JPH10267646A - Method and apparatus for judgment of deformation direction of structure in earthquake - Google Patents

Method and apparatus for judgment of deformation direction of structure in earthquake

Info

Publication number
JPH10267646A
JPH10267646A JP9091368A JP9136897A JPH10267646A JP H10267646 A JPH10267646 A JP H10267646A JP 9091368 A JP9091368 A JP 9091368A JP 9136897 A JP9136897 A JP 9136897A JP H10267646 A JPH10267646 A JP H10267646A
Authority
JP
Japan
Prior art keywords
data
spectrum
unit
trajectory
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9091368A
Other languages
Japanese (ja)
Other versions
JP3131401B2 (en
Inventor
Makoto Nasu
誠 那須
Tsunehiko Oba
恒彦 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BUTSURI TANKO KK
Railway Technical Research Institute
Original Assignee
NIPPON BUTSURI TANKO KK
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BUTSURI TANKO KK, Railway Technical Research Institute filed Critical NIPPON BUTSURI TANKO KK
Priority to JP09091368A priority Critical patent/JP3131401B2/en
Publication of JPH10267646A publication Critical patent/JPH10267646A/en
Application granted granted Critical
Publication of JP3131401B2 publication Critical patent/JP3131401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To judge the deformation direction of a structure in the case of an earthquake by a method wherein a tremor in a measuring point (a) and that in a measuring point (b) on the side of the structure are always measured, a prescribed processing operation is performed and the ratio of a spectrum Fa in the measuring point (a) to a spectrum Fb in the measuring point (b) is found. SOLUTION: A pickup PU1 is installed in a measuring point (a), a pickup PU2 is installed in a measuring point (b), and two obtained vibration waveform data are amplified separately by an amplifier 10 so as to be output to a computing and processing part 20. Then, track data in the measuring points (a), (b) in the horizontal direction are computed by a tack processing part 21, the respective vibration waveform data are Fourier-transformed separately into vibration-number region data by a transform part 22, a Fourier spectrum Fa and a Fourier spectrum Fb are found, and the ratio of the Fourier spectrum Fa to the Fourier spectrum Fb is found by a comparison part 23. When an integrated value which is obtained by subtracting 1.0 from the ratio of the spectrums is larger than 0, it is judged that a structure is deformed to the side of the measuring point (a). When it is smaller than 0, it is judged that the structure is deformed to the side of the measuring point (b). When it is 0, it is judged that the structure is not deformed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に地震時におい
て構造物が変形する方向を判定できる、地震時における
構造物の変形方向判定方法及び変形方向判定装置に属す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for judging the deformation direction of a structure during an earthquake, which can determine the direction in which the structure is deformed especially during an earthquake.

【0002】[0002]

【従来の技術】地震等により構造物が変形(例えば傾斜
・倒壊等)することがある。
2. Description of the Related Art A structure may be deformed (for example, tilted or collapsed) due to an earthquake or the like.

【0003】構造物の変形方向が予め判明すれば、地盤
対策、基礎対策或いは構造物対策等を合理的・経済的に
行うことが可能となる。したがって、構造物の変形方向
を予め判定することは極めて重要な意義を有する。
[0003] If the direction of deformation of a structure is known in advance, it is possible to rationally and economically take ground measures, foundation measures or structural measures. Therefore, it is extremely important to determine the deformation direction of the structure in advance.

【0004】ところで、従来から、地震により構造物が
被害を受けるか否かを判定する装置は種々のものが開発
され提供されている。
Conventionally, various devices have been developed and provided for determining whether or not a structure is damaged by an earthquake.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の装置では変形方向を判定することはできなかった。
However, these devices cannot determine the direction of deformation.

【0006】本発明は斯かる問題点を鑑みてなされたも
のであり、その目的とするところは、地震時における構
造物の変形方向を判定することができる変形方向判定方
法及び変形方向判定装置を提供する点にある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a deformation direction determining method and a deformation direction determining apparatus capable of determining a deformation direction of a structure during an earthquake. The point is to provide.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明の要
旨は、地震時における構造物の変形方向判定方法であっ
て、構造物の側方の測点a,bの常時微動を測定し、こ
れらの測定により得られた各時間領域の各データを、振
動数領域データである測点aのスペクトルFaと測点b
のスペクトルFbとに変換し、これら2つのスペクトル
Fa,Fbから、スペクトル比Fa/Fbを求め、この
スペクトル比Fa/Fbを振動数との関係においてグラ
フ化し、当該グラフから、スペクトル比Fa/Fbが、
1.0よりも大きい場合には構造物は測点a側に変形
し、1.0よりも小さい場合には構造物は測点b側に変
形すると判定し、1.0の時には変形しないと判定する
ことを特徴とする、地震時における構造物の変形方向判
定方法に存する。請求項2記載の発明の要旨は、地震時
における構造物の変形方向判定方法であって、構造物の
側方の測点a,bの常時微動を測定し、これらの測定に
より得られた各時間領域の各データを、振動数領域デー
タである測点aのスペクトルFaと測点bのスペクトル
Fbとに変換し、これら2つのスペクトルFa,Fbか
ら、スペクトル比Fa/Fbを求め、このスペクトル比
Fa/Fbから1.0を引いて積分した値が、零よりも
大きければ測点a側に変形し、零よりも小さければ測点
b側に変形すると判定し、零であれば変形しないと判定
することを特徴とする、地震時における構造物の変形方
向判定方法に存する。請求項3記載の発明の要旨は、地
震時における構造物の変形方向判定方法であって、構造
物の側方の測点a,bの常時微動を測定し、これらの測
定により得られた測点a,bの各時間領域の各データ
を、振動数領域データである測点aのスペクトルFaと
測点bのスペクトルFbとに変換し、これら2つのスペ
クトルFa,Fbから、スペクトル比Fa/Fbを求
め、このスペクトル比Fa/Fbから1.0を引いて積
分した値の符号が、正ならば測点a側に変形し、負なら
ば測点b側に変形すると判定し、零であれば変形しない
と判定することを特徴とする、地震時における構造物の
変形方向判定方法に存する。請求項4記載の発明の要旨
は、スペクトル比Fa/Fbを求める前に、構造物の水
平方向の常時微動を測定し、この常時微動の軌跡が略楕
円形をなす場合には指向性が有ると判定し、略円形をな
す場合には指向性が無いと判定し、指向性が有る場合に
スペクトル比Fa/Fbを求めることを特徴とする請求
項1乃至3のいずれかに記載の、地震時における構造物
の変形方向判定方法に存する。請求項5記載の発明の要
旨は、地震時における構造物の変形方向判定装置であっ
て、構造物の常時微動と、構造物の側方の常時微動とを
各別に測定可能な2つの振動受信部と、これらの振動受
信部により得られた、時間領域における振動波形データ
をそれぞれ増幅する増幅部と、この増幅部からの増幅さ
れた、構造物の振動波形データから、水平方向の軌跡デ
ータを算出する軌跡算出部と、この軌跡算出部からの軌
跡データに基づいて軌跡を描く描画部と、構造物の側方
の各振動波形データを振動数領域データにそれぞれ変換
して2つのスペクトルデータを求める変換部と、この変
換部から得られた各スペクトルデータを比較し、スペク
トル比データを求める比較部と、スペクトル比データか
らスペクトル比と振動数との関係をグラフ表示する表示
部とを備えたことを特徴とする、地震時における構造物
の変形方向判定装置に存する。請求項6記載の発明の要
旨は、地震時における構造物の変形方向判定装置であっ
て、構造物の常時微動と、構造物の側方の常時微動とを
各別に測定可能な2つの振動受信部と、これらの振動受
信部により得られた、時間領域における振動波形データ
をそれぞれ増幅する増幅部と、この増幅部からの増幅さ
れた、構造物の振動波形データから、水平方向の軌跡デ
ータを算出する軌跡算出部と、この軌跡算出部からの軌
跡データに基づいて軌跡を描く描画部と、構造物の側方
の各振動波形データを振動数領域データにそれぞれ変換
して2つのスペクトルデータを求める変換部と、この変
換部から得られた各スペクトルデータを比較し、スペク
トル比データを求める比較部と、このスペクトル比デー
タから1.0を引いた値を積分して積分値データを求め
る積分部と、この積分部からの積分値データに基づいて
積分値を表示する表示部とを備えたことを特徴とする、
地震時における構造物の変形方向判定装置に存する。請
求項7記載の発明の要旨は、地震時における構造物の変
形方向判定装置であって、構造物の常時微動と、構造物
の側方の常時微動とを各別に測定可能な2つの振動受信
部と、これらの振動受信部により得られた、時間領域に
おける振動波形データをそれぞれ増幅する増幅部と、こ
の増幅部からの増幅された、構造物の振動波形データか
ら、水平方向の軌跡データを算出する軌跡算出部と、こ
の軌跡算出部からの軌跡データに基づいて軌跡を描く描
画部と、構造物の側方の各振動波形データを振動数領域
データにそれぞれ変換して2つのスペクトルデータを求
める変換部と、この変換部から得られた各スペクトルデ
ータを比較し、スペクトル比データを求める比較部と、
このスペクトル比データから1.0を引いた値を積分し
て積分値データを求める積分部と、この積分部からの積
分値データから符号データを求める符号判定部と、この
符号データから積分値データが示す積分値の正負を表示
する表示部とを備えたことを特徴とする、地震時におけ
る構造物の変形方向判定装置に存する。請求項8記載の
発明の要旨は、地震時における構造物の変形方向判定方
法であって、構造物の側方の2つの測点a,bと、構造
物の測点cの常時微動を測定し、これらの測定により得
られた各時間領域の各データを、振動数領域データであ
る、各側方測点スペクトルFa,Fbと、構造物測点ス
ペクトルFcとにそれぞれ変換し、各側方測点スペクト
ルFa,Fbと、構造物測点スペクトルFcとのスペク
トル比Fa/Fc,Fb/Fc、又はFc/Fa,Fc
/Fbをそれぞれ求め、これら2つのスペクトル比Fa
/Fc,Fb/Fc、又はFc/Fa,Fc/Fbを振
動数との関係でグラフ化し、2つのスペクトル比Fa/
Fc,Fb/Fcを求めた場合には、それらのうち大き
いスペクトル比に係る測点a又はb側に変形すると判定
し、スペクトル比Fc/Fa,Fc/Fbを求めた場合
には、それらのうち小さいスペクトル比に係る測点a又
はb側に変形すると判定し、両スペクトル比Fa/F
c,Fb/Fc、又はFc/Fa,Fc/Fbが等しい
場合には変形しないと判定することを特徴とする、地震
時における構造物の変形方向判定方法に存する。請求項
9記載の発明の要旨は、地震時における構造物の変形方
向判定方法であって、構造物の側方の2つの測点と、構
造物の測点の常時微動を測定し、これらの測定により得
られた各時間領域の各データを、振動数領域データであ
る、各側方測点スペクトルと、構造物測点スペクトルと
にそれぞれ変換し、各側方測点スペクトルと、構造物測
点スペクトルとのスペクトル比をそれぞれ求め、これら
2つのスペクトル比を振動数との関係で対数グラフ化
し、1.0との差が大きい方に変形すると判定し、差が
等しい場合には変形しないと判定することを特徴とす
る、地震時における構造物の変形方向判定方法に存す
る。請求項10記載の発明の要旨は、スペクトル比を求
める前に、構造物の水平方向の常時微動を測定し、この
常時微動の軌跡が略楕円形をなす場合には指向性が有る
と判定し、略円形をなす場合には指向性が無いと判定
し、指向性が有る場合にスペクトル比を求めることを特
徴とする請求項8又は9記載の、地震時における構造物
の変形方向判定方法に存する。請求項11記載の発明の
要旨は、地震時における構造物の変形方向判定装置であ
って、構造物の常時微動と、構造物の側方の常時微動と
を同時に測定可能な3つの振動受信部と、これらの振動
受信部により得られた、時間領域における振動波形デー
タをそれぞれ増幅する増幅部と、この増幅部からの増幅
された、構造物の振動波形データから、水平方向の軌跡
データを算出する軌跡算出部と、この軌跡算出部からの
軌跡データに基づいて軌跡を描く描画部と、構造物の振
動波形データを振動数領域データに変換して構造物測点
スペクトルデータを求め、構造物の側方の各振動波形デ
ータを振動数領域データにそれぞれ変換して2つの側方
測点スペクトルデータを求める変換部と、この変換部か
ら得られた、構造物測点スペクトルデータと各側方測点
スペクトルデータとを比較し、2つのスペクトル比デー
タを求める比較部と、スペクトル比データからスペクト
ル比と振動数との関係をグラフ表示する表示部とを備え
たことを特徴とする、地震時における構造物の変形方向
判定装置に存する。請求項12記載の発明の要旨は、軌
跡が、描画部の代わりに表示部に描かれることを特徴と
する請求項5、6、7又は11記載の、地震時における
構造物の変形方向判定装置に存する。
The gist of the present invention according to claim 1 is a method for determining the direction of deformation of a structure during an earthquake, wherein the microtremor of the measuring points a and b on the side of the structure is constantly measured. The data in each time domain obtained by these measurements are converted into the spectrum Fa of the measurement point a and the measurement point b which are the frequency domain data.
And the spectrum ratio Fa / Fb is determined from these two spectra Fa and Fb, and the spectrum ratio Fa / Fb is graphed in relation to the frequency. From the graph, the spectrum ratio Fa / Fb is obtained. But,
If it is larger than 1.0, it is determined that the structure is deformed to the measurement point a side. If it is smaller than 1.0, it is determined that the structure is deformed to the measurement point b side. A method for determining a deformation direction of a structure at the time of an earthquake, characterized by determining. The gist of the invention according to claim 2 is a method for determining the direction of deformation of a structure during an earthquake, in which the microtremors of the measurement points a and b on the sides of the structure are constantly measured, and each of the measurements is obtained by these measurements. Each data in the time domain is converted into a spectrum Fa of the measurement point a and a spectrum Fb of the measurement point b, which are frequency domain data, and a spectrum ratio Fa / Fb is obtained from these two spectra Fa and Fb. If the value obtained by subtracting 1.0 from the ratio Fa / Fb is greater than zero, it is determined that the deformation is to the measuring point a, and if it is smaller than zero, it is determined to be deforming to the measuring point b. And determining the deformation direction of the structure during an earthquake. The gist of the invention according to claim 3 is a method of determining the direction of deformation of a structure during an earthquake, in which the microtremors of the measuring points a and b on the sides of the structure are constantly measured, and the measurement obtained by these measurements is performed. Each data in each time domain of the points a and b is converted into a spectrum Fa of the measurement point a and a spectrum Fb of the measurement point b which are frequency domain data, and the spectrum ratio Fa / Fb is obtained from these two spectra Fa and Fb. If the sign of the value obtained by calculating Fb and subtracting 1.0 from the spectrum ratio Fa / Fb is positive, the sign is transformed to the measuring point a side, and if it is negative, it is judged to be transformed to the measuring point b side. The present invention provides a method for determining a deformation direction of a structure at the time of an earthquake, characterized in that it is determined that there is no deformation. The gist of the invention according to claim 4 is that, before obtaining the spectral ratio Fa / Fb, the microtremor in the horizontal direction of the structure is measured, and when the trajectory of the microtremor has a substantially elliptical shape, there is directivity. 4. The method according to claim 1, wherein when a substantially circular shape is formed, it is determined that there is no directivity, and when there is directivity, a spectrum ratio Fa / Fb is obtained. It is in the method of determining the deformation direction of the structure at the time. The gist of the invention according to claim 5 is an apparatus for judging a deformation direction of a structure during an earthquake, wherein two vibration receptions capable of separately measuring the microtremor of the structure and the microtremor lateral to the structure are separately provided. Unit, an amplifying unit for amplifying the vibration waveform data in the time domain obtained by these vibration receiving units, respectively, and the horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A trajectory calculation unit to calculate, a drawing unit to draw a trajectory based on the trajectory data from the trajectory calculation unit, and convert each of the vibration waveform data on the sides of the structure into frequency domain data to convert the two spectrum data. The conversion unit to be obtained is compared with each spectrum data obtained from this conversion unit, and the comparison unit to obtain the spectrum ratio data is displayed in a graph. Characterized by comprising a display unit, it consists in the deformation direction determining device of a structure during an earthquake. The gist of the invention according to claim 6 is an apparatus for judging a deformation direction of a structure during an earthquake, wherein two vibration receptions capable of separately measuring the microtremor of the structure and the microtremor of the side of the structure are separately provided. Unit, an amplifying unit for amplifying the vibration waveform data in the time domain obtained by these vibration receiving units, respectively, and the horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A trajectory calculation unit to calculate, a drawing unit to draw a trajectory based on the trajectory data from the trajectory calculation unit, and convert each of the vibration waveform data on the sides of the structure into frequency domain data to convert the two spectrum data. The conversion unit to be obtained is compared with each spectrum data obtained from the conversion unit, and the comparison unit to obtain the spectrum ratio data is integrated with a value obtained by subtracting 1.0 from the spectrum ratio data to obtain an integrated value data An integrating unit for obtaining, characterized by comprising a display unit for displaying an integrated value based on the integrated value data from the integrating unit,
It exists in a device for judging the deformation direction of a structure during an earthquake. The gist of the invention according to claim 7 is a device for judging the deformation direction of a structure during an earthquake, wherein two vibration receptions capable of separately measuring the microtremor of the structure and the microtremor of the side of the structure are separately provided. Unit, an amplifying unit for amplifying the vibration waveform data in the time domain obtained by these vibration receiving units, respectively, and the horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A trajectory calculation unit to calculate, a drawing unit to draw a trajectory based on the trajectory data from the trajectory calculation unit, and convert each of the vibration waveform data on the sides of the structure into frequency domain data to convert the two spectrum data. A conversion unit to be determined, a comparison unit that compares each spectrum data obtained from the conversion unit and obtains spectrum ratio data,
An integrating unit for integrating the value obtained by subtracting 1.0 from the spectrum ratio data to obtain integrated value data; a sign determining unit for obtaining code data from the integrated value data from the integrating unit; And a display unit for displaying the sign of the integral value indicated by the formula (1). The gist of the invention according to claim 8 is a method for determining the direction of deformation of a structure during an earthquake, wherein constant micromotion of two measurement points a and b on the side of the structure and a measurement point c of the structure are measured. Then, each data in each time domain obtained by these measurements is converted into frequency side data, that is, each side station spectrum Fa, Fb and the structure station spectrum Fc. Spectral ratio Fa / Fc, Fb / Fc, or Fc / Fa, Fc between the station measurement spectrum Fa, Fb and the structure measurement station spectrum Fc.
/ Fb respectively, and these two spectral ratios Fa
/ Fc, Fb / Fc, or Fc / Fa, Fc / Fb are graphed in relation to the frequency, and the two spectral ratios Fa /
When Fc and Fb / Fc are obtained, it is determined that the deformation is made to the measuring point a or b side having a large spectral ratio, and when the spectral ratios Fc / Fa and Fc / Fb are obtained, those are determined. Among them, it is determined that the deformation occurs to the measuring point a or b side related to the small spectral ratio, and the two spectral ratios Fa / F are determined.
A method for determining a deformation direction of a structure during an earthquake, characterized in that it is determined that no deformation occurs when c, Fb / Fc, or Fc / Fa, Fc / Fb are equal. The gist of the invention according to claim 9 is a method for judging the deformation direction of a structure during an earthquake, wherein two measurement points on the side of the structure and microtremors of the measurement points of the structure are measured. Each data in each time domain obtained by the measurement is converted into frequency side data, each lateral station spectrum and structure station spectrum, and each lateral station spectrum and structure The spectral ratios with respect to the point spectrum are respectively obtained, and these two spectral ratios are logarithmically graphed in relation to the frequency, and it is determined that the difference from 1.0 is deformed to a larger one. A method for determining a deformation direction of a structure at the time of an earthquake, characterized by determining. The gist of the invention described in claim 10 is that, before calculating the spectrum ratio, the microtremor in the horizontal direction of the structure is measured, and when the trajectory of the microtremor is substantially elliptical, it is determined that there is directivity. The method according to claim 8 or 9, wherein, when forming a substantially circular shape, it is determined that there is no directivity, and when there is directivity, a spectrum ratio is obtained. Exist. The gist of the invention according to claim 11 is a device for judging the deformation direction of a structure during an earthquake, wherein three vibration receiving units capable of simultaneously measuring the microtremor of the structure and the microtremor of the side of the structure at the same time. And an amplifying unit for amplifying the vibration waveform data in the time domain obtained by these vibration receiving units, respectively, and calculating horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit A trajectory calculation unit, a drawing unit that draws a trajectory based on the trajectory data from the trajectory calculation unit, and converts the structure's vibration waveform data into frequency domain data to obtain structure measurement point spectrum data. A conversion unit for converting each of the vibration waveform data on the sides to frequency domain data to obtain two side measurement point spectrum data, and a structure measurement point spectrum data obtained from the conversion unit and A comparison unit for comparing the measured spectrum data with the measurement point spectrum data to obtain two spectrum ratio data; and a display unit for displaying a graph of the relationship between the spectrum ratio and the frequency from the spectrum ratio data. In the structure deformation direction judging device. The gist of the invention according to claim 12 is that the trajectory is drawn on the display unit instead of the drawing unit, and the apparatus determines the deformation direction of the structure during an earthquake according to claim 5, 6, 7 or 11. Exists.

【0008】なお、本発明において「変形」とは、構造
物自身が変形する場合のみならず、構造物自身が傾斜し
たり、傾倒したりする場合等も含む。
In the present invention, "deformation" includes not only the case where the structure itself is deformed but also the case where the structure itself is inclined or tilted.

【0009】また、「測点」としては、例えば、地盤上
等、本発明を実施する上で好適な場所をいう。
[0009] The "measuring point" refers to a place suitable for practicing the present invention, such as on the ground.

【0010】また、「スペクトル」は、速度スペクト
ル、変位スペクトル、加速度スペクトル等、本発明を実
施する上で好適なものにすることができる。
The "spectrum" can be a spectrum suitable for practicing the present invention, such as a velocity spectrum, a displacement spectrum, and an acceleration spectrum.

【0011】また、「描画部」及び「表示部」とは、モ
ニター、オシロスコープ、プロッター等、本発明を実施
する上で好適なものを含む。
The "drawing unit" and "display unit" include those suitable for carrying out the present invention, such as a monitor, an oscilloscope, and a plotter.

【0012】また、「構造物の水平方向の常時微動」の
測定は、構造物の地表面付近、或いは地表面付近の構造
物の内部の位置等が好ましい。
The measurement of the "always fine movement of the structure in the horizontal direction" is preferably at a position near the ground surface of the structure or at a position inside the structure near the ground surface.

【0013】また、本発明において「指向性」の有無
は、「軌跡」が略楕円を描けば指向性が有るとし、略円
形を描けば指向性が無いと判定する。また、「指向方
向」は楕円の長軸方向である。
In the present invention, the presence / absence of “directivity” is determined to be directivity if the “trajectory” draws a substantially elliptical shape, and it is determined that there is no directivity if the “trajectory” draws a substantially circular shape. The “directing direction” is the major axis direction of the ellipse.

【0014】また、「構造物の測点」とは、地表面の測
点と等しいレベルの構造物の躯体部分等をいう。
The term "structure measurement point" means a frame portion of a structure at the same level as a ground surface measurement point.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】(実施の形態1)図1に示すように、実施
の形態1に係る変形方向判定装置Aは、2つのピックア
ップPU1,PU2(振動受信部)、アンプ10(増幅
部)、演算処理部20、及びモニター30(描画部、表
示部)とから概略構成されている。
(Embodiment 1) As shown in FIG. 1, a deformation direction judging device A according to Embodiment 1 includes two pickups PU1 and PU2 (vibration receiving units), an amplifier 10 (amplifying unit), and an arithmetic processing. It is schematically composed of a unit 20 and a monitor 30 (drawing unit, display unit).

【0017】両ピックアップPU1,PU2は、常時微
動を計測可能なものであり、例えば動線輪型微動計等、
本発明を実施する上で好適なものである。
The two pickups PU1 and PU2 are capable of constantly measuring fine movement.
This is suitable for carrying out the present invention.

【0018】アンプ10は、2つのピックアップPU
1,PU2により得られた、時間領域における2つの振
動波形データを各別に増幅する。
The amplifier 10 has two pickups PU
1. Two pieces of vibration waveform data in the time domain obtained by PU2 are separately amplified.

【0019】演算処理部20には、図2に示す如く軌跡
算出部21、変換部22及び比較部23が設けられてい
る。軌跡算出部21は、各振動波形データから、水平方
向における測点の軌跡データを算出する回路から構成さ
れている。変換部22は、各振動波形データを振動数領
域データに各別にフーリエ変換して2つのフーリエスペ
クトルを求める回路から構成されている。比較部23
は、変換部22から得られた各フーリエスペクトルを比
較し、フーリエスペクトル比データを求める回路から構
成されている。なお、実施の形態1におけるスペクトル
には速度スペクトルを用いた。
The arithmetic processing unit 20 is provided with a trajectory calculation unit 21, a conversion unit 22, and a comparison unit 23 as shown in FIG. The trajectory calculation unit 21 is configured by a circuit that calculates trajectory data of a measurement point in the horizontal direction from each vibration waveform data. The conversion unit 22 is composed of a circuit that obtains two Fourier spectra by Fourier-transforming each vibration waveform data into frequency domain data. Comparison section 23
Is composed of a circuit that compares each Fourier spectrum obtained from the conversion unit 22 and obtains Fourier spectrum ratio data. Note that a velocity spectrum was used as the spectrum in the first embodiment.

【0020】モニター30には、軌跡算出部21からの
軌跡データを受けて測点における常時微動の軌跡が表示
される。また、比較部23からのフーリエスペクトル比
データを受けてスペクトル比と振動数との関係が表示さ
れる。表示例は後に示す。
The monitor 30 displays the trajectory of the fine movement at the measurement point in response to the trajectory data from the trajectory calculator 21. Further, upon receiving the Fourier spectrum ratio data from the comparing unit 23, the relationship between the spectrum ratio and the frequency is displayed. A display example will be described later.

【0021】斯かる構成の変形方向判定装置Aは、AC
電源により稼働する。なお、所謂携帯型パソコン(ノー
トパソコン等)では小型バッテリーでも可能である。
The deformation direction judging device A having such a configuration is provided with an AC
Operated by power supply. In a so-called portable personal computer (notebook personal computer or the like), a small battery can be used.

【0022】次に、変形方向判定装置Aを用いた変形方
向判定方法を、実施例1に基づき説明する。実施例1で
は、兵庫県南部地震で被害を受けた高架橋の現場におけ
る実際の測定実験の結果を用いた。
Next, a deformation direction determining method using the deformation direction determining apparatus A will be described based on the first embodiment. In Example 1, the result of an actual measurement experiment at the site of a viaduct damaged by the Hyogoken-Nanbu Earthquake was used.

【0023】(実施例1)測定実験は、高架橋が橋軸直
角方向のどちら側に変形するかの判定を行った。
Example 1 In a measurement experiment, it was determined which side in the direction perpendicular to the bridge axis the viaduct was deformed.

【0024】常時微動の軌跡を得るための測点cについ
ては、図3及び図4の如く橋脚直下の幅員方向中央とし
た。図3においては高架橋Bの下部のみを示している。
スペクトル比Fa/Fbを得るための測点a,bは、橋
軸直角方向において橋軸から等しい位置(c点から約1
0m)の地盤上に設置した。また、橋軸方向において測
線1、2、3は被害、無被害、被害の箇所であった。
The measurement point c for obtaining the trajectory of the microtremor is located at the center in the width direction immediately below the pier as shown in FIGS. FIG. 3 shows only the lower part of the viaduct B.
The measurement points a and b for obtaining the spectral ratio Fa / Fb are equal to each other from the bridge axis in the direction perpendicular to the bridge axis (about 1 point from the point c).
0m). In the direction of the bridge axis, lines 1, 2, and 3 were damaged, undamaged, and damaged.

【0025】まず、測点cにおいてピックアップPU1
又はピックアップPU2を用いて水平直角2方向(橋軸
方向及び橋軸直角方向)の常時微動を測定する。測定結
果に基づき両方向の測定データを合成して常時微動の軌
跡をモニター30に描かせる。その結果、図5乃至図7
に示す。図においてはモニター30そのものは略してい
る。図中、Tが橋軸直角方向、Lが橋軸方向である。図
5乃至図7をそれぞれ見てみると、図5(測線1)及び
図7(測線3)において、ややT(橋軸直角方向)に細
長い楕円を描き、指向性が有ると判定できる。この楕円
の長軸方向が当該指向方向となる。これらに対して、図
6(測線2)においては略円形をなし、指向性が無いと
判定する。よって、測線1乃至3における測点a,bの
常時微動を測定することとする。なお、実施例1におい
ては水平直角2方向は橋軸方向及び橋軸直角方向とした
が、南北方向及び東西方向としてもよい。
First, at the measurement point c, the pickup PU1
Alternatively, the microtremor in two directions perpendicular to the horizontal direction (the bridge axis direction and the direction perpendicular to the bridge axis) is always measured using the pickup PU2. Based on the measurement result, the measurement data in both directions is synthesized, and the locus of the fine movement is always drawn on the monitor 30. As a result, FIGS.
Shown in In the figure, the monitor 30 itself is omitted. In the figure, T is the direction perpendicular to the bridge axis, and L is the bridge axis direction. When looking at FIGS. 5 to 7 respectively, in FIGS. 5 (measuring line 1) and FIG. 7 (measuring line 3), an elongated ellipse is drawn slightly in T (direction perpendicular to the bridge axis), and it can be determined that there is directivity. The major axis direction of the ellipse is the directivity direction. On the other hand, in FIG. 6 (measuring line 2), the shape is substantially circular, and it is determined that there is no directivity. Therefore, the fine movement of the measurement points a and b on the measurement lines 1 to 3 is always measured. In the first embodiment, the two directions perpendicular to the horizontal direction are the bridge axis direction and the bridge axis perpendicular direction, but may be the north-south direction and the east-west direction.

【0026】次に、測線1及び測線3上の測点a,bの
常時微動を同時に測定し(測線2上の測点a,bについ
ては測定しない)、測定により得られた各時間領域の各
データを、測点aのスペクトルFaと測点bのスペクト
ルFbとに変換し、スペクトル比Fa/Fbを求め、モ
ニター30に描かせる。描かせた結果を図8及び図10
に示す。図において縦軸がスペクトル比、横軸が振動数
である。図8(測線1)を見ると、測定された振動数の
殆どの部分にわたってスペクトル比Fa/Fbが1.0
よりも小さくなっている。斯かる場合には、高架橋Bは
測点b側に変形すると判定する。逆に図10(測線3)
を見ると、測定振動数の殆どの部分でスペクトル比Fa
/Fbは1.0よりも大きい。斯かる場合には、高架橋
Bは測点a側に変形すると判定する。なお、スペクトル
比Fa/Fbが概ね1.0である場合には、どちら側に
も変形しない、即ち被害が生じないと判定する。
Next, the microtremors of the measurement points a and b on the measurement line 1 and the measurement line 3 are simultaneously measured (the measurement points a and b on the measurement line 2 are not measured). Each data is converted into a spectrum Fa at the measurement point a and a spectrum Fb at the measurement point b, and a spectrum ratio Fa / Fb is obtained and drawn on the monitor 30. FIGS. 8 and 10 show the drawn results.
Shown in In the figure, the vertical axis is the spectrum ratio and the horizontal axis is the frequency. Referring to FIG. 8 (line 1), the spectral ratio Fa / Fb is 1.0 over most of the measured frequency.
Is smaller than. In such a case, it is determined that the viaduct B is deformed to the measurement point b side. Conversely, FIG. 10 (measuring line 3)
, It can be seen that at most of the measured frequency, the spectral ratio Fa
/ Fb is greater than 1.0. In such a case, it is determined that the viaduct B is deformed to the measurement point a side. When the spectrum ratio Fa / Fb is approximately 1.0, it is determined that no deformation occurs on either side, that is, no damage occurs.

【0027】以上の判定ロジックを図14に示す。実際
の実験においては検証の意味で測線2における測点a,
bについて測定した。その結果、図9に示す。図9のよ
うにスペクトル比Fa/Fbが概ね1.0であった。こ
のことは指向性が無い点と一致し、上記判定が正しいこ
とを証明している。
FIG. 14 shows the above determination logic. In an actual experiment, measurement points a,
b was measured. As a result, FIG. 9 shows. As shown in FIG. 9, the spectral ratio Fa / Fb was approximately 1.0. This is consistent with the lack of directivity, proving that the above determination is correct.

【0028】上記の判定結果は兵庫県南部地震における
被害とも一致した。
[0028] The above determination result was consistent with the damage caused by the Hyogoken-Nanbu Earthquake.

【0029】以上の如く実施の形態1に係る地震時にお
ける構造物の変形方向判定方法及び変形方向判定装置A
によれば構造物の変形方向を判定することができる。
As described above, the method and apparatus for judging the deformation direction of a structure according to the first embodiment during an earthquake
According to this, the deformation direction of the structure can be determined.

【0030】したがって、構造物に地震で変形(傾斜・
倒壊等)が生じないように、地盤対策、基礎対策或いは
構造物対策等を合理的・経済的に行うことができる。
Therefore, the structure is deformed by the earthquake (inclined
Ground measures, foundation measures or structural measures can be taken rationally and economically so as not to cause collapse.

【0031】また、簡単にデータの収集、分析が繰り返
し行うことができる。
In addition, data can be easily collected and analyzed repeatedly.

【0032】さらに、モニター30に表示された常時微
動の軌跡が円形をなすか、楕円をなすかで、構造物が変
形するか否かを判定でき、且つスペクトル比が1.0よ
り大きいか小さいかで変形方向を判定できるので熟練し
たオペレータでなくとも容易に判定することができる。
Further, whether or not the structure is deformed can be determined depending on whether the trajectory of the constantly fine movement displayed on the monitor 30 is circular or elliptical, and the spectral ratio is larger or smaller than 1.0. Can be used to determine the deformation direction, so that even a skilled operator can easily determine the deformation direction.

【0033】なお、上記実施の形態においては構造物は
高架橋であったが、ビル等の建築物にも対応することが
できる。例えば、平面視において正方形のビルディング
において、平面視対角線上に常時微動の軌跡の指向性が
現れた場合には、壁面に直交する2方向において測定
し、2つのスペクトル比のうち、大きい方の比が出た2
測点で前述のように変形方向を判定すればよい。蓋し、
通常壁面に直交する方向に変形することが多いからであ
る。
Although the structure is a viaduct in the above embodiment, it can be applied to a building such as a building. For example, when the directivity of the trajectory of the fine movement always appears on a diagonal line in a plan view in a square building in a plan view, measurement is performed in two directions orthogonal to the wall surface, and the larger one of the two spectral ratios is used. Came out 2
The deformation direction may be determined at the measurement point as described above. Cover it,
This is because it is often deformed in a direction perpendicular to the wall surface.

【0034】また、上記実施の形態においては橋軸直角
方向であったが、橋軸方向においても変形方向を判定す
ることができる。斯かる場合には、橋軸方向に測点を配
置して、上記の如くスペクトル比の大きい方で検討する
こともできる。
In the above embodiment, the direction is perpendicular to the bridge axis. However, the deformation direction can be determined also in the bridge axis direction. In such a case, it is also possible to arrange the measuring points in the bridge axis direction, and to study with the larger spectral ratio as described above.

【0035】また、円形構造物、多角形構造物や、単独
基礎の構造物に対しては、測線を複数断面で展開して、
上記のようにスペクトル比の大きい方で検討することも
できる。
For a circular structure, a polygonal structure, or a single foundation structure, the measurement line is developed in a plurality of cross sections,
As described above, it is also possible to study with a larger spectral ratio.

【0036】また、スペクトル比を得るための測点は2
点であったが、4点(例えば、測点a,bからさらに側
方へ10m等)、6点等にすることもできる。
The measurement points for obtaining the spectrum ratio are 2
Although the number of points is four, the number of points may be four (for example, 10 m further from the measurement points a and b) or six.

【0037】また、測点の構造物からの距離は、上記実
施の形態においては10mであったが、本発明において
は好適な距離にすることができる。
Although the distance of the measuring point from the structure is 10 m in the above embodiment, it can be set to a suitable distance in the present invention.

【0038】また、スペクトル比はFb/Faであって
もかまわない。斯かる場合には、判定基準の大小は前述
と逆になる。
The spectral ratio may be Fb / Fa. In such a case, the magnitude of the criterion is reversed.

【0039】また、上下方向の常時微動を測定して、フ
ーリエスペクトル比を求めて水平方向への変形方向の判
定資料とすることもできる。
Further, it is also possible to determine the Fourier spectrum ratio by measuring the fine movement at all times in the vertical direction and use it as a reference for determining the deformation direction in the horizontal direction.

【0040】また、測点a,bを構造物の変形方向線上
に設定することもできる。
Further, the measuring points a and b can be set on the deformation direction line of the structure.

【0041】また、測点a,bは構造物から等距離でな
くともよい。物理的意味での等距離ではなく、概ね等し
ければよい。
The measuring points a and b need not be equidistant from the structure. It suffices that the distances are not equal in the physical sense but are approximately equal.

【0042】また、モニターは、側面であっても、上面
であってもかまわない。
The monitor may be on the side or the top.

【0043】また、描画部、表示部は、モニターの代わ
りに、例えばプロッター等、本発明を実施する上で好適
なものにすることができる。また、モニターと共にプロ
ッター等を付加することもできる。
Further, the drawing unit and the display unit can be made suitable for practicing the present invention, such as a plotter, instead of a monitor. Also, a plotter or the like can be added together with the monitor.

【0044】また、データを記録する為のハードディス
クその他の記憶装置や、磁気ディスク、光磁気ディスク
等に書き込む為の書き込み装置等を備えることもでき
る。
Further, a hard disk or other storage device for recording data, a writing device for writing on a magnetic disk, a magneto-optical disk, or the like may be provided.

【0045】また、上記実施の形態においては描画部と
表示部とは同一のモニターであったが、本発明において
は別個にすることもできる。例えば、描画部をプロッタ
ー、表示部をモニターにすることもできる。
Although the drawing unit and the display unit are the same monitor in the above embodiment, they can be provided separately in the present invention. For example, the drawing unit can be a plotter and the display unit can be a monitor.

【0046】また、変形方向判定装置をバッテリーによ
り稼動させることも可能である。
Further, the deformation direction judging device can be operated by a battery.

【0047】また、上記構成部材の数、位置、形状等は
上記実施の形態に限定されず、本発明を実施する上で好
適な数、位置、形状等にすることができる。
Further, the number, position, shape, etc. of the above-mentioned constituent members are not limited to the above-mentioned embodiment, but can be set to a suitable number, position, shape, etc. for carrying out the present invention.

【0048】(実施の形態2)実施の形態2に係る変形
方向判定方法では、数式1及び図11に示す如くスペク
トル比Fa/Fbから1.0を引き、所定振動数領域、
例えば1Hz乃至10Hzを積分して零よりも大きけれ
ば測点a側に変形すると判定し、零よりも小さければ測
点b側に変形すると判定し、零の場合には変形しないと
判定する。
(Embodiment 2) In the deformation direction determination method according to Embodiment 2, 1.0 is subtracted from the spectral ratio Fa / Fb as shown in Expression 1 and FIG.
For example, if 1 Hz to 10 Hz is integrated and is greater than zero, it is determined to deform to the measurement point a. If it is less than zero, it is determined to deform to the measurement point b.

【0049】[0049]

【数1】 (Equation 1)

【0050】実際のサンプリングはデジタル領域で行わ
れるので上記積分は離散型である数式2により計算され
る。図12に示すように、数式2においてCiは任意の
振動数におけるスペクトル比Fa/Fbである。
Since the actual sampling is performed in the digital domain, the above integral is calculated by the following equation (2) which is a discrete type. As shown in FIG. 12, in Expression 2, Ci is the spectral ratio Fa / Fb at an arbitrary frequency.

【0051】[0051]

【数2】 (Equation 2)

【0052】そして数式3に示すように積分値(総和)
を引数として符号関数に入れればよい。
Then, as shown in Equation 3, the integral value (sum)
May be put into the sign function as an argument.

【0053】[0053]

【数3】 (Equation 3)

【0054】斯かる構成を図13に示す。積分計算を行
う積分部23(積分回路)及び符号関数が組み込まれた
符号判定部24(符号関数回路)を演算処理部20に組
み込めばよい。フーリエスペクトル比データを積分部2
3において積分して積分値データを求め、積分値データ
から符号判定部24において符号(正負)を求める。オ
ペレーターはモニター30に表示された符号(+、−)
を見て、+であれば構造物は測点a側に変形し、−であ
れば測点b側に変形すると判定する。斯かる場合には単
に符号の+、−により判定できるので、更に容易に判定
することができる。
FIG. 13 shows such a configuration. It is sufficient that the integration unit 23 (integration circuit) for performing integral calculation and the sign determination unit 24 (sign function circuit) in which the sign function is incorporated are incorporated in the arithmetic processing unit 20. Integrates Fourier spectrum ratio data into integration unit 2
3 to obtain integrated value data, and the sign determination unit 24 obtains a sign (positive or negative) from the integrated value data. The operator indicates the sign (+,-) displayed on the monitor 30.
When it is +, it is determined that the structure is deformed to the measurement point a side, and when it is −, it is determined to be deformed to the measurement point b side. In such a case, since the determination can be made simply by the + and-signs, the determination can be made more easily.

【0055】(実施の形態3)実施の形態3に係る変形
方向判定方法では、まず、構造物の側方の2つの測点
a,bと、構造物の測点cの常時微動を同時に測定す
る。
(Embodiment 3) In the deformation direction judging method according to Embodiment 3, first, the microtremors of the two measurement points a and b on the side of the structure and the measurement point c of the structure are simultaneously measured. I do.

【0056】次いで、これらの測定により得られた各時
間領域の各データを、振動数領域データである、各側方
測点スペクトルFa,Fbと、構造物測点スペクトルF
cとにそれぞれ変換する。
Next, each data in each time domain obtained by these measurements is converted into frequency domain data, that is, each of the lateral measurement point spectra Fa and Fb and the structure measurement point spectrum F
and c respectively.

【0057】次いで、各側方測点スペクトルFa,Fb
と、構造物測点スペクトルFcとのスペクトル比Fa/
Fc,Fb/Fcをそれぞれ求める。
Next, each side measurement point spectrum Fa, Fb
And the spectral ratio Fa / of the structure measurement point spectrum Fc
Fc and Fb / Fc are obtained respectively.

【0058】これら2つのスペクトル比Fa/Fc,F
b/Fcの、1.0との差が大きい方に変形すると判定
し、値が等しい場合には変形しないと判定する。なお、
本発明において「値が等しい場合」とは、スペクトル比
Fa/Fc=Fb/Fc=1.0も含む。
These two spectral ratios Fa / Fc, F
It is determined that b / Fc is deformed to have a larger difference from 1.0, and if the values are equal, it is determined that there is no deformation. In addition,
In the present invention, “when the values are equal” also includes the spectral ratio Fa / Fc = Fb / Fc = 1.0.

【0059】(実施例2)実施の形態3に係る変形方向
判定方法の実施例2を説明する。実施例2は測線3に係
る常時微動の測定値を用いている。
(Embodiment 2) An embodiment 2 of the deformation direction judging method according to Embodiment 3 will be described. In the second embodiment, the measurement value of the fine movement related to the measurement line 3 is used.

【0060】実施例2に係る変形方向判定装置は、ピッ
クアップを3つ備えた変形方向判定装置(図示略)を用
いて行う。この変形方向判定装置は、ピックアップの数
が3つ有る点を除いて、図1及び図2に示す変形方向判
定装置と同じ構成のものである。
The deformation direction determining apparatus according to the second embodiment is performed using a deformation direction determining apparatus (not shown) having three pickups. This deformation direction judging device has the same configuration as the deformation direction judging device shown in FIGS. 1 and 2 except that the number of pickups is three.

【0061】その測定結果に基づく側方測点スペクトル
Fa,Fbと、構造物測点スペクトルFcとのスペクト
ル比を図15に示す。図15に示すグラフを見るとスペ
クトル比Fa/Fcはスペクトル比Fb/Fcよりも大
きい。したがって、実施の形態3によっても測点a側に
変形すると判定することができる。
FIG. 15 shows the spectrum ratio between the side measurement point spectra Fa and Fb and the structure measurement point spectrum Fc based on the measurement results. Looking at the graph shown in FIG. 15, the spectral ratio Fa / Fc is larger than the spectral ratio Fb / Fc. Therefore, it can be determined that the third embodiment deforms to the measurement point a side.

【0062】また、構造物の測点の水平方向の常時微動
を測定し、この常時微動の軌跡が略楕円形をなす場合に
は指向性が有ると判定し、略円形をなす場合には指向性
が無いと判定し、指向性が有る場合にスペクトル比を求
めることもできる。
Also, the microtremor in the horizontal direction of the measurement point of the structure is measured, and it is determined that there is directivity when the trajectory of the microtremor has a substantially elliptical shape. If there is no directivity, and if there is directivity, the spectrum ratio can be obtained.

【0063】また、スペクトル比としては(Fc/F
a,Fc/Fb)、(Fa/Fc,Fc/Fb)、(F
c/Fa,Fb/Fc)でもよい。斯かる場合のスペク
トル比のグラフを図16乃至図18に示す。後者の二つ
においては対数グラフで示すことを要す。対数グラフに
示す場合には、1.0との差(距離)が大きい方に変形
すると判定し、前記差が等しい場合には変形しないと判
定する。
The spectral ratio is (Fc / F
a, Fc / Fb), (Fa / Fc, Fc / Fb), (F
c / Fa, Fb / Fc). FIGS. 16 to 18 show graphs of the spectrum ratio in such a case. The latter two need to be shown in a logarithmic graph. In the case of the logarithmic graph, it is determined that the shape is deformed to the one having a larger difference (distance) from 1.0, and when the difference is equal, it is determined that the shape is not deformed.

【0064】また、上記実施の形態においては測定振動
数を0.0Hzから8.0Hzとしたが、本発明はそれ
に限定されることなく、好適な帯域で測定することがで
きる。 なお、各図において、同一構成要素には同一符
号を付している。また、各図においてスペクトル比を示
すグラフは対数グラフである。
In the above embodiment, the measurement frequency is set to 0.0 Hz to 8.0 Hz. However, the present invention is not limited to this, and the measurement can be performed in a suitable band. In the drawings, the same components are denoted by the same reference numerals. In each figure, the graph showing the spectrum ratio is a logarithmic graph.

【0065】[0065]

【発明の効果】本発明は以上のように構成されているの
で、以下に掲げる効果を奏する。スペクトル比Fa/F
bを求め、グラフ化し、当該グラフを見てその大小を判
定することにより構造物の変形方向を判定することがで
きる。また、各側方測点スペクトルと、構造物測点スペ
クトルとのスペクトル比をそれぞれ求め、これら2つの
スペクトル比を振動数との関係でグラフ化し、当該グラ
フを見てその大小を判定することにより構造物の変形方
向を判定することができる。したがって、本発明を用い
れば変形方向を判定することができ、被害の軽減に役立
たせることができる。
Since the present invention is configured as described above, the following effects can be obtained. Spectral ratio Fa / F
By obtaining b, making a graph, and judging the magnitude by looking at the graph, the deformation direction of the structure can be determined. In addition, the spectrum ratio between each side station spectrum and the structure station spectrum is obtained, and these two spectrum ratios are graphed in relation to the frequency, and the magnitude is determined by looking at the graph. The direction of deformation of the structure can be determined. Therefore, according to the present invention, the deformation direction can be determined, which can be used to reduce damage.

【0066】また、軌跡、並びにスペクトル比Fa/F
bと振動数との関係を表示部に表示すれば、表示部を見
ることにより極めて容易に変形方向を判定することがで
きる。
The trajectory and the spectral ratio Fa / F
If the relationship between b and the frequency is displayed on the display unit, the deformation direction can be determined very easily by looking at the display unit.

【0067】さらに、常時微動の軌跡の形状を見て指向
性の有無を判定し、指向性が有る場合には変形し、指向
性が無い場合には変形しないと判定することができる。
Further, the presence or absence of directivity can be determined by always looking at the shape of the trajectory of the fine movement, and it can be determined that there is deformation if there is directivity and that there is no deformation if there is no directivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】変形方向判定装置の概略正面図である。FIG. 1 is a schematic front view of a deformation direction determination device.

【図2】演算処理部のブロック図である。FIG. 2 is a block diagram of an arithmetic processing unit.

【図3】実施例1に係る測点を示す高架橋下部の縦断面
図である。
FIG. 3 is a longitudinal sectional view of a viaduct lower part showing a measurement point according to the first embodiment.

【図4】実施例1に係る測点を示す高架橋の平面概念図
である。
FIG. 4 is a conceptual plan view of a viaduct showing measurement points according to the first embodiment.

【図5】実施例1に係る常時微動の軌跡を表示する図で
ある。
FIG. 5 is a diagram showing a trajectory of a fine movement according to the first embodiment.

【図6】実施例1に係る常時微動の軌跡を表示する図で
ある。
FIG. 6 is a diagram showing a trajectory of a fine movement according to the first embodiment.

【図7】実施例1に係る常時微動の軌跡を表示する図で
ある。
FIG. 7 is a diagram showing a trajectory of a fine movement according to the first embodiment.

【図8】実施例1に係るスペクトル比と振動数との関係
を示す図である。
FIG. 8 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the first embodiment.

【図9】実施例1に係るスペクトル比と振動数との関係
を示す図である。
FIG. 9 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the first embodiment.

【図10】実施例1に係るスペクトル比と振動数との関
係を示す図である。
FIG. 10 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the first embodiment.

【図11】実施の形態2に係るスペクトル比と振動数と
の関係を示すグラフである。
FIG. 11 is a graph showing a relationship between a spectrum ratio and a frequency according to the second embodiment.

【図12】図11のスペクトル比を離散型にしたグラフ
である。
FIG. 12 is a graph showing the spectrum ratio of FIG. 11 in a discrete form.

【図13】他の実施の形態に係る演算処理部のブロック
図である。
FIG. 13 is a block diagram of an arithmetic processing unit according to another embodiment.

【図14】その他の実施の形態に係る判定のロジックを
示す図である。
FIG. 14 is a diagram illustrating a determination logic according to another embodiment.

【図15】実施例2に係るスペクトル比と振動数との関
係を示す図である。
FIG. 15 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the second embodiment.

【図16】実施例2に係るスペクトル比と振動数との関
係を示す図である。
FIG. 16 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the second embodiment.

【図17】実施例2に係るスペクトル比と振動数との関
係を示す図である。
FIG. 17 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the second embodiment.

【図18】実施例2に係るスペクトル比と振動数との関
係を示す図である。
FIG. 18 is a diagram illustrating a relationship between a spectrum ratio and a frequency according to the second embodiment.

【符号の説明】[Explanation of symbols]

B 高架橋 G.L. 地表面 a,b (構造物の側方の)測点 c (構造物直下の)測点 Fa/Fb、C、Ci スペクトル比 Fa/Fc,Fb/Fc,Fc/Fa,Fc/Fb ス
ペクトル比 A 変形方向判定装置 PU1,PU2 ピックアップ(振動受信部) 1、2、3 測線 10 アンプ(増幅部) 20 演算処理部 21 軌跡算出部 22 変換部 23 比較部 30 モニター(描画部、表示部)
B. High bridge G. L. Ground surface a, b Measurement point (on the side of the structure) c Measurement point (immediately below the structure) Fa / Fb, C, Ci Spectral ratio Fa / Fc, Fb / Fc, Fc / Fa, Fc / Fb Spectral ratio A Deformation direction judging device PU1, PU2 Pickup (vibration receiving unit) 1, 2, 3 Measurement line 10 Amplifier (amplifying unit) 20 Arithmetic processing unit 21 Locus calculation unit 22 Conversion unit 23 Comparison unit 30 Monitor (drawing unit, display unit)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 地震時における構造物の変形方向判定方
法であって、 前記構造物の側方の測点a,bの常時微動を測定し、こ
れらの測定により得られた各時間領域の各データを、振
動数領域データである前記測点aのスペクトルFaと前
記測点bのスペクトルFbとに変換し、これら2つのス
ペクトルFa,Fbから、スペクトル比Fa/Fbを求
め、該スペクトル比Fa/Fbを振動数との関係におい
てグラフ化し、当該グラフから、前記スペクトル比Fa
/Fbが、1.0よりも大きい場合には前記構造物は前
記測点a側に変形し、1.0よりも小さい場合には前記
構造物は前記測点b側に変形すると判定し、1.0の時
には変形しないと判定することを特徴とする、地震時に
おける構造物の変形方向判定方法。
1. A method for judging a deformation direction of a structure during an earthquake, comprising: constantly measuring microtremors at measurement points a and b on the sides of the structure; The data is converted into a spectrum Fa of the measurement point a and a spectrum Fb of the measurement point b, which are frequency domain data, and a spectrum ratio Fa / Fb is determined from these two spectra Fa and Fb. / Fb is graphed in relation to the frequency, and the spectrum ratio Fa is calculated from the graph.
When / Fb is larger than 1.0, the structure is deformed to the measurement point a side, and when / Fb is smaller than 1.0, the structure is determined to be deformed to the measurement point b side, A method for determining a deformation direction of a structure during an earthquake, wherein it is determined that the structure does not deform when the value is 1.0.
【請求項2】 地震時における構造物の変形方向判定方
法であって、 前記構造物の側方の測点a,bの常時微動を測定し、こ
れらの測定により得られた各時間領域の各データを、振
動数領域データである前記測点aのスペクトルFaと前
記測点bのスペクトルFbとに変換し、これら2つのス
ペクトルFa,Fbから、スペクトル比Fa/Fbを求
め、該スペクトル比Fa/Fbから1.0を引いて積分
した値が、零よりも大きければ測点a側に変形し、零よ
りも小さければ測点b側に変形すると判定し、零であれ
ば変形しないと判定することを特徴とする、地震時にお
ける構造物の変形方向判定方法。
2. A method for judging a deformation direction of a structure during an earthquake, comprising: constantly measuring tremors at measurement points a and b on the sides of the structure; The data is converted into a spectrum Fa of the measurement point a and a spectrum Fb of the measurement point b, which are frequency domain data, and a spectrum ratio Fa / Fb is determined from these two spectra Fa and Fb. If the value obtained by subtracting 1.0 from / Fb is greater than zero, the shape is deformed to the measuring point a. If the value is smaller than zero, the shape is determined to be deformed to the measuring point b. A method for determining the direction of deformation of a structure during an earthquake.
【請求項3】 地震時における構造物の変形方向判定方
法であって、 前記構造物の側方の測点a,bの常時微動を測定し、こ
れらの測定により得られた測点a,bの各時間領域の各
データを、振動数領域データである前記測点aのスペク
トルFaと前記測点bのスペクトルFbとに変換し、こ
れら2つのスペクトルFa,Fbから、スペクトル比F
a/Fbを求め、該スペクトル比Fa/Fbから1.0
を引いて積分した値の符号が、正ならば測点a側に変形
し、負ならば測点b側に変形すると判定し、零であれば
変形しないと判定することを特徴とする、地震時におけ
る構造物の変形方向判定方法。
3. A method for judging a deformation direction of a structure during an earthquake, comprising: constantly measuring slight movements of measurement points a and b on the sides of the structure; and measuring points a and b obtained by these measurements. Is converted into a spectrum Fa of the measurement point a and a spectrum Fb of the measurement point b, which are frequency domain data, and a spectrum ratio F is obtained from these two spectra Fa and Fb.
a / Fb was determined, and 1.0 was obtained from the spectral ratio Fa / Fb.
If the sign of the value integrated by subtracting is positive, it is determined that the deformation is to the measuring point a side, if it is negative, it is determined to be deforming to the measuring point b side, and if it is zero, it is determined that it is not deformed. Method for determining the deformation direction of a structure at the time.
【請求項4】 前記スペクトル比Fa/Fbを求める前
に、前記構造物の水平方向の常時微動を測定し、該常時
微動の軌跡が略楕円形をなす場合には指向性が有ると判
定し、略円形をなす場合には指向性が無いと判定し、指
向性が有る場合に前記スペクトル比Fa/Fbを求める
ことを特徴とする請求項1乃至3のいずれかに記載の、
地震時における構造物の変形方向判定方法。
4. Prior to obtaining the spectral ratio Fa / Fb, a microtremor in the horizontal direction of the structure is measured, and when the trajectory of the microtremor is substantially elliptical, it is determined that there is directivity. The method according to any one of claims 1 to 3, wherein it is determined that there is no directivity when forming a substantially circular shape, and the spectrum ratio Fa / Fb is obtained when there is directivity.
A method for determining the direction of structural deformation during an earthquake
【請求項5】 地震時における構造物の変形方向判定装
置であって、 前記構造物の常時微動と、前記構造物の側方の常時微動
とを各別に測定可能な2つの振動受信部と、 該振動受信部により得られた、時間領域における振動波
形データをそれぞれ増幅する増幅部と、 該増幅部からの増幅された、前記構造物の振動波形デー
タから、水平方向の軌跡データを算出する軌跡算出部
と、 該軌跡算出部からの軌跡データに基づいて軌跡を描く描
画部と、 前記構造物の側方の各振動波形データを振動数領域デー
タにそれぞれ変換して2つのスペクトルデータを求める
変換部と、 該変換部から得られた前記各スペクトルデータを比較
し、スペクトル比データを求める比較部と、 前記スペクトル比データから前記スペクトル比と振動数
との関係をグラフ表示する表示部とを備えたことを特徴
とする、地震時における構造物の変形方向判定装置。
5. An apparatus for judging a deformation direction of a structure during an earthquake, comprising: two vibration receiving units capable of separately measuring constantly fine movement of the structure and constantly fine movement of a side of the structure; An amplifying unit for amplifying vibration waveform data in the time domain obtained by the vibration receiving unit; and a trajectory for calculating horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A calculation unit; a drawing unit that draws a trajectory based on the trajectory data from the trajectory calculation unit; and a conversion that converts each of the vibration waveform data on the sides of the structure into frequency domain data to obtain two spectrum data. And a comparison unit for comparing the respective spectrum data obtained from the conversion unit to obtain spectrum ratio data; and a graph showing a relationship between the spectrum ratio and the frequency from the spectrum ratio data. Characterized by comprising a Shimesuru display unit, the deformation direction determining device of a structure during an earthquake.
【請求項6】 地震時における構造物の変形方向判定装
置であって、 前記構造物の常時微動と、前記構造物の側方の常時微動
とを各別に測定可能な2つの振動受信部と、 該振動受信部により得られた、時間領域における振動波
形データをそれぞれ増幅する増幅部と、 該増幅部からの増幅された、前記構造物の振動波形デー
タから、水平方向の軌跡データを算出する軌跡算出部
と、 該軌跡算出部からの軌跡データに基づいて軌跡を描く描
画部と、 前記構造物の側方の各振動波形データを振動数領域デー
タにそれぞれ変換して2つのスペクトルデータを求める
変換部と、 該変換部から得られた前記各スペクトルデータを比較
し、スペクトル比データを求める比較部と、 該スペクトル比データから1.0を引いた値を積分して
積分値データを求める積分部と、 該積分部からの積分値データに基づいて積分値を表示す
る表示部とを備えたことを特徴とする、地震時における
構造物の変形方向判定装置。
6. An apparatus for judging a deformation direction of a structure during an earthquake, comprising: two vibration receiving units capable of separately measuring the constantly fine movement of the structure and the constantly fine movement of a side of the structure; An amplifying unit for amplifying vibration waveform data in the time domain obtained by the vibration receiving unit; and a trajectory for calculating horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A calculation unit; a drawing unit that draws a trajectory based on the trajectory data from the trajectory calculation unit; and a conversion that converts each of the vibration waveform data on the sides of the structure into frequency domain data to obtain two spectrum data. And a comparing section for comparing the respective spectrum data obtained from the converting section to obtain spectrum ratio data, and integrating a value obtained by subtracting 1.0 from the spectrum ratio data to obtain integrated value data. That an integrating part, is characterized in that a display unit for displaying an integrated value based on the integrated value data from the integrating unit, the deformation direction determining device of a structure during an earthquake.
【請求項7】 地震時における構造物の変形方向判定装
置であって、 前記構造物の常時微動と、前記構造物の側方の常時微動
とを各別に測定可能な2つの振動受信部と、 該振動受信部により得られた、時間領域における振動波
形データをそれぞれ増幅する増幅部と、 該増幅部からの増幅された、前記構造物の振動波形デー
タから、水平方向の軌跡データを算出する軌跡算出部
と、 該軌跡算出部からの軌跡データに基づいて軌跡を描く描
画部と、 前記構造物の側方の各振動波形データを振動数領域デー
タにそれぞれ変換して2つのスペクトルデータを求める
変換部と、 該変換部から得られた前記各スペクトルデータを比較
し、スペクトル比データを求める比較部と、 該スペクトル比データから1.0を引いた値を積分して
積分値データを求める積分部と、 該積分部からの積分値データから符号データを求める符
号判定部と、 該符号データから前記積分値データが示す積分値の正負
を表示する表示部とを備えたことを特徴とする、地震時
における構造物の変形方向判定装置。
7. An apparatus for judging a deformation direction of a structure during an earthquake, comprising: two vibration receiving units capable of separately measuring constantly fine movement of the structure and constantly fine movement of a side of the structure; An amplifying unit for amplifying vibration waveform data in the time domain obtained by the vibration receiving unit; and a trajectory for calculating horizontal trajectory data from the amplified vibration waveform data of the structure from the amplifying unit. A calculation unit; a drawing unit that draws a trajectory based on the trajectory data from the trajectory calculation unit; and a conversion that converts each of the vibration waveform data on the sides of the structure into frequency domain data to obtain two spectrum data. And a comparing section for comparing the respective spectrum data obtained from the converting section to obtain spectrum ratio data, and integrating a value obtained by subtracting 1.0 from the spectrum ratio data to obtain integrated value data. An integration unit, a sign determination unit that obtains code data from the integrated value data from the integration unit, and a display unit that displays the sign of the integration value indicated by the integration value data from the code data. A device for judging the deformation direction of a structure during an earthquake.
【請求項8】 地震時における構造物の変形方向判定方
法であって、 前記構造物の側方の2つの測点a,bと、前記構造物の
測点cの常時微動を測定し、これらの測定により得られ
た各時間領域の各データを、振動数領域データである、
各側方測点スペクトルFa,Fbと、構造物測点スペク
トルFcとにそれぞれ変換し、前記各側方測点スペクト
ルFa,Fbと、前記構造物測点スペクトルFcとのス
ペクトル比Fa/Fc,Fb/Fc、又はFc/Fa,
Fc/Fbをそれぞれ求め、これら2つのスペクトル比
Fa/Fc,Fb/Fc、又はFc/Fa,Fc/Fb
を振動数との関係でグラフ化し、2つの前記スペクトル
比Fa/Fc,Fb/Fcを求めた場合には、それらの
うち大きいスペクトル比に係る測点a又はb側に変形す
ると判定し、スペクトル比Fc/Fa,Fc/Fbを求
めた場合には、それらのうち小さいスペクトル比に係る
測点a又はb側に変形すると判定し、前記両スペクトル
比Fa/Fc,Fb/Fc、又はFc/Fa,Fc/F
bが等しい場合には変形しないと判定することを特徴と
する、地震時における構造物の変形方向判定方法。
8. A method for judging a deformation direction of a structure during an earthquake, comprising: measuring constantly fine movements of two measurement points a and b on a side of the structure and a measurement point c of the structure; Each data of each time domain obtained by the measurement of, frequency domain data,
Each of the side station spectrums Fa and Fb is converted into a structure station spectrum Fc, and the spectrum ratio Fa / Fc of each of the side station spectrums Fa and Fb and the structure station spectrum Fc is converted. Fb / Fc or Fc / Fa,
Fc / Fb is obtained, and these two spectral ratios Fa / Fc, Fb / Fc, or Fc / Fa, Fc / Fb
Is graphed in relation to the frequency, and when the two spectral ratios Fa / Fc and Fb / Fc are obtained, it is determined that the two are deformed to the measuring point a or b side having the larger spectral ratio. When the ratios Fc / Fa and Fc / Fb are obtained, it is determined that the deformation is made to the measuring point a or b side with a small spectral ratio, and the two spectral ratios Fa / Fc, Fb / Fc, or Fc / Fb are determined. Fa, Fc / F
A method for determining a deformation direction of a structure during an earthquake, wherein it is determined that no deformation occurs when b is equal.
【請求項9】 地震時における構造物の変形方向判定方
法であって、 前記構造物の側方の2つの測点と、前記構造物の測点の
常時微動を測定し、これらの測定により得られた各時間
領域の各データを、振動数領域データである、各側方測
点スペクトルと、構造物測点スペクトルとにそれぞれ変
換し、前記各側方測点スペクトルと、前記構造物測点ス
ペクトルとのスペクトル比をそれぞれ求め、これら2つ
のスペクトル比を振動数との関係で対数グラフ化し、
1.0との差が大きい方に変形すると判定し、前記差が
等しい場合には変形しないと判定することを特徴とす
る、地震時における構造物の変形方向判定方法。
9. A method for judging a deformation direction of a structure during an earthquake, comprising: measuring two measurement points on the sides of the structure and constantly measuring movements of the measurement points of the structure; Each data in each time domain, which is frequency domain data, each side station spectrum, and converted to a structure station spectrum, respectively, each side station spectrum, and the structure station The spectral ratio with the spectrum is obtained, and these two spectral ratios are logarithmically graphed in relation to the frequency.
A method for judging the deformation direction of a structure during an earthquake, wherein it is determined that the structure is deformed in a direction having a larger difference from 1.0, and if the difference is equal, it is determined that the structure is not deformed.
【請求項10】 前記スペクトル比を求める前に、前記
構造物の水平方向の常時微動を測定し、該常時微動の軌
跡が略楕円形をなす場合には指向性が有ると判定し、略
円形をなす場合には指向性が無いと判定し、指向性が有
る場合に前記スペクトル比を求めることを特徴とする請
求項8又は9記載の、地震時における構造物の変形方向
判定方法。
10. The method of claim 1, further comprising: measuring a microtremor in the horizontal direction of the structure before obtaining the spectrum ratio; determining that the trajectory of the microtremor has a substantially elliptical shape; The method according to claim 8 or 9, wherein it is determined that there is no directivity when (1) is performed, and the spectrum ratio is obtained when there is directivity.
【請求項11】 地震時における構造物の変形方向判定
装置であって、 前記構造物の常時微動と、前記構造物の側方の常時微動
とを同時に測定可能な3つの振動受信部と、 該振動受信部により得られた、時間領域における振動波
形データをそれぞれ増幅する増幅部と、 該増幅部からの増幅された、前記構造物の振動波形デー
タから、水平方向の軌跡データを算出する軌跡算出部
と、 該軌跡算出部からの軌跡データに基づいて軌跡を描く描
画部と、 前記構造物の振動波形データを振動数領域データに変換
して構造物測点スペクトルデータを求め、前記構造物の
側方の各振動波形データを振動数領域データにそれぞれ
変換して2つの側方測点スペクトルデータを求める変換
部と、 該変換部から得られた、前記構造物測点スペクトルデー
タと前記各側方測点スペクトルデータとを比較し、2つ
のスペクトル比データを求める比較部と、 前記スペクトル比データから前記スペクトル比と振動数
との関係をグラフ表示する表示部とを備えたことを特徴
とする、地震時における構造物の変形方向判定装置。
11. A device for judging a deformation direction of a structure during an earthquake, comprising: three vibration receiving units capable of simultaneously measuring the microtremor of the structure and the microtremor of the side of the structure at the same time; An amplification unit for amplifying the vibration waveform data in the time domain obtained by the vibration reception unit; and a trajectory calculation for calculating trajectory data in the horizontal direction from the amplified vibration waveform data of the structure from the amplification unit And a drawing unit that draws a trajectory based on the trajectory data from the trajectory calculation unit; and converting the vibration waveform data of the structure to frequency domain data to obtain structure measurement point spectrum data, A conversion unit that converts each of the vibration waveform data on the side into frequency domain data to obtain two side measurement point spectrum data; and the structure measurement point spectrum data obtained from the conversion unit and A comparison unit for comparing each side measurement point spectrum data to obtain two spectrum ratio data, and a display unit for graphically displaying a relationship between the spectrum ratio and the frequency from the spectrum ratio data is provided. Structural deformation direction judging device at the time of earthquake.
【請求項12】 前記軌跡は、前記描画部の代わりに前
記表示部に描かれることを特徴とする請求項5、6、7
又は11記載の、地震時における構造物の変形方向判定
装置。
12. The trajectory is drawn on the display unit instead of the drawing unit.
Or the deformation direction judging device for a structure at the time of an earthquake according to claim 11.
JP09091368A 1997-03-27 1997-03-27 Method and apparatus for determining deformation direction of structure during earthquake Expired - Fee Related JP3131401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09091368A JP3131401B2 (en) 1997-03-27 1997-03-27 Method and apparatus for determining deformation direction of structure during earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09091368A JP3131401B2 (en) 1997-03-27 1997-03-27 Method and apparatus for determining deformation direction of structure during earthquake

Publications (2)

Publication Number Publication Date
JPH10267646A true JPH10267646A (en) 1998-10-09
JP3131401B2 JP3131401B2 (en) 2001-01-31

Family

ID=14024444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09091368A Expired - Fee Related JP3131401B2 (en) 1997-03-27 1997-03-27 Method and apparatus for determining deformation direction of structure during earthquake

Country Status (1)

Country Link
JP (1) JP3131401B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257671A (en) * 2000-12-28 2002-09-11 Structural Quality Assurance Inc Method and system for diagnosing object by micromotion observation
JP2004093579A (en) * 2000-12-28 2004-03-25 Structural Quality Assurance Inc Diagnostic method and diagnostic system of structure by jogging observation
JP2013064693A (en) * 2011-09-20 2013-04-11 Kozo Keikaku Engineering Inc Vibration analyzer, vibration analysis method and vibration analysis program
JP6611991B1 (en) * 2018-10-12 2019-11-27 三菱電機株式会社 Condition monitoring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257671A (en) * 2000-12-28 2002-09-11 Structural Quality Assurance Inc Method and system for diagnosing object by micromotion observation
JP2004093579A (en) * 2000-12-28 2004-03-25 Structural Quality Assurance Inc Diagnostic method and diagnostic system of structure by jogging observation
JP2013064693A (en) * 2011-09-20 2013-04-11 Kozo Keikaku Engineering Inc Vibration analyzer, vibration analysis method and vibration analysis program
JP6611991B1 (en) * 2018-10-12 2019-11-27 三菱電機株式会社 Condition monitoring device

Also Published As

Publication number Publication date
JP3131401B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP4722347B2 (en) Sound source exploration system
Li et al. Seismic random vibration analysis of tall buildings
Foutch A study of the vibrational characteristics of two multistory buildings
JP3131401B2 (en) Method and apparatus for determining deformation direction of structure during earthquake
JP2004085201A (en) Vibration source probing system
CN103376465B (en) The earthquake instant analysis system of buildings floor and method thereof
Nakamura et al. Cosmological Redshift Distortion: Deceleration, Bias, and Density Parameters from Future Redshift Surveys of Galaxies
US11921013B2 (en) Tracking continuously scanning laser doppler vibrometer systems and methods
JP2000338256A (en) Surface wave phase speed detection system, and method for detecting phase speed of surface wave
JP2002296253A (en) Diagnostic system for structure by elastic wave motion
JP2000121743A (en) Evaluating method for seismic shake distribution
JP3857680B2 (en) Dynamic seismic performance of building and seismic performance evaluation method after seismic reinforcement
JP3475312B2 (en) Ground cavity detection method and apparatus
JP2002071448A (en) Building vibration failure predicting system
US20040111223A1 (en) Method for examining structures having high natural vibration frequency using alternating manual vibration-exciting method
JPH07209068A (en) Sound source probing device
JP3285787B2 (en) Countermeasure effect judgment method and countermeasure effect judgment device
La et al. Reducing ambient sensor noise in wind tunnel tests using spectral subtraction method
JP2899267B1 (en) Closed space point sound source measurement device
JPH0546883B2 (en)
Goli Improving the Accuracy of Analytical Downward Continuation of Terrestrial Gravity Anomalies
JPH06207829A (en) Three-dimensional measuring apparatus without limit to measuring range
JP3891998B2 (en) Method and apparatus for detecting rotational speed of electric motor
US20220205829A1 (en) Weight estimation apparatus, weight estimation method, and computer-readable recording medium
JP2010261193A (en) Seismic diagnosis system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees