmであった。これにLi
PF6 を0.8Mの濃度になるように溶解した。その結
果、1日後の電解液のHF量は11ppmであり、2週
間後は12ppmであった。この電解液を用いて実施例
1と同様にコイン型電池を作製し、充放電を繰り返した
ところ100サイクル後の放電容量維持率は88%であ
った。
Example 7 Commercially available EC and 1,2-dimethoxyethane (DME) were precision distilled separately at a reflux ratio of 0.7 and a theoretical plate number of 30. Thereafter, EC: DME (capacity ratio) = 1: 2
Of a non-aqueous solvent of molecular sieves 5A (25
° C, LHSV; 4 / hour) and 4A (25 ° C, LHS
V; 4 / hour). At that time, the diol content in the non-aqueous solvent was 2 ppm, the monoalcohol content was 0 ppm,
The total content of alcohols was 2 ppm. This is Li
The PF 6 was dissolved to a concentration of 0.8M. As a result, the HF content of the electrolytic solution after 1 day was 11 ppm, and after 2 weeks was 12 ppm. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charge and discharge were repeated. As a result, the discharge capacity retention rate after 100 cycles was 88%.

【0024】比較例1 市販のECとDMCとを混合して、EC:DMC(容量
比)=1:2の非水溶媒を調製し、モレキュラーシーブ
ス5Aで処理(25℃)した。LHSVは5/時間であ
った。その時、電解溶媒中のジオール含有量40pp
m、モノアルコール含有量45ppm、アルコール類の
総含有量85ppmであった。これにLiPF6 を0.
8Mの濃度になるように溶解した。その結果、1日後の
電解液のHF量は51ppmであり、2週間後は78p
pmであった。この電解液を用いて実施例1と同様にコ
イン型電池を作製し、充放電を繰り返したところ100
サイクル後の放電容量維持率は58%であった。
Comparative Example 1 Commercially available EC and DMC were mixed to prepare a non-aqueous solvent of EC: DMC (volume ratio) = 1: 2, and treated with Molecular Sieves 5A (25 ° C.). LHSV was 5 / hr. At that time, the diol content in the electrolytic solvent was 40 pp.
m, the monoalcohol content was 45 ppm, and the total content of alcohols was 85 ppm. To this, LiPF 6 was added at 0.
It was dissolved to a concentration of 8M. As a result, the HF content of the electrolytic solution after one day was 51 ppm, and the
pm. Using this electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and charging and discharging were repeated.
The discharge capacity retention after the cycle was 58%.

【0025】[0025]

【発明の効果】本発明により、特にサイクル特性に優
れ、更に電気容量、保存安定性などの電池特性にも優れ
たリチウム二次電池を構成できるリチウム二次電池用電
解液を提供することができる。
According to the present invention, it is possible to provide an electrolyte for a lithium secondary battery capable of forming a lithium secondary battery having excellent cycle characteristics and also excellent battery characteristics such as electric capacity and storage stability. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 洋介 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場宇部統合事 業所内 (72)発明者 大平 則行 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場宇部統合事 業所内 (72)発明者 渡部 昌彦 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場宇部統合事 業所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yosuke Ueno 1078, Ogushi, Ogushi, Ube City, Yamaguchi Prefecture Ube Industries, Ltd. No. 10 Ube Kosan Co., Ltd. Ube Chemical Factory Ube Integration Plant (72) Inventor Masahiko Watanabe 1978 Kogushi Oaza, Ube City, Yamaguchi Prefecture 10 Ube Kosan Ube Chemical Plant Ube Integration Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルコール類が50ppm未満の非水溶
媒及びリチウムイオンを放出できる含フッ素電解質から
なるリチウム二次電池用電解液において、HF量が30
ppm未満であることを特徴とするリチウム二次電池用
電解液。
1. An electrolyte for a lithium secondary battery comprising a non-aqueous solvent containing less than 50 ppm of an alcohol and a fluorine-containing electrolyte capable of releasing lithium ions, has an HF content of 30.
An electrolyte solution for a lithium secondary battery, wherein the electrolyte solution is less than 1 ppm.
【請求項2】 ジオール類が20ppm未満の非水溶媒
及びリチウムイオンを放出できる含フッ素電解質からな
るリチウム二次電池用電解液において、HF量が30p
pm未満であることを特徴とするリチウム二次電池用電
解液。
2. An electrolyte for a lithium secondary battery comprising a non-aqueous solvent containing less than 20 ppm of a diol and a fluorine-containing electrolyte capable of releasing lithium ions, has an HF content of 30 p.
pm, which is less than pm.
【請求項3】 モノアルコール類が30ppm未満の非
水溶媒及びリチウムイオンを放出できる含フッ素電解質
からなるリチウム二次電池用電解液において、HF量が
30ppm未満であることを特徴とするリチウム二次電
池用電解液。
3. A lithium secondary battery electrolyte comprising a non-aqueous solvent containing less than 30 ppm of a monoalcohol and a fluorine-containing electrolyte capable of releasing lithium ions, wherein the HF content is less than 30 ppm. Electrolyte for batteries.
JP09072235A 1997-03-25 1997-03-25 Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte Expired - Lifetime JP3087956B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09072235A JP3087956B2 (en) 1997-03-25 1997-03-25 Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
FR9803615A FR2761531B1 (en) 1997-03-25 1998-03-24 ELECTROLYTIC SOLUTION FOR LITHIUM BATTERY
US09/046,964 US6045945A (en) 1997-03-25 1998-03-24 Electrolyte solution for lithium secondary battery
KR19980010319A KR100282037B1 (en) 1997-03-25 1998-03-25 Electrolyte solution for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09072235A JP3087956B2 (en) 1997-03-25 1997-03-25 Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte

Publications (2)

Publication Number Publication Date
JPH10270076A true JPH10270076A (en) 1998-10-09
JP3087956B2 JP3087956B2 (en) 2000-09-18

Family

ID=13483430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09072235A Expired - Lifetime JP3087956B2 (en) 1997-03-25 1997-03-25 Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte

Country Status (1)

Country Link
JP (1) JP3087956B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
JP2012214511A (en) * 2012-08-09 2012-11-08 Mitsubishi Chemicals Corp Method for producing high purity vinylene carbonate
JP2013048015A (en) * 2011-07-27 2013-03-07 Daikin Ind Ltd Nonaqueous electrolyte, lithium ion secondary battery, and module
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP2015028913A (en) * 2013-06-26 2015-02-12 セントラル硝子株式会社 Method for determining content of impurities in solvent for electrolytic solution, method for producing electrolytic solution arranged by use thereof, and electrolytic solution
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery
JP2016171080A (en) * 2011-09-30 2016-09-23 株式会社日本触媒 Electrolytic solution and method for manufacturing the same, and power storage device arranged by use thereof
WO2019111958A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
US11502335B2 (en) 2017-12-06 2022-11-15 Central Glass Co., Ltd. Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery
JP2013048015A (en) * 2011-07-27 2013-03-07 Daikin Ind Ltd Nonaqueous electrolyte, lithium ion secondary battery, and module
JP2016171080A (en) * 2011-09-30 2016-09-23 株式会社日本触媒 Electrolytic solution and method for manufacturing the same, and power storage device arranged by use thereof
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
KR20150002716A (en) 2012-04-17 2015-01-07 다이킨 고교 가부시키가이샤 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
KR20150001784A (en) 2012-04-17 2015-01-06 다이킨 고교 가부시키가이샤 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9570778B2 (en) 2012-04-17 2017-02-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9806378B2 (en) 2012-04-17 2017-10-31 Daikin Industries, Ltd. Electrolytic solution containing mixture of fluorinated chain carbonates, electrochemical device, lithium ion secondary battery and module
JP2012214511A (en) * 2012-08-09 2012-11-08 Mitsubishi Chemicals Corp Method for producing high purity vinylene carbonate
JP2015028913A (en) * 2013-06-26 2015-02-12 セントラル硝子株式会社 Method for determining content of impurities in solvent for electrolytic solution, method for producing electrolytic solution arranged by use thereof, and electrolytic solution
WO2019111958A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
US11502335B2 (en) 2017-12-06 2022-11-15 Central Glass Co., Ltd. Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same

Also Published As

Publication number Publication date
JP3087956B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JP3244017B2 (en) Method for producing electrolyte solution for lithium secondary battery
US6413678B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
US6045945A (en) Electrolyte solution for lithium secondary battery
JPH0652887A (en) Lithium secondary battery
JP3438636B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3087956B2 (en) Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP5207147B2 (en) Lithium secondary battery
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JPH1167266A (en) Lithium secondary battery
JP2002008721A (en) Nonaqueous electrolyte and lithium secondary battery
JPH10270074A (en) Secondary lithium battery electrolyte
JP2001052741A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2002075440A (en) Nonaqueous electrolyte and lithium secondary cell using the same
JP2001052738A (en) Nonaqueous electrolytic solution and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH0574485A (en) Nonaqueous electrolyte secondary battery
JP4209160B2 (en) Lithium secondary battery
JP3615362B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170714

Year of fee payment: 17

EXPY Cancellation because of completion of term