JPH10269847A - Fixed liquid film conductor - Google Patents

Fixed liquid film conductor

Info

Publication number
JPH10269847A
JPH10269847A JP9091470A JP9147097A JPH10269847A JP H10269847 A JPH10269847 A JP H10269847A JP 9091470 A JP9091470 A JP 9091470A JP 9147097 A JP9147097 A JP 9147097A JP H10269847 A JPH10269847 A JP H10269847A
Authority
JP
Japan
Prior art keywords
organopolysiloxane
film
polyolefin
conductive material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9091470A
Other languages
Japanese (ja)
Other versions
JP3586536B2 (en
Inventor
Koichi Kono
公一 河野
Kotaro Takita
耕太郎 滝田
Norimitsu Kaimai
教充 開米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP09147097A priority Critical patent/JP3586536B2/en
Publication of JPH10269847A publication Critical patent/JPH10269847A/en
Application granted granted Critical
Publication of JP3586536B2 publication Critical patent/JP3586536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To easily provide a film having a large area, the holding property of an electrolytic solution in a wide temperature range, long-term stability, and improved mechanical strength by fixing an aprotic electrolytic solution to a polyolefin fine porous film containing organopolysiloxane having affinity to the aprotic electrolytic solution. SOLUTION: An organopolysiloxane solution solved in a solvent such as toluene not solving a polyolefin fine porous film is preferably applied by coating to the polyolefin fine porous film such as ultrahigh-molecular weight polyethylene containing an electronic conductive material. The film may be formed after organopolysiloxane is filled in the gelatinous molding of a polyolefin composition containing the electronic conductive material. The aprotic electrolytic solution is fixed by impregnating, and the film has the prescribed thickness and relative dielectric constant. This fixed liquid film conductor has the porous film base skeleton of polyolefin, the electronic conductivity is not reduced, and the safety at the time of an overcharge is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固定化液膜導電体
及びその製造方法に関し、特に高い電子導電性を有する
多孔性導電膜にイオン導電体を固定化した固定化液膜導
電体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immobilized liquid film conductor and a method for producing the same, and more particularly, to an immobilized liquid film conductor in which an ionic conductor is immobilized on a porous conductive film having high electron conductivity, and a method for manufacturing the same. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】高分子材料、例えばポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ポリスルホン、ブタジエ
ンゴム、シリコーンゴム、エチレン−プロピレン−ジエ
ンターポリマー、エポキシ樹脂などにカーボンブラック
などの電子導電性物質を混和して成る導電体は広く知ら
れている。そして、これらの導電体は、静電防止材料、
電磁波シールド用材料、導電性塗料、接着剤、IC包装
材、面状発熱体、面スイッチなどに使用されている。
2. Description of the Related Art A polymer material such as polyethylene, polypropylene, polyvinyl chloride, polysulfone, butadiene rubber, silicone rubber, ethylene-propylene-diene terpolymer, epoxy resin, etc. is mixed with an electronic conductive substance such as carbon black. Such conductors are widely known. And these conductors are antistatic materials,
It is used for electromagnetic wave shielding materials, conductive paints, adhesives, IC packaging materials, planar heating elements, planar switches, and the like.

【0003】また、かかる導電体において、多孔質であ
りながら高い導電性を有する薄膜導電体(多孔性導電
膜)は、固体高分子電解質あるいは液体電解質を用いる
デバイスにおける電極や電極構成材料として極めて効果
的に用いることができる。すなわち、多孔質であるため
に電極と電解質との接触界面を大面積化することがで
き、従って例えば、これを用いてリチウム系一次電池、
リチウム系二次電池などの高性能の電池を製造すること
が可能となる。
Further, among such conductors, a thin film conductor (porous conductive film) which is porous but has high conductivity is extremely effective as an electrode or an electrode constituent material in a device using a solid polymer electrolyte or a liquid electrolyte. Can be used for That is, since it is porous, the contact interface between the electrode and the electrolyte can be increased in area, and thus, for example, using this, a lithium primary battery,
It is possible to manufacture a high-performance battery such as a lithium secondary battery.

【0004】前記の薄膜導電体の開発例としては、ポリ
エチレンの可塑剤溶液にケッチェンブラック(Akzo
Chemic社商標)を混合し、シート成形、延伸の
後、可塑剤を除去した多孔質薄膜に、電解液を毛管凝縮
力を利用して固定化した多孔性導電膜とその製造方法
(特開平3−87096)がある。しかし、電解液保持
性に問題を有している。一方、最近では、ポリ弗化ビニ
リデンとヘキサフルオロプロピレンの共重合体にLiM
24とカーボンブラックあるいは石油コークスとカー
ボンブラックを混合しリチウム塩を溶解したカーボネー
ト系溶液を含浸させたポリマーゲルを電池の正極あるい
は負極に用いる技術(USP5,296,318)が提
案されているが、高温におけるゲル収縮による電解液の
滲み出の問題があり、電解液保持性に関する完全な解決
策にはならない。したがって、薄膜化、大面積化が容易
で、広い温度範囲で電解質溶液の安定した保持能力を持
つ薄膜導電体の開発が望まれている。
As a development example of the above-mentioned thin film conductor, Ketjen black (Akzo black) is added to a plasticizer solution of polyethylene.
Chemic Co., Ltd.), and after forming and stretching a sheet, a porous thin film from which a plasticizer has been removed, and an electrolyte solution immobilized by utilizing the capillary condensation force, and a method for producing the same (Japanese Patent Laid-Open No. -87096). However, there is a problem in the electrolyte retention. On the other hand, recently, a copolymer of polyvinylidene fluoride and hexafluoropropylene has been
A technique has been proposed (US Pat. No. 5,296,318) in which a polymer gel impregnated with a carbonate-based solution in which n 2 O 4 and carbon black or petroleum coke and carbon black are mixed and a lithium salt is dissolved is used for a positive electrode or a negative electrode of a battery. However, there is a problem of electrolyte seepage due to gel shrinkage at a high temperature, and this is not a complete solution for electrolyte retention. Therefore, it is desired to develop a thin-film conductor which can be easily formed into a thin film and has a large area and has a stable ability to hold an electrolyte solution in a wide temperature range.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
のような問題点を解消し、薄膜化、大面積化が容易で広
い温度範囲で非プロトン性電解質溶液の保持性に優れ、
長期安定性と機械的強度の向上した固定化液膜導電体と
その製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to easily form a thin film, to have a large area, and to have excellent aprotic electrolyte solution retention over a wide temperature range.
An object of the present invention is to provide an immobilized liquid film conductor having improved long-term stability and mechanical strength, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記従来
技術の問題点を克服するために鋭意研究した結果、電子
導電性材料を含むポリオレフィン微多孔膜に含有された
オルガノポリシロキサンの親和性により、非プロトン性
電解液を膜に固定化することによって、上記目的を達成
できることを見い出した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to overcome the problems of the prior art, and as a result, have found that the affinity of organopolysiloxane contained in a microporous polyolefin membrane containing an electronically conductive material is high. It has been found that the above object can be achieved by immobilizing an aprotic electrolyte on a membrane depending on the nature.

【0007】すなわち、本発明の固定化液膜導電体は、
非プロトン性電解質溶液に親和性を有するオルガノポリ
シロキサン及び電子導電性材料を含有するポリオレフィ
ン微多孔膜に、非プロトン性電解質溶液を固定化したも
のである。また、本発明の固定化液膜導電体の第1の製
造方法は、電子導電性材料を含有するポリオレフィン微
多孔膜に、非プロトン性電解質溶液に親和性を有するオ
ルガノポリシロキサンをコーティングし、これに非プロ
トン性電解質溶液を含浸させて固定化するものである。
さらに、本発明の固定化液膜導電体の第2の製造方法
は、電子導電性材料を含有するポリオレフィン組成物か
ら成るゲル状成形物に非プロトン性電解質溶液に親和性
を有するオルガノポリシロキサンを充填して製膜し、こ
れに非プロトン性電解質溶液を含浸させて固定化するも
のである。
That is, the immobilized liquid film conductor of the present invention comprises:
An aprotic electrolyte solution is immobilized on a microporous polyolefin membrane containing an organopolysiloxane having an affinity for the aprotic electrolyte solution and an electron conductive material. Further, a first method for producing an immobilized liquid membrane conductor of the present invention comprises coating a polyolefin microporous membrane containing an electron conductive material with an organopolysiloxane having an affinity for an aprotic electrolyte solution. Is impregnated with an aprotic electrolyte solution to be immobilized.
Further, the second method for producing the immobilized liquid film conductor of the present invention comprises the step of adding an organopolysiloxane having an affinity to an aprotic electrolyte solution to a gel-like molded product comprising a polyolefin composition containing an electronic conductive material. The membrane is filled and formed into a film, which is impregnated with an aprotic electrolyte solution to be fixed.

【0008】[0008]

【発明の実施の形態】本発明の固定化液膜導電体は、非
プロトン性電解質溶液に親和性を有するオルガノポリシ
ロキサン及び電子導電性材料を含有するポリオレフィン
微多孔膜に、非プロトン性電解質溶液を固定化すること
により構成される。以下にその詳細を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The immobilized liquid membrane conductor of the present invention is prepared by adding an aprotic electrolyte solution to a polyolefin microporous membrane containing an organopolysiloxane having an affinity for an aprotic electrolyte solution and an electronic conductive material. Is fixed. The details will be described below.

【0009】1.原料 a.ポリオレフィン ポリオレフィンとしては、ポリエチレン、ポリプロピレ
ン、エチレン−プロピレン共重合体、ポリブテン−1、
ポリ4−メチルペンテン−1などが挙げられる。これら
の中ではポリエチレンが好ましい。このポリエチレンと
しては、超高分子量ポリエチレン、高密度ポリエチレ
ン、中低密度ポリエチレンからなるものを用いることが
できるが、強度、安全性、製膜性などの観点から超高分
子量ポリエチレンまたはその成分を含むものを用いるこ
とが好ましい。また、該ポリオレフィンは、重量平均分
子量が5×105以上、好ましくは1×106〜1×10
7の超高分子量成分を1重量%以上含有し、分子量分布
(重量平均分子量/数平均分子量)が10〜300であ
るのが好ましい。超高分子量ポリオレフィン成分の含有
量が1重量%未満では、膜の延伸性の向上に寄与すると
ころが不十分である。一方、上限は特に限定的ではな
い。また、分子量分布が300を超えると、低分子量成
分による破断が起こり薄膜全体の強度が低下するため好
ましくない。
1. Raw materials a. Polyolefin Polyolefins include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1,
Poly-4-methylpentene-1 and the like. Of these, polyethylene is preferred. As the polyethylene, those made of ultra-high molecular weight polyethylene, high density polyethylene, medium-low density polyethylene can be used, but those containing ultra-high molecular weight polyethylene or components thereof from the viewpoint of strength, safety, film forming property, etc. It is preferable to use The polyolefin has a weight average molecular weight of 5 × 10 5 or more, preferably 1 × 10 6 to 1 × 10 5.
It is preferred that the ultrahigh molecular weight component 7 is contained in an amount of 1% by weight or more and the molecular weight distribution (weight average molecular weight / number average molecular weight) is 10 to 300. When the content of the ultrahigh molecular weight polyolefin component is less than 1% by weight, the portion which contributes to the improvement of the stretchability of the film is insufficient. On the other hand, the upper limit is not particularly limited. On the other hand, if the molecular weight distribution exceeds 300, breakage due to low molecular weight components occurs, and the strength of the entire thin film decreases, which is not preferable.

【0010】b.電子導電性材料 電子導電性材料としては、各種の金属や半導体、酸化物
系及び硫化物系の電子導電性材料、及びカーボンもしく
はグラファイトが挙げられる。これらは粒子状、繊維
状、フィブリル状、ウイスカー状等のいかなる形状であ
ってもよい。特に好ましいものは、TiS3、TiS2
TiO2、V25、NbSe3、MnO2、LiCoO2
LiNiO2、LiMn24、PbO2、NiOOHなど
の電池正極活物質、石油コークス、天然グラファイト、
カーボンファイバー、Pb、Cdなどの電池負極活物質
及びアセチレンブラック、ケッチェンブラック(Akz
oChemic社商標)、カーボンウィスカー、グラフ
ァイトウィスカー、グラファイトフィブリル等の導電剤
がある。
B. Electronic conductive material Examples of the electronic conductive material include various metals and semiconductors, oxide and sulfide electronic conductive materials, and carbon or graphite. These may be in any shape such as a particle shape, a fiber shape, a fibril shape, a whisker shape and the like. Particularly preferred are TiS 3 , TiS 2 ,
TiO 2 , V 2 O 5 , NbSe 3 , MnO 2 , LiCoO 2 ,
Battery positive electrode active materials such as LiNiO 2 , LiMn 2 O 4 , PbO 2 , NiOOH, petroleum coke, natural graphite,
Battery negative electrode active materials such as carbon fiber, Pb and Cd, acetylene black, Ketjen black (Akz
oChemic), carbon whiskers, graphite whiskers, graphite fibrils and the like.

【0011】c.オルガノポリシロキサン 本発明で用いるオルガノポリシロキサンは、1個のケイ
素当たり少なくとも1個以上のケイ素−炭素結合を有
し、ケイ素−酸素結合(→Si−O−Si←)を繰り返
し単位とする高分子化合物である。例えばシリコーンオ
イル、シリコーン製ゴムとして市販されている重合度が
10以上、好ましくは10〜10000のものが利用で
きる。重合度が10未満では揮発散逸が無視できなくな
り好ましくない。一方、重合度が100を大きく超える
と高粘度となり、ゲル状成形物へ均一に充填することが
困難となるので、揮発性溶剤で希釈することが好まし
い。
C. Organopolysiloxane The organopolysiloxane used in the present invention is a polymer having at least one silicon-carbon bond per silicon and having a silicon-oxygen bond (→ Si—O—Si ←) as a repeating unit. Compound. For example, commercially available silicone oils and silicone rubbers having a degree of polymerization of 10 or more, preferably 10 to 10,000 can be used. If the degree of polymerization is less than 10, volatilization and dissipation cannot be ignored, which is not preferable. On the other hand, if the degree of polymerization greatly exceeds 100, the viscosity becomes high and it becomes difficult to uniformly fill the gel-like molded product. Therefore, dilution with a volatile solvent is preferred.

【0012】オルガノポリシロキサンの具体例として
は、有機基がメチル基であるポリジメチルシロキサンを
基本として、ポリシロキサン鎖の末端又は内部に水素、
ビニル基、ヒドロキシル基、アミノ基、カルボキシル
基、エポキシ基、メタクリロキシ基、メルカプト基、長
鎖アルキル基、フェニル基、塩素又はフッ素などが結合
した変性ポリシロキサン、更に主鎖に非ポリシロキサン
部分を持つもの、例えばアルキレンオキシド変性ポリシ
ロキサン、シリコーン変性共重合体、アルコキシシラン
変性重合体などが挙げられる。ポリメチルビニルシロキ
サン、ポリメチルフェニルビニルシロキサン、ポリメチ
ルフルオロビニルシロキサンあるいは末端が水酸基封鎖
されたポリジメチルシロキサンなどポリシロキサン鎖の
内部又は末端にビニル基あるいは水酸基などを結合した
変性ポリシロキサンも用いることができるが、−(CH
2CH2O)n−Rのようなエーテル系基を側鎖に持つ変
性ポリシロキサンあるいは−〔(CH2mCOO(CH
2n〕−Rのようなエステル系基を持つ変性ポリシロキ
サンは、非プロトン性電解質溶液との親和性だけでな
く、リチウムイオンと一種の錯体を形成しイオン伝導促
進効果が期待される。
Specific examples of the organopolysiloxane include polydimethylsiloxane in which the organic group is a methyl group, and hydrogen or hydrogen at the terminal or inside of the polysiloxane chain.
Modified polysiloxane to which vinyl group, hydroxyl group, amino group, carboxyl group, epoxy group, methacryloxy group, mercapto group, long-chain alkyl group, phenyl group, chlorine or fluorine are bonded, and non-polysiloxane part in main chain Examples thereof include an alkylene oxide-modified polysiloxane, a silicone-modified copolymer, and an alkoxysilane-modified polymer. Polymethylvinylsiloxane, polymethylphenylvinylsiloxane, polymethylfluorovinylsiloxane, or a modified polysiloxane in which a vinyl group or a hydroxyl group is bonded to the inside or end of a polysiloxane chain, such as a polydimethylsiloxane having a hydroxyl group blocked, may also be used. Yes, but-(CH
2 CH 2 O) n modified polysiloxane or with an ether-based group in the side chain, such as -R - [(CH 2) m COO (CH
2 ) A modified polysiloxane having an ester group such as n ] -R is expected to have not only an affinity with an aprotic electrolyte solution but also a kind of complex with lithium ions to promote ion conduction.

【0013】重合度の高いオルガノポリシロキサンを希
釈する際の揮発性溶剤としては、ペンタン、ヘキサン、
ヘプタン、トルエンなどの炭化水素、塩化メチレン、四
塩化炭素などの塩素化炭化水素、三塩化三フッ化エタン
などのフッ化炭化水素、ジエチルエーテル、ジオキサン
などのエーテル類、その他、メタノール、エタノールな
どのアルコール類が挙げられる。なお、上記のオルガノ
ポリシロキサンまたはその希釈溶液には、必要に応じて
オルガノポリシロキサンの架橋剤、例えば有機過酸化
物、3個以上の官能基を有する有機ケイ素化合物、アル
キルオルリシリケート、金属系触媒あるいは合成シリカ
などの補強材、その他の添加剤を少量調合してもよい。
As the volatile solvent for diluting the organopolysiloxane having a high degree of polymerization, pentane, hexane,
Hydrocarbons such as heptane and toluene, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trichloride ethane, ethers such as diethyl ether and dioxane, and others such as methanol and ethanol Alcohols. The above-mentioned organopolysiloxane or its diluted solution may contain, if necessary, a crosslinking agent for the organopolysiloxane, for example, an organic peroxide, an organosilicon compound having three or more functional groups, an alkylorisilicate, a metal-based compound. A small amount of a reinforcing material such as a catalyst or synthetic silica and other additives may be blended.

【0014】d.電解質溶液 非プロトン性電解質溶液の電解質としては、アルカリ金
属塩、アルカリ土類金属塩が用いられ、例えばLiF、
NaI、LiI、LiClO4、LiAsF6、LiPF
6、LiBF4、LiCF3SO3、NaSCN等が挙げら
れる。また、非プロトン性電解質溶液の電解質を溶解す
る非プロトン性溶媒としては、アルカリ金属に対して安
定な溶媒で、具体的には、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、ジメトキシ
エタン、アセトニトリル、フォルムアミド、テトラヒド
ロフラン、ジエチルエーテル等の非プロトン性の高誘電
率溶媒が単独または2種類以上の組み合わせで使用され
る。
D. Electrolyte solution As an electrolyte of the aprotic electrolyte solution, an alkali metal salt, an alkaline earth metal salt is used, for example, LiF,
NaI, LiI, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiCF 3 SO 3 , NaSCN and the like. Further, as the aprotic solvent for dissolving the electrolyte of the aprotic electrolyte solution, a solvent stable to an alkali metal, specifically, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, acetonitrile, form An aprotic high dielectric constant solvent such as amide, tetrahydrofuran, diethyl ether or the like is used alone or in combination of two or more.

【0015】2.製法 本発明の固定化液膜導電体の製法は、A.電子導電性材
料を含むポリオレフィン微多孔膜にオルガノポリシロキ
サンをコーティングし、電解質溶液を固定化する方法、
B.電子導電性材料を含有するポリオレフィン組成物か
ら成るゲル状成形物にオルガノポリシロキサンを充填し
て製膜し、電解質溶液を固定化する方法、の2通りの製
法がある。
2. Production Method The method for producing the immobilized liquid film conductor of the present invention is described in A.I. A method of coating an organopolysiloxane on a polyolefin microporous film containing an electronic conductive material and fixing an electrolyte solution,
B. There are two production methods: a method in which an organopolysiloxane is filled into a gel-like molded product made of a polyolefin composition containing an electronic conductive material to form a film, and an electrolyte solution is fixed.

【0016】A.電子導電性材料を含むポリオレフィン
微多孔膜にオルガノポリシロキサンをコーティングし、
電解質溶液を固定化する方法 A−a.微多孔膜の製法 電子導電性材料を含有するポリオレフィン微多孔膜は、
上記の電子導電性材料をポリオレフィンに配合し、製膜
することにより得ることができる。電子導電性材料の配
合量は1〜200重量%、特に5〜100重量%である
ことが好ましい。この配合量が1重量%未満では十分な
導電性が得られにくく、200重量%を超えると実用的
に十分な強度の膜を得ることが困難となる。上記の電子
導電性材料を配合したポリオレフィン組成物の製膜は、
特開昭60−242035号や特開平3−64334号
に記載の方法で行えばよい。例えば次のようにして行う
ことができる。まず、ポリオレフィン組成物を溶媒に加
熱溶解することにより溶液を調整する。この溶媒として
はポリオレフィン組成物を十分に溶解できるものであれ
ば特に限定されず、特開昭60−242035号などに
記載のものと同じでよいが、デカリン、キシレンなどの
易揮発性の溶媒も用いることができる。加熱溶解は、ポ
リオレフィン組成物が溶媒中で完全に溶解する温度で撹
拌しながら行う。その温度は使用する重合体及び溶媒に
より異なるが、140〜250℃の範囲が好ましい。ま
た、ポリオレフィン組成物溶液の濃度は、10〜50重
量%、好ましくは10〜40重量%である。
A. Coating organopolysiloxane on polyolefin microporous film containing electronic conductive material,
Method for immobilizing electrolyte solution Aa. Manufacturing method of microporous membrane Polyolefin microporous membrane containing electronic conductive material,
It can be obtained by blending the above-mentioned electronic conductive material with polyolefin and forming a film. The compounding amount of the electronic conductive material is preferably 1 to 200% by weight, particularly preferably 5 to 100% by weight. If the amount is less than 1% by weight, it is difficult to obtain sufficient conductivity, and if it exceeds 200% by weight, it becomes difficult to obtain a film having practically sufficient strength. The film formation of the polyolefin composition containing the above electronic conductive material,
It may be performed by the method described in JP-A-60-242035 or JP-A-3-64334. For example, it can be performed as follows. First, a solution is prepared by heating and dissolving the polyolefin composition in a solvent. The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin composition, and may be the same as those described in JP-A-60-242035, but also readily volatile solvents such as decalin and xylene. Can be used. The heat dissolution is performed while stirring at a temperature at which the polyolefin composition is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but is preferably in the range of 140 to 250 ° C. The concentration of the polyolefin composition solution is 10 to 50% by weight, preferably 10 to 40% by weight.

【0017】次に、このポリオレフィン組成物溶液に電
子導電性材料を均一に配合する。更に、この電子導電性
材料を配合したポリオレフィン組成物の加熱溶液をダイ
から押し出して成形する。ダイは、通常長方形の口金形
状をしたシートダイが用いられるが、2重円筒状の中空
糸ダイ、インフレーションダイなども用いることができ
る。シートダイを用いた場合のダイギャップは通常0.
1〜5mmであり、押出し成形時には140〜250℃
に加熱される。この際の押出し速度は、通常20〜30
cm/分乃至5〜10m/分である。このようにしてダ
イから押し出された溶液は、冷却することによりゲル状
物に成形される。冷却速度は少なくともゲル化温度以下
までは50℃/分以上の速度で行うのが好ましい。
Next, an electronic conductive material is uniformly blended with the polyolefin composition solution. Further, a heated solution of the polyolefin composition containing the electronic conductive material is extruded from a die and molded. As the die, a sheet die having a rectangular base shape is usually used, but a double cylindrical hollow fiber die, an inflation die, or the like can also be used. When a sheet die is used, the die gap is usually 0.1.
1-5mm, 140-250 ° C during extrusion
Heated. The extrusion speed at this time is usually 20 to 30.
cm / min to 5 to 10 m / min. The solution extruded from the die in this manner is formed into a gel by cooling. The cooling rate is preferably at least 50 ° C./min up to the gelation temperature or lower.

【0018】次に、このゲル状成形物を延伸する。延伸
は、ゲル状成形物を加熱し、通常のテンター法、ロール
法、インフレーション法、圧延法もしくはこれらの方法
の組合せによって所定の倍率で行う。2軸延伸が好まし
く、縦横同時延伸又は逐次延伸のいずれもよいが、特に
2軸延伸が好ましい。延伸温度は、ポリオレフィン組成
物の内、ポリエチレンの融点+10℃以下、好ましくは
結晶分散温度から結晶融点未満の範囲である。例えば、
90〜140℃、より好ましくは、100〜130℃の
範囲である。さらに、この延伸膜中に含まれる溶媒を塩
化メチレンのような揮発性溶剤で抽出除去し、次いで乾
燥、熱セットする。なお、ポリオレフィン微多孔膜に
は、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、
アンチブロッキング剤、顔料、染料、無機充填剤などの
各種添加剤を、本発明の目的を損なわない範囲で添加す
ることができる。
Next, this gel-like molded product is stretched. The stretching is performed at a predetermined magnification by heating the gel-like molded product and using a usual tenter method, a roll method, an inflation method, a rolling method or a combination of these methods. Biaxial stretching is preferred, and either longitudinal or transverse simultaneous stretching or sequential stretching may be used, but biaxial stretching is particularly preferred. The stretching temperature is equal to or lower than the melting point of polyethylene of the polyolefin composition + 10 ° C, preferably in the range from the crystal dispersion temperature to less than the crystal melting point. For example,
90-140 degreeC, More preferably, it is the range of 100-130 degreeC. Further, the solvent contained in the stretched film is extracted and removed with a volatile solvent such as methylene chloride, and then dried and heat-set. In addition, an antioxidant, an ultraviolet absorber, a lubricant,
Various additives such as an anti-blocking agent, a pigment, a dye, and an inorganic filler can be added as long as the object of the present invention is not impaired.

【0019】上記の電子導電性材料を含有するポリオレ
フィン微多孔膜は、1〜1000μm、好ましくは5〜
500μmの膜厚を有する。厚さが1μm未満では、機
械的強度及び取扱の観点から実用に供することが難し
い。一方、1000μmを超える場合には、実効抵抗が
大きくなり、導電体としての体積効率も不利となる。ま
た、膜の空孔率は、限定的でないが、30〜95%、よ
り好ましくは50〜90%の範囲のものである。空孔率
が30%未満では、非プロトン性電解質溶液の固定化が
不十分になる場合があり、一方、空孔率が95%を超え
ると、膜の機械的強度が小さくなり実用性に劣る。
The microporous polyolefin membrane containing the above-mentioned electron conductive material has a thickness of 1 to 1000 μm, preferably 5 to 1000 μm.
It has a thickness of 500 μm. If the thickness is less than 1 μm, it is difficult to practically use from the viewpoint of mechanical strength and handling. On the other hand, if it exceeds 1000 μm, the effective resistance becomes large and the volume efficiency as a conductor is disadvantageous. The porosity of the film is not limited, but is in the range of 30 to 95%, more preferably 50 to 90%. If the porosity is less than 30%, the immobilization of the aprotic electrolyte solution may be insufficient. On the other hand, if the porosity exceeds 95%, the mechanical strength of the membrane becomes small and the practicability is poor. .

【0020】A−b.オルガノポリシロキサンのコーテ
ィング方法 オルガノポリシロキサンのコーティング方法としては、
電子導電性材を含有するポリオレフィン微多孔膜に対し
て非溶媒である有機溶剤に溶解したオルガノポリシロキ
サンの溶液をポリオレフィン微多孔膜へスプレー、塗布
あるいは該膜を液中に浸漬、その他のコーティング操作
が挙げられる。有機溶剤を蒸発固化させた膜はさらに架
橋を行うことがより好ましい。コーティングの厚さは、
複合膜として1〜1000μmとすることが好ましい。
Ab. Coating method of organopolysiloxane As a coating method of organopolysiloxane,
Spraying or applying a solution of organopolysiloxane dissolved in an organic solvent that is a non-solvent to a microporous polyolefin membrane containing an electronic conductive material, coating or dipping the membrane into the liquid, and other coating operations Is mentioned. More preferably, the film obtained by evaporating and solidifying the organic solvent is further crosslinked. The coating thickness is
The thickness of the composite film is preferably 1 to 1000 μm.

【0021】A−c.電解質溶液の固定化方法 電子導電性材料及びオルガノポリシロキサンを含有する
ポリオレフィン微多孔膜に非プロトン性電解質溶液を固
定化し非プロトン性電解質薄膜とする方法としては、含
浸、塗布またはスプレーなどを単独あるいは組み合わせ
て使用することができる。また、電解質溶液を固定化す
るのは、電池に組み込む前でもよいし、電池組立途中工
程でもよいし、電池組立最終工程でもよい。中でも、電
池組立時の取扱性、皺などの混入防止、正負極板表面と
の密着性などの観点と、従来の電池組立工程をそのまま
適用できることから、電池組立途中工程あるいは電池組
立最終工程で電解質溶液を固定化する方法が好ましい。
なお、電解質溶液含有率は、電子導電材料及びオルガノ
ポリシロキサンを含有するポリオレフィン微多孔膜の7
0〜350重量%、好ましくは80〜250重量%であ
る。保持率が70重量%未満では、比導電率は向上する
が電極材料として用いる場合の電解質溶液との界面が少
なくなり、電池やコンデンサー及びエレクトロクロミッ
ク素子としての応用が実用性の面から制約される。一
方、350重量%を超えると、膜の機械的強度が不十分
となる。
Ac. Method of fixing electrolyte solution As a method of fixing an aprotic electrolyte solution to a polyolefin microporous membrane containing an electronic conductive material and an organopolysiloxane to form an aprotic electrolyte thin film, impregnation, coating or spraying alone or They can be used in combination. In addition, the electrolyte solution may be fixed before being incorporated into the battery, during the battery assembly process, or at the final battery assembly process. Among them, in view of the ease of handling during battery assembly, the prevention of wrinkles and the like, the adhesion to the positive and negative electrode surfaces, and the fact that the conventional battery assembly process can be applied as it is, the electrolyte may be used during the battery assembly process or the final battery assembly process. The method of immobilizing the solution is preferred.
The content of the electrolyte solution was 7% of that of the microporous polyolefin membrane containing the electronic conductive material and the organopolysiloxane.
It is 0 to 350% by weight, preferably 80 to 250% by weight. When the retention is less than 70% by weight, the specific conductivity is improved, but the interface with the electrolyte solution when used as an electrode material is reduced, and the application as a battery, a capacitor, and an electrochromic element is restricted from the viewpoint of practicality. . On the other hand, if it exceeds 350% by weight, the mechanical strength of the film becomes insufficient.

【0022】B.電子導電性材料を含有するポリオレフ
ィン組成物から成るゲル状成形物にオルガノポリシロキ
サンを充填して製膜し、電解質溶液を固定化する方法 B−a.ゲル状成形物の作成 電子導電性材料を含有するポリオレフィン組成物から成
るゲル状シートは、A−aに記載の微多孔膜の製法にお
いて延伸工程前のゲル状シートと同様にして作成され
る。即ち、超高分子量ポリオレフィンを溶媒に加熱溶解
し、電子導電性材料を均一に配合し、この溶液をシート
状に成形し、冷却することによりゲル状シートを得るこ
とができる。
B. A method of filling an organopolysiloxane into a gel-like molded product made of a polyolefin composition containing an electronic conductive material to form a film, and fixing an electrolyte solution Ba-a. Preparation of gel-like molded article A gel-like sheet made of a polyolefin composition containing an electronic conductive material is prepared in the same manner as the gel-like sheet before the stretching step in the method for producing a microporous membrane described in A-a. That is, a gel-like sheet can be obtained by heating and dissolving an ultra-high molecular weight polyolefin in a solvent, uniformly mixing an electron conductive material, forming the solution into a sheet, and cooling the sheet.

【0023】B−b.オルガノポリシロキサンの充填と
製膜 オルガノポリシロキサンを充填するため、まず前記のゲ
ル状シート中の溶媒を除去する。除去方法としては、ゲ
ル状シートの加熱による溶媒の蒸発除去、圧縮による除
去、揮発性の溶剤による溶媒の抽出除去、凍結乾燥によ
りゲル状シートの網状組織を保ったままでの溶媒の除去
などが挙げられるが、ゲル状シートの構造を著しく変化
させることなく溶媒を除去するためには、揮発性溶剤に
よる抽出除去が好ましい。また、ゲル状シート中の溶媒
は1重量%以下まで除去することが好ましい。
Bb. Filling and film formation of organopolysiloxane In order to fill the organopolysiloxane, first, the solvent in the gel sheet is removed. Examples of the removal method include removal of the solvent by evaporation of the gel-like sheet by heating, removal by compression, extraction and removal of the solvent by a volatile solvent, and removal of the solvent while maintaining the network structure of the gel-like sheet by freeze-drying. However, in order to remove the solvent without significantly changing the structure of the gel-like sheet, extraction and removal with a volatile solvent is preferable. Further, it is preferable to remove the solvent in the gel-like sheet to 1% by weight or less.

【0024】オルガノポリシロキサンの充填は、脱溶媒
処理を行ったゲル状シートを、脱溶媒処理の揮発性溶剤
の存在下又は不存在下においてオルガノポリシロキサン
液もしくはその希釈溶液中に浸漬またはそれをコーティ
ングすることによって行われる。また、脱溶媒処理を施
していない未処理のゲル状シートの場合であっても、オ
ルガノポリシロキサン液もしくはその希釈溶液を圧入す
ることによって充填することができる。しかし、脱溶媒
処理後の揮発性溶媒存在下でゲル状シートを浸漬する方
が容易に充填できるため、より好ましい。
The filling of the organopolysiloxane is carried out by immersing the gelled sheet subjected to the desolvation treatment in an organopolysiloxane liquid or a dilute solution thereof in the presence or absence of a volatile solvent used for the desolvation treatment. This is done by coating. Further, even in the case of an untreated gel-like sheet that has not been subjected to a solvent removal treatment, it can be filled by injecting an organopolysiloxane solution or a diluted solution thereof. However, it is more preferable to immerse the gel-like sheet in the presence of the volatile solvent after the desolvation treatment, because it can be easily filled.

【0025】オルガノポリシロキサン希釈溶液の希釈濃
度は、ゲル状シート中に充填するオルガノポリシロキサ
ンの量によって異なるが、少なくとも0.05重量%以
上が好ましく、特に0.5重量%以上が好ましい。濃度
が0.05重量%未満ではゲル状シート中に充填される
オルガノポリシロキサンが不足し、延伸時にピンホール
が生じやすくなる。また、溶液粘度は、ゲル状シート全
体にわたって均一に充填するために、25℃において5
00cSt未満が好ましく、特に100cSt未満が好
ましい。ゲル状シートへのオルガノポリシロキサンの充
填量は、5〜90重量%が好ましく、特に10〜80重
量%が好ましい。次に、得られたオルガノポリシロキサ
ン含有ゲル状シートを延伸する。延伸方法はA−aに記
載のゲル状成形物の延伸工程と同様に行うことができ
る。
The concentration of the diluted organopolysiloxane solution varies depending on the amount of the organopolysiloxane to be filled in the gel sheet, but is preferably at least 0.05% by weight or more, particularly preferably 0.5% by weight or more. If the concentration is less than 0.05% by weight, the amount of the organopolysiloxane filled in the gel-like sheet is insufficient, and pinholes are easily generated during stretching. The solution viscosity is 5 at 25 ° C. in order to uniformly fill the entire gel sheet.
It is preferably less than 00 cSt, particularly preferably less than 100 cSt. The filling amount of the organopolysiloxane in the gel sheet is preferably from 5 to 90% by weight, particularly preferably from 10 to 80% by weight. Next, the obtained organopolysiloxane-containing gel-like sheet is stretched. The stretching method can be performed in the same manner as the stretching step of the gel-like molded product described in A-a.

【0026】B−c.電解質溶液の固定化方法 電解質溶液の固定化方法は、A−cに記載した方法と同
様にして行うことができる。
B-c. Method for Immobilizing Electrolyte Solution The method for immobilizing the electrolyte solution can be performed in the same manner as the method described in Ac.

【0027】3.固定化液膜導電体の膜厚と比導電率 上記によって構成される本発明の固定化液膜導電体は、
1〜1000μmの膜厚を有する。また、比導電率は、
10-5Scm-1以上、好ましくは10-3Scm-1以上で
ある。比導電率が10-5Scm-1未満では実効抵抗が大
きくなり実用的でない。例えば、膜厚1μmのときの実
効抵抗は1μm/10-5Scm-1、即ち10Ωcm2
なる。
3. The film thickness and specific conductivity of the immobilized liquid film conductor The immobilized liquid film conductor of the present invention constituted by the above,
It has a thickness of 1 to 1000 μm. The specific conductivity is
It is at least 10 -5 Scm -1 , preferably at least 10 -3 Scm -1 . If the specific conductivity is less than 10 -5 Scm -1 , the effective resistance becomes large and is not practical. For example, when the film thickness is 1 μm, the effective resistance is 1 μm / 10 −5 Scm −1 , that is, 10 Ωcm 2 .

【0028】[0028]

【実施例】本発明を以下の具体的な実施例によりさらに
詳細に説明する。なお、実施例における膜厚の試験方法
は、断面を走査型電子顕微鏡により測定した。
The present invention will be described in more detail with reference to the following specific examples. In the test method of the film thickness in the examples, the cross section was measured by a scanning electron microscope.

【0029】実施例1 ポリエチレン(重量平均分子量40万のポリエチレン2
5重量部と重量平均分子量200万のポリエチレン5重
量部)30重量部と石油コークス粉末30重量部とケッ
チェンブラック粉末(Akzo Chemic社商標)
3重量部と流動パラフィン70重量部を含む混合物10
0重量部に酸化防止剤0.37重量部を加えて2軸押し
出し機で加熱混練した。これを長方形の口金を有するダ
イスから押出し、チルロールで引き取り1mm厚のシー
トとした。このシートをバッチ式2軸延伸機を用いて1
20℃で5×5倍に同時2軸延伸し、残留する流動パラ
フィンをn−ヘキサンで洗浄後、金枠に固定した状態で
120℃で乾燥、熱セットして電子導電性材料を含有す
るポリエチレン微多孔膜を得た。
Example 1 Polyethylene (polyethylene 2 having a weight average molecular weight of 400,000)
5 parts by weight, 30 parts by weight of petroleum coke powder and 30 parts by weight of Ketjen black powder (trademark of Akzo Chemical Co.)
Mixture 10 containing 3 parts by weight and 70 parts by weight of liquid paraffin
0.37 parts by weight of an antioxidant was added to 0 parts by weight, and the mixture was heated and kneaded with a twin screw extruder. This was extruded from a die having a rectangular die and taken up with a chill roll to form a 1 mm thick sheet. This sheet is subjected to batch stretching using a batch type biaxial stretching machine.
Polyethylene containing an electron conductive material is stretched simultaneously at 20 ° C. by 5 × 5 times, washed with n-hexane for remaining liquid paraffin, dried at 120 ° C. while fixed to a metal frame, and heat-set. A microporous membrane was obtained.

【0030】得られた電子導電性材料を含有するポリエ
チレン微多孔膜(膜厚30μm)にキシレンで15重量
%に希釈した2液型室温硬化シリコンゴムコンパウンド
(信越化学社製、商品名:KE103RTV)を塗布
し、室温にて24時間放置して硬化しオルガノポリシロ
キサンの充填量53重量%の複合膜を得た。このオルガ
ノポリシロキサンを充填した電子導電性材料を含有する
ポリエチレン微多孔膜10×10mm角を25℃の1モ
ルのLiPF6を含むプロピレンカーボネート溶液に1
時間浸漬し、膨潤率(重量増加率)125%の固定化液
膜導電体を得た。得られた固定化液膜導電体を直径10
mmに打ち抜き、これを白金黒電極に挟み、周波数1k
Hzの交流で電気抵抗値を測定し、この値と固定化液膜
導電体の厚み及び面積より算出した比導電率は7×10
-2Scm-1であった。
A two-part room temperature curing silicone rubber compound (trade name: KE103RTV, manufactured by Shin-Etsu Chemical Co., Ltd.) diluted to 15% by weight with xylene in a polyethylene microporous membrane (thickness: 30 μm) containing the obtained electronically conductive material. Was applied and left to stand at room temperature for 24 hours to cure, thereby obtaining a composite film having an organopolysiloxane loading of 53% by weight. A 10 × 10 mm square polyethylene microporous film containing an electron conductive material filled with this organopolysiloxane was added to a propylene carbonate solution containing 1 mol of LiPF 6 at 25 ° C.
This was immersed for a period of time to obtain an immobilized liquid film conductor having a swelling ratio (weight increase ratio) of 125%. The obtained immobilized liquid membrane conductor was set to a diameter of 10
mm, and this is sandwiched between platinum black electrodes.
The specific electrical conductivity calculated from the measured electrical resistance value with an alternating current of Hz and the thickness and the area of the immobilized liquid film conductor was 7 × 10
-2 Scm -1 .

【0031】実施例2 ポリエチレン(重量平均分子量40万のポリエチレン2
5重量部と重量平均分子量200万のポリエチレン5重
量部)30重量部と石油コークス粉末30重量部とケッ
チェンブラック粉末(Akzo Chemic社商標)
3重量部と流動パラフィン70重量部を含む混合物10
0重量部に酸化防止剤0.37重量部を加えて2軸押し
出し機で加熱混練した。これを長方形の口金を有するダ
イスから押出し、チルロールで引き取り1mm厚のシー
トとした。このシートを多量の塩化メチレン中に60分
間浸漬し、次いでこのシートを乾燥させることなく直ち
に、メチルビニルシリコーンオイル(日本ユニカー社
製、商品名:NUCシリコーンガムストックW−961
3)20重量%の塩化メチレン溶液中に移行し60分間
浸漬した後、四方を固定した状態で塩化メチレンを乾燥
除去してメチルビニルシリコーンオイル充填量45重量
%のシートを得た。
Example 2 Polyethylene (polyethylene 2 having a weight average molecular weight of 400,000)
5 parts by weight, 30 parts by weight of petroleum coke powder and 30 parts by weight of Ketjen black powder (trademark of Akzo Chemical Co.)
Mixture 10 containing 3 parts by weight and 70 parts by weight of liquid paraffin
0.37 parts by weight of an antioxidant was added to 0 parts by weight, and the mixture was heated and kneaded with a twin screw extruder. This was extruded from a die having a rectangular die and taken up with a chill roll to form a 1 mm thick sheet. The sheet was immersed in a large amount of methylene chloride for 60 minutes, and immediately without drying the sheet, methyl vinyl silicone oil (manufactured by Nippon Unicar, trade name: NUC silicone gum stock W-961) was used.
3) After being transferred into a 20% by weight methylene chloride solution and immersed for 60 minutes, methylene chloride was dried and removed in a state where all sides were fixed to obtain a sheet having a methyl vinyl silicone oil filling amount of 45% by weight.

【0032】このメチルビニルシリコーンオイル充填シ
ートをバッチ式2軸延伸機を用いて125℃で5×5倍
に同時2軸延伸した。得られた膜の赤外線吸収スペクト
ルを測定したところ、ビニル基は認められず、また塩化
メチレン抽出によるメチルビニルシリコーンオイルの溶
出は認められなかった。このオルガノポリシロキサンを
充填した電子導電性材料を含有するポリエチレン膜を2
5℃の1モルのLiPF6を含むプロピレンカーボネー
ト溶液に1時間浸漬し、膜厚24μm、膨潤率(重量増
加率)117%の固定化液膜導電体を得た。得られた固
定化液膜導電体を直径10mmに打ち抜き、これを白金
黒電極に挟み、周波数1kHzの交流で電気抵抗値を測
定し、この値と固定化液膜導電体の厚み及び面積より算
出した比導電率は9×10-2Scm-1であった。
This methyl vinyl silicone oil-filled sheet was simultaneously biaxially stretched 5 × 5 times at 125 ° C. using a batch type biaxial stretching machine. When the infrared absorption spectrum of the obtained film was measured, no vinyl group was recognized, and no elution of methylvinylsilicone oil by methylene chloride extraction was observed. A polyethylene film containing an electron conductive material filled with this organopolysiloxane is
It was immersed in a propylene carbonate solution containing 1 mol of LiPF 6 at 5 ° C. for 1 hour to obtain an immobilized liquid film conductor having a film thickness of 24 μm and a swelling ratio (weight increase ratio) of 117%. The obtained immobilized liquid film conductor was punched out to a diameter of 10 mm, this was sandwiched between platinum black electrodes, and the electrical resistance was measured with an alternating current of 1 kHz, and calculated from this value and the thickness and area of the immobilized liquid film conductor. The measured specific conductivity was 9 × 10 −2 Scm −1 .

【0033】比較例1 実施例1において、オルガノポリシロキサンを充填する
前の電子導電性材料を含有するポリエチレン微多孔膜
(膜厚30μm)の10cm×10cm 角を、25℃
の1モルのLiPF6を含むプロピレンカーボネート溶
液に1時間浸漬し、膨潤率(重量増加率)81.5%の
固定化液膜導電体を得た。得られた固定化液膜導電体を
直径10mmに打ち抜き、これを白金黒電極で挟み、周
波数1kHzの交流で電気抵抗値を測定し、この値と固
定化液膜導電体の厚み及び面積より算出した比導電率は
4×10-2Scm−1であった。
COMPARATIVE EXAMPLE 1 In Example 1, a 10 cm × 10 cm square of a microporous polyethylene film (thickness: 30 μm) containing an electronic conductive material before filling with an organopolysiloxane was treated at 25 ° C.
Was immersed in a propylene carbonate solution containing 1 mol of LiPF 6 for 1 hour to obtain an immobilized liquid membrane conductor having a swelling ratio (weight increase ratio) of 81.5%. The obtained immobilized liquid film conductor was punched out to a diameter of 10 mm, this was sandwiched between platinum black electrodes, the electric resistance was measured with an alternating current of 1 kHz, and calculated from this value and the thickness and area of the immobilized liquid film conductor. The measured specific conductivity was 4 × 10 −2 Scm −1 .

【0034】[0034]

【発明の効果】本発明の固定化液膜導電体は、充填した
オルガノポリシロキサンの親和性により電解質溶液を固
定化し、ポリオレフィンでできた多孔膜基材骨格により
その過度な膨潤を抑えることにより、広い温度範囲で安
定的に電解質溶液を保持することができると共に、電解
質溶液の蒸発速度を極めて低く保つことができることに
より、良好な導電性を広い温度にわたり維持できる。即
ち、電子導電性を著しく低下させることなく、過充電で
の安全性を向上することができる。さらに、この固定化
液膜導電体はポリオレフィンでできた骨格により、機械
強度が優れており、従来の電池製造工程をほとんど変更
することなく適用することができる。また、この固定化
液膜導電体は、イオンと電子の導電性を併せ持つため、
電解質、特に液体電解質を用いる電池、エレクトロクロ
ミック素子、電気二重層コンデンサー、液晶素子などの
電極に有用である。この固定化液膜導電体中のイオン導
電体は電極間の電解質と連続し、かつ多孔性導電膜とも
広い面積で密着しているので、電解質を用いる各種セ
ル、素子の電極材料として有効である。
The immobilized liquid membrane conductor of the present invention immobilizes the electrolyte solution by the affinity of the filled organopolysiloxane, and suppresses the excessive swelling by the porous membrane base skeleton made of polyolefin. Since the electrolyte solution can be stably held in a wide temperature range and the evaporation rate of the electrolyte solution can be kept extremely low, good conductivity can be maintained over a wide temperature range. That is, safety in overcharging can be improved without significantly lowering the electronic conductivity. Further, the immobilized liquid film conductor has excellent mechanical strength due to a skeleton made of polyolefin, and can be applied with almost no change in a conventional battery manufacturing process. In addition, since this immobilized liquid film conductor has both ion and electron conductivity,
It is useful for an electrode of an electrolyte, particularly a battery using a liquid electrolyte, an electrochromic device, an electric double layer capacitor, a liquid crystal device and the like. Since the ionic conductor in the immobilized liquid membrane conductor is continuous with the electrolyte between the electrodes and is in close contact with the porous conductive film over a wide area, it is effective as an electrode material for various cells and elements using the electrolyte. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H05K 9/00 H05K 9/00 W ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // H05K 9/00 H05K 9/00 W

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非プロトン性電解質溶液に親和性を有す
るオルガノポリシロキサン及び電子導電性材料を含有す
るポリオレフィン微多孔膜に、非プロトン性電解質溶液
を固定化した固定化液膜導電体。
An immobilized liquid membrane conductor comprising an aprotic electrolyte solution immobilized on a microporous polyolefin membrane containing an organopolysiloxane having an affinity for an aprotic electrolyte solution and an electron conductive material.
【請求項2】 電子導電性材料を含有するポリオレフィ
ン微多孔膜に、非プロトン性電解質溶液に親和性を有す
るオルガノポリシロキサンをコーティングし、これに非
プロトン性電解質溶液を含浸させて固定化する固定化液
膜導電体の製造方法。
2. An immobilization method in which a microporous polyolefin membrane containing an electroconductive material is coated with an organopolysiloxane having an affinity for an aprotic electrolyte solution, and impregnated with the aprotic electrolyte solution for immobilization. A method for producing a liquid film conductor.
【請求項3】 電子導電性材料を含有するポリオレフィ
ン組成物から成るゲル状成形物に非プロトン性電解質溶
液に親和性を有するオルガノポリシロキサンを充填して
製膜し、これに非プロトン性電解質溶液を含浸させて固
定化する固定化液膜導電体の製造方法。
3. A gel-like molded product comprising a polyolefin composition containing an electronic conductive material is filled with an organopolysiloxane having an affinity for an aprotic electrolyte solution to form a film. A method for producing an immobilized liquid film conductor, wherein the conductor is impregnated and immobilized.
JP09147097A 1997-03-26 1997-03-26 Immobilized liquid film conductor Expired - Fee Related JP3586536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09147097A JP3586536B2 (en) 1997-03-26 1997-03-26 Immobilized liquid film conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09147097A JP3586536B2 (en) 1997-03-26 1997-03-26 Immobilized liquid film conductor

Publications (2)

Publication Number Publication Date
JPH10269847A true JPH10269847A (en) 1998-10-09
JP3586536B2 JP3586536B2 (en) 2004-11-10

Family

ID=14027289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09147097A Expired - Fee Related JP3586536B2 (en) 1997-03-26 1997-03-26 Immobilized liquid film conductor

Country Status (1)

Country Link
JP (1) JP3586536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170541A (en) * 2000-05-15 2002-06-14 Denso Corp Manufacturing method of porous membrane for nonaqueous electrolyte secondary battery, manufacturing method of electrode for nonaqueous electrolyte secondary battery, porous membrane for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolytic-solution secondary battery
JP2006522432A (en) * 2003-04-03 2006-09-28 ロディア・シミ Crosslinkable composition for electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170541A (en) * 2000-05-15 2002-06-14 Denso Corp Manufacturing method of porous membrane for nonaqueous electrolyte secondary battery, manufacturing method of electrode for nonaqueous electrolyte secondary battery, porous membrane for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolytic-solution secondary battery
JP2006522432A (en) * 2003-04-03 2006-09-28 ロディア・シミ Crosslinkable composition for electrolyte

Also Published As

Publication number Publication date
JP3586536B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
US9722226B2 (en) Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
US5607485A (en) Method of making polymeric electrolytic cell separator membrane
KR101825986B1 (en) Freestanding, heat resistant microporous film for use in energy storage devices
US6828065B2 (en) Ionically conductive polymer electrolytes
EP1824671B1 (en) A microporous material and a method of making same
EP0699348A1 (en) Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
Lai et al. In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries
Kim et al. Enhanced separator properties by thermal curing of poly (ethylene glycol) diacrylate-based gel polymer electrolytes for lithium-ion batteries
KR100273506B1 (en) Polymer gel and manufacturing method for secondary battery
JP2023548598A (en) Lithium protective polymer layer for anodeless lithium metal secondary battery and method for manufacturing the same
JP3586536B2 (en) Immobilized liquid film conductor
JP3581774B2 (en) Aprotic electrolyte thin film and method for producing the same
CN112567556A (en) Composite membrane and preparation method thereof
Nasef et al. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes
US20220166029A1 (en) Graphene foam-based protective layer for an anode-less alkali metal battery
Grewal et al. Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids
Deka et al. Electrical and electrochemical properties of poly (methyl methacrylate) based nanocomposite gel electrolytes dispersed with dedoped (insulating) polyaniline nanofibers
Kabata et al. Gel‐type solid polymer electrolytes for rechargeable film batteries
Sim et al. Elastomers and their potential as matrices in polymer electrolytes
KR100384384B1 (en) Lithium ion polymer battery having superior temperatrure property and process for preparing the same
JP3919346B2 (en) Polymer solid electrolyte thin film and method for producing the same
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
JPH10269846A (en) Fixed liquid film conductor
JP3927645B2 (en) Immobilized liquid film conductor
JP3586535B2 (en) Immobilized liquid film conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees