JPH10270005A - Storage battery - Google Patents

Storage battery

Info

Publication number
JPH10270005A
JPH10270005A JP9090281A JP9028197A JPH10270005A JP H10270005 A JPH10270005 A JP H10270005A JP 9090281 A JP9090281 A JP 9090281A JP 9028197 A JP9028197 A JP 9028197A JP H10270005 A JPH10270005 A JP H10270005A
Authority
JP
Japan
Prior art keywords
negative electrode
separator
storage device
power storage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9090281A
Other languages
Japanese (ja)
Inventor
Masaki Kitamura
雅紀 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9090281A priority Critical patent/JPH10270005A/en
Publication of JPH10270005A publication Critical patent/JPH10270005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a storage battery qualified as a safe one as well as such one with a large capacity by providing porous separators between positive and negative electrodes, which hold electrolyte as well as determine the intervals between electrodes and forming electronic conductive films on the surface of these separators. SOLUTION: Although the resistance of a negative electrode 1 in its thickness direction varies depending upon surface directional positions respective resistances are shorted in view of circuit by forming an electronic conductive film M on the surface on the negative electrode 1 side of the separator 2. Therefore, the electric current distribution at the time of charging is uniformalized in surface direction and any local excessive charging is eliminated so that the charging capacity can be increased. For instance, even of lithium ions make their electric deposition in a lithium ion secondary battery, metallic lithium generated on a negative electrode is uniform in surface direction, stays a minute one, electrically dischargeable and becomes safe. Meanwhile, where any electronic conductive film M is formed on the surface of the positive electrode 3 side, the electric current distribution at the time of discharging is similarly uniformalized so that any local excessive discharging is eliminated and the discharging capacity can be also increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池等の蓄電池、あるいは電気二重層キャパシタ等の
蓄電装置全般に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery such as a lithium ion secondary battery or a power storage device such as an electric double layer capacitor.

【0002】[0002]

【従来の技術】一般に電気化学電池の構造は、正極及び
負極と、両極間に介在する電解質とを備え、これらが電
池ケースに収容されている。電池ケースには安全弁が設
けられて、爆発時に安全弁のみが破裂してケース全体の
飛散を防止している。電解質が液体の場合は、正負両極
の短絡防止のための多孔質のセパレータが両極間に介在
させられ、そのセパレータの気孔内部に電解液が浸透さ
せられる。固体電解質の場合は、それが両極の間隔を維
持するので、セパレータに代わって短絡防止機能も有す
る。いずれの場合も正極及び負極は、電気化学反応に直
接関与する活物質、あるいは電気化学反応に関与するイ
オンを吸蔵及び放出する物質(以下、「ホスト物質」と
いう。)に結着剤などを混ぜ合わせた合剤を導電性の正
極又は負極の集電体に保持したものとされる。
2. Description of the Related Art Generally, an electrochemical battery has a structure including a positive electrode, a negative electrode, and an electrolyte interposed between the two electrodes, which are housed in a battery case. A safety valve is provided in the battery case, and only the safety valve ruptures in the event of an explosion to prevent the entire case from scattering. When the electrolyte is a liquid, a porous separator for preventing a short circuit between the positive and negative electrodes is interposed between the electrodes, and the electrolytic solution penetrates into the pores of the separator. In the case of a solid electrolyte, it also has a function of preventing short-circuiting in place of the separator since it maintains the distance between the electrodes. In each case, the positive electrode and the negative electrode are prepared by mixing a binder and the like with an active material directly involved in the electrochemical reaction or a material that absorbs and releases ions involved in the electrochemical reaction (hereinafter, referred to as a “host substance”). The combined mixture is held on a conductive positive or negative electrode current collector.

【0003】例えば、近年携帯電話、携帯用パソコン等
の小型携帯電子機器用の電源として広範な利用が期待さ
れているリチウムイオン電池においては、リチウムイオ
ンを吸蔵及び放出できる炭素をホスト物質として含む負
極合剤を負極集電体に保持してなる負極板と、リチウム
コバルト複合酸化物やリチウムニッケル複合酸化物のよ
うにリチウムイオンと可逆的に電気化学反応をする正極
活物質を含む正極合剤を正極集電体に保持してなる正極
板と、電解質を保持するとともに負極板と正極板との間
に介在して両極の短絡を防止するセパレータとを備えて
いる。電解質は通常LiClO4、LiPF6等のリチウ
ム塩を溶解した非プロトン性の有機溶媒からなるが、固
体電解質でも良い。ただし、電解質が固体の場合は前述
の通りセパレータは必須でない。極板の集電体として
は、それ自体の導電性が必要であることから、銅、アル
ミニウムなどの金属の箔が一般的に用いられている。
For example, in a lithium ion battery, which is expected to be widely used as a power source for small portable electronic devices such as mobile phones and portable personal computers in recent years, a negative electrode containing carbon capable of occluding and releasing lithium ions as a host material has been proposed. A negative electrode plate holding the mixture on the negative electrode current collector and a positive electrode mixture containing a positive electrode active material that reversibly electrochemically reacts with lithium ions, such as a lithium cobalt composite oxide or a lithium nickel composite oxide. A positive electrode plate held by a positive electrode current collector and a separator that holds an electrolyte and is interposed between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes are provided. The electrolyte is usually made of an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved, but may be a solid electrolyte. However, when the electrolyte is solid, the separator is not essential as described above. As the current collector of the electrode plate, a metal foil such as copper or aluminum is generally used because the current collector itself is required.

【0004】上記従来の電気化学電池においては、セパ
レータが多孔質の樹脂フィルムからなり(例えば特開平
5−331306号)、異常電流により電池の内部温度
が上昇した場合には、所定温度で溶けて無孔質構造に変
質し、その電気抵抗の増大により電池反応を遮断し、過
度の温度上昇を防止しようとしていた。これを一般にセ
パレータのシャットダウン機能と呼ぶ。また、その他の
電池の安全対策として、設定電圧外での過充電又は過放
電を防止する保護回路を電池の外装面に付属させること
もある。
In the above-mentioned conventional electrochemical cell, the separator is made of a porous resin film (for example, Japanese Patent Laid-Open No. 5-331306), and when the internal temperature of the cell rises due to an abnormal current, it melts at a predetermined temperature. It was transformed into a non-porous structure, and the battery resistance was cut off due to the increase in its electric resistance to prevent an excessive rise in temperature. This is generally called a separator shutdown function. As another battery safety measure, a protection circuit for preventing overcharge or overdischarge outside the set voltage may be attached to the outer surface of the battery.

【0005】一方、ICやメモリのバックアップ用の小
電力直流電源として使用されている電気二重層キャパシ
タの場合、その構成は、活性炭のような表面積の大きい
材料と結着剤とで成形した2枚の電極を、多孔質のセパ
レータを介して対向させて配置し、セパレータに電解液
を浸透させたものである。
On the other hand, in the case of an electric double-layer capacitor used as a low-power DC power supply for backup of ICs and memories, the structure of the electric double-layer capacitor consists of two sheets formed of a material having a large surface area such as activated carbon and a binder. Are disposed facing each other with a porous separator interposed therebetween, and the separator is impregnated with an electrolytic solution.

【0006】[0006]

【発明が解決しようとする課題】しかし、電気化学電池
にしろ電気二重層キャパシタにしろ、電極材料はいずれ
も上記の如く粉末であるから、たとえ板状に成形されて
いても、極表面においては凹凸を有する。このため電極
の厚さ方向の電気抵抗は、電極の面方向の位置によって
様々である。その結果、面方向で充放電時の電流分布が
異なり、例えば負極の充電時に抵抗の高い部分では完全
充電となっていても電極全体としては完全充電となって
いないので、充電が続けられ、局部的に過充電となる。
そして、電極や電解質の種類にもよるが、過充電は電解
液の分解やリチウム金属の電析(リチウム電池の場合)
等の不可逆反応を伴い、容量を低下させる。また、電析
したリチウム金属は、放電しないから異常高温時に溶け
て正極へ移動し爆発する危険がある。上記電流分布の不
均一は、放電時においても局部的な過放電を生じる原因
となる。そこで、従来は局部的な過充電過放電を防止す
るために、充電容量を負極の理論容量の50〜80%に
抑制しなければならなかった。
However, regardless of whether it is an electrochemical cell or an electric double layer capacitor, the electrode material is a powder as described above, so that even if it is formed into a plate, the electrode material is not It has irregularities. For this reason, the electric resistance in the thickness direction of the electrode varies depending on the position of the electrode in the surface direction. As a result, the current distribution at the time of charge / discharge differs in the plane direction. For example, when the negative electrode is charged, the portion having a high resistance is fully charged even though the electrode is not fully charged, so that charging is continued, Will be overcharged.
And depending on the type of electrode and electrolyte, overcharging can be done by decomposition of the electrolyte or electrodeposition of lithium metal (for lithium batteries)
Irreversible reaction, etc., and decrease the capacity. Further, since the deposited lithium metal does not discharge, it melts at an abnormally high temperature, moves to the positive electrode, and may explode. The non-uniform current distribution causes local overdischarge even during discharge. Therefore, conventionally, in order to prevent local overcharge and overdischarge, the charge capacity has to be suppressed to 50 to 80% of the theoretical capacity of the negative electrode.

【0007】更にまた、上記従来の電気化学電池では、
セパレータへの熱伝搬の速度や保護回路への信号伝搬速
度が電池の温度上昇の速度に比べて遅いために、シャッ
トダウン機能や保護回路のスイッチ機能が発揮される前
に安全弁が破裂することがあった。もともと安全弁は電
池の異常時に破裂させるために設けられているものであ
るが、破裂しないで温度が低下する方が好ましいのはい
うまでもない。それ故、本発明の目的は、従来のセパレ
ータと異なる構成により、高容量で安全な蓄電装置を提
供することにある。
Furthermore, in the above-mentioned conventional electrochemical cell,
Since the speed of heat propagation to the separator and the speed of signal propagation to the protection circuit are slower than the speed of battery temperature rise, the safety valve may rupture before the shutdown function or protection circuit switching function is activated. Was. Although the safety valve is originally provided to explode when the battery is abnormal, it goes without saying that it is preferable that the temperature be lowered without exploding. Therefore, an object of the present invention is to provide a high-capacity and safe power storage device having a configuration different from a conventional separator.

【0008】[0008]

【課題を解決するための手段】その目的を達成するため
に、本発明の蓄電装置は、正負の電極と、これら電極の
間に存在して電極の間隔を定めるとともに電解質を保持
する多孔質のセパレータとを備えた蓄電装置において、
セパレータの表面に電子伝導性の膜が形成されているこ
とを特徴とする。この電子伝導性の膜が形成されるセパ
レータの表面は、正極側でも負極側でも両側でも良い。
ただし、いずれか一方の側にだけ形成されるときは、い
ずれの側に形成されるかで若干作用が異なる。
In order to achieve the object, a power storage device of the present invention comprises a positive electrode and a negative electrode, and a porous electrode which is located between the electrodes to determine an interval between the electrodes and to hold an electrolyte. In a power storage device including a separator,
An electron conductive film is formed on the surface of the separator. The surface of the separator on which the electron conductive film is formed may be on the positive electrode side, the negative electrode side, or both sides.
However, when it is formed on only one side, the action is slightly different depending on which side it is formed.

【0009】本発明の第一の作用を図面とともに説明す
る。図1は、蓄電装置の断面図である。既述の通り、負
極1の厚さ方向の抵抗は面方向位置によって異なる。即
ち、図中の抵抗R1と抵抗R2とは値が異なる。しか
し、本発明の蓄電装置においては、セパレータ2の表面
に形成された電子伝導性の膜Mにより回路的に抵抗R1
と抵抗R2とを短絡させている。従って、充電時の電流
分布が面方向に均一化され、局部的な過充電がなくな
り、充電容量を増やすことができる。リチウムイオン二
次電池において、万一リチウムイオンが電析しても、電
析によって負極に生じるリチウム金属は面方向に均一で
微細なものに止まり、放電可能である。従って、安全で
ある。
The first operation of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a power storage device. As described above, the resistance in the thickness direction of the negative electrode 1 differs depending on the position in the surface direction. That is, the values of the resistor R1 and the resistor R2 in the drawing are different. However, in the power storage device of the present invention, the electronically conductive film M formed on the surface of the separator 2 causes the resistance R1 in a circuit.
And the resistor R2 are short-circuited. Therefore, the current distribution during charging is made uniform in the surface direction, local overcharging is eliminated, and the charging capacity can be increased. In a lithium ion secondary battery, even if lithium ions are electrodeposited, the lithium metal generated on the negative electrode by the electrodeposition remains uniform and fine in the plane direction and can be discharged. Therefore, it is safe.

【0010】なお、正極側の表面に電子伝導性の膜Mが
形成されたときは、同様に放電時の電流分布が面方向に
均一化され、局部的な過放電が無くなる。このため、放
電容量も増やすことができる。
When the electron conductive film M is formed on the surface on the positive electrode side, the current distribution at the time of discharge is similarly made uniform in the plane direction, and local overdischarge is eliminated. Therefore, the discharge capacity can be increased.

【0011】次に、本発明の第二の作用を説明する。電
子伝導性の膜Mは金属から成るものとする。仮に負極1
側から矢印で示すように正極3に向かって釘が刺される
等の異常が発生したとする。金属膜Mが存在しなけれ
ば、釘は負極1を貫通した後、正極3に到達して始めて
短絡する。電極は既述の通り粉末を成形したものである
から、金属ほど熱伝導性に優れていない。従って、短絡
により発した熱は、その場に止まり局部的に高温とな
る。しかし、本発明では金属膜Mが存在するので、釘が
正極3に達する前に金属膜Mに到達した時点で短絡す
る。そして、金属膜Mは、金属であるから短絡により発
した熱を素早く面方向に逃がすことができる。しかもセ
パレータ上で発熱するから、シャットダウン機能が速や
かに起こる。従って、安全である。
Next, the second operation of the present invention will be described. The electron conductive film M is made of metal. Suppose negative electrode 1
It is assumed that an abnormality such as a nail being stuck toward the positive electrode 3 as shown by an arrow from the side has occurred. If the metal film M does not exist, the nail penetrates the negative electrode 1 and short-circuits only when reaching the positive electrode 3. Since the electrode is formed by molding powder as described above, the electrode is not as excellent in thermal conductivity as metal. Therefore, the heat generated by the short circuit stops at that location and becomes locally high. However, in the present invention, since the metal film M exists, a short circuit occurs when the nail reaches the metal film M before reaching the positive electrode 3. And since the metal film M is a metal, the heat generated by the short circuit can be quickly released in the plane direction. In addition, since heat is generated on the separator, the shutdown function is quickly performed. Therefore, it is safe.

【0012】[0012]

【発明の実施の形態】前記セパレータは、例えばポリプ
ロピレンやポリエチレン等の有機高分子からなる多孔質
フィルムであり、それに電解液が浸透させられる。電解
質としてポリフッ化ビニリデン、ポリアクリロニトリル
等の固体電解質を用いる場合は、それ自体が電極の間隔
を定めてセパレータを兼ねるので、別個のセパレータは
必要でない。ただし、その場合も電解液を固体電解質に
浸透させておくと電池反応の効率上良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The separator is a porous film made of an organic polymer such as polypropylene or polyethylene, and an electrolyte is permeated therein. When a solid electrolyte such as polyvinylidene fluoride or polyacrylonitrile is used as the electrolyte, a separate separator is not required because the electrolyte itself determines the interval between the electrodes and also functions as a separator. However, also in this case, it is effective in terms of the efficiency of the battery reaction if the electrolyte is allowed to penetrate the solid electrolyte.

【0013】電子伝導性の膜は、それが金属から成ると
きはセパレータの表面に蒸着又は無電解メッキによって
形成される。導電性高分子からなるときは、導電性高分
子を溶剤に溶かしてペースト状にし、そのペーストをセ
パレータの表面に塗布した後、溶媒を揮発させることに
よって形成される。
The electron-conductive film is formed on the surface of the separator by vapor deposition or electroless plating when it is made of metal. When it is made of a conductive polymer, it is formed by dissolving the conductive polymer in a solvent to form a paste, applying the paste on the surface of the separator, and then volatilizing the solvent.

【0014】前記蓄電装置として好適なものは、リチウ
ムイオン二次電池である。本発明によりリチウムイオン
の電析が防止されるか又は電析しても均一で微量に止ま
るからである。また、前記蓄電装置は電気二重層キャパ
シタであっても良い。電気二重層キャパシタの電極の極
表面も凹凸を有するが、本発明により電気二重層キャパ
シタの過充電過放電も防止されるからである。
A preferred power storage device is a lithium ion secondary battery. This is because, according to the present invention, electrodeposition of lithium ions is prevented, or even when the electrodeposition is performed, the amount is uniform and the amount is small. Further, the power storage device may be an electric double layer capacitor. Although the extreme surfaces of the electrodes of the electric double layer capacitor also have irregularities, the present invention also prevents overcharging and overdischarging of the electric double layer capacitor.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、蓄電装
置を高容量で安全なものとすることができるので、携帯
用電子機器の部品として有益である。
As described above, according to the present invention, the power storage device can be made high-capacity and safe, which is useful as a component of a portable electronic device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の作用を説明するための蓄電装置の要
部断面図である。
FIG. 1 is a cross-sectional view of a main part of a power storage device for describing an operation of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 セパレータ 3 正極 M 電子伝導性の膜 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Separator 3 Positive electrode M Electron conductive film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正負の電極と、これら電極の間に存在して
電極の間隔を定めるとともに電解質を保持する多孔質の
セパレータとを備えた蓄電装置において、 セパレータの表面に電子伝導性の膜が形成されているこ
とを特徴とする蓄電装置。
1. A power storage device comprising a positive electrode and a negative electrode, and a porous separator that is located between the electrodes and determines the distance between the electrodes and holds an electrolyte, wherein an electron-conductive film is formed on the surface of the separator. A power storage device, which is formed.
【請求項2】前記セパレータが固体電解質である請求項
1に記載の蓄電装置。
2. The power storage device according to claim 1, wherein said separator is a solid electrolyte.
【請求項3】前記蓄電装置がリチウムイオン二次電池等
の非水電解質二次電池である請求項1又は2に記載の蓄
電装置。
3. The power storage device according to claim 1, wherein the power storage device is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
【請求項4】前記蓄電装置が電気二重層キャパシタであ
る請求項1に記載の蓄電装置。
4. The power storage device according to claim 1, wherein the power storage device is an electric double layer capacitor.
【請求項5】前記電子伝導性の膜が金属である請求項1
〜4のいずれかに記載の蓄電装置。
5. The method according to claim 1, wherein said electron conductive film is made of a metal.
The power storage device according to any one of claims 1 to 4.
JP9090281A 1997-03-24 1997-03-24 Storage battery Pending JPH10270005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9090281A JPH10270005A (en) 1997-03-24 1997-03-24 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9090281A JPH10270005A (en) 1997-03-24 1997-03-24 Storage battery

Publications (1)

Publication Number Publication Date
JPH10270005A true JPH10270005A (en) 1998-10-09

Family

ID=13994144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9090281A Pending JPH10270005A (en) 1997-03-24 1997-03-24 Storage battery

Country Status (1)

Country Link
JP (1) JPH10270005A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
WO2011021644A1 (en) * 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2888771B1 (en) * 2012-08-27 2017-11-08 Karlsruher Institut für Technologie Multi-layered separator for an electrochemical cell
US10727490B2 (en) 2016-12-28 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
JP4563526B2 (en) * 1999-07-16 2010-10-13 帝人株式会社 Polyolefin porous membrane on which inorganic thin film is formed and method for producing the same
WO2011021644A1 (en) * 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011065984A (en) * 2009-08-19 2011-03-31 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP2888771B1 (en) * 2012-08-27 2017-11-08 Karlsruher Institut für Technologie Multi-layered separator for an electrochemical cell
US10727490B2 (en) 2016-12-28 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Battery
US10991947B2 (en) 2016-12-28 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Battery

Similar Documents

Publication Publication Date Title
EP4266396A1 (en) Electrode plate and preparation method therefor, and lithium-ion battery
KR101407772B1 (en) Electorde assembly and secondary battery using the same
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
US8263266B2 (en) Electrode assembly and secondary battery having the same
JP3242878B2 (en) Lithium secondary battery
JP3725105B2 (en) Overdischarge prevention circuit for secondary battery and overdischarge prevention method for secondary battery
US20060234125A1 (en) Lithium Ion Rocking Chair Rechargeable Battery
US5368958A (en) Lithium anode with conductive for and anode tab for rechargeable lithium battery
JPH11238528A (en) Lithium secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
KR101999529B1 (en) Pouch-Type Secondary Battery Having Electrode Lead with Couple Notch
KR100358224B1 (en) Lithium secondary battery
EP1437779B1 (en) Electrode group for battery and non-aqueous electrolyte secondary battery using the same
JPH09283149A (en) Collector for battery plate and battery using this collector
US6596430B2 (en) Lithium secondary battery and transportation method thereof
JP2000277176A (en) Lithium secondary battery and method for using the same
US20060040184A1 (en) Non-aqueous electrolyte battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JPH10270005A (en) Storage battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JPH10270004A (en) Storage battery
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery
JP3043175B2 (en) Lithium secondary battery
US20230223624A1 (en) Secondary battery
JP2001319636A (en) Nonaqueous electrolyte secondary battery