JPH1026696A - Method for plasma melting treatment of radioactive solid waste and facility used for such method - Google Patents

Method for plasma melting treatment of radioactive solid waste and facility used for such method

Info

Publication number
JPH1026696A
JPH1026696A JP18239596A JP18239596A JPH1026696A JP H1026696 A JPH1026696 A JP H1026696A JP 18239596 A JP18239596 A JP 18239596A JP 18239596 A JP18239596 A JP 18239596A JP H1026696 A JPH1026696 A JP H1026696A
Authority
JP
Japan
Prior art keywords
solid waste
plasma melting
plasma
preheating
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18239596A
Other languages
Japanese (ja)
Other versions
JP3764528B2 (en
Inventor
Masashi Amakawa
正士 天川
Shinji Yasui
晋示 安井
Kazuo Adachi
和郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP18239596A priority Critical patent/JP3764528B2/en
Publication of JPH1026696A publication Critical patent/JPH1026696A/en
Application granted granted Critical
Publication of JP3764528B2 publication Critical patent/JP3764528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent chlorine from coming in contact with cesium oxide in a slag layer to capture volatile cesium during the fusion and solidification of it. SOLUTION: In a plasma melting treatment method where radioactive solid wastes 3 are melted by plasma heating, a plasma melting treatment is carried out after the radioactive solid wastes 3 are preheated both at 250 deg.C or higher and at a lower temperature than the boiling point of cesium, preferably at 300 deg.C to 400 deg.C. Plasma melting treatment facility is provided with a preheating component 2 which preheats the solid wastes 3 to a prescribed temperature before they are loaded into a plasma melting furnace 1 and is equipped with an exhaust means 6 for extracting a generated gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力発電所等で
発生する放射性固体廃棄物例えば低レベル放射性固体廃
棄物のプラズマ溶融処理方法およびそれに使用するプラ
ズマ溶融処理設備に関する。さらに詳述すると、本発明
は放射性固体廃棄物に含まれるセシウム化合物のプラズ
マ溶融処理時の揮発による環境放出を防止する放射性固
体廃棄物のプラズマ溶融処理方法およびそれに使用する
プラズマ溶融処理設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plasma melting of radioactive solid waste generated at a nuclear power plant or the like, for example, low-level radioactive solid waste, and a plasma melting processing facility used for the method. More specifically, the present invention relates to a plasma melting treatment method for radioactive solid waste and a plasma melting treatment equipment used for preventing environmental release due to volatilization during plasma melting treatment of a cesium compound contained in radioactive solid waste. is there.

【0002】[0002]

【従来の技術】原子力発電所等から排出される放射性固
体廃棄物例えば低レベル放射性固体廃棄物の処理方法と
して、プラズマ加熱によって溶融処理を行う技術が研究
されている。この方法では、低レベル放射性固体廃棄物
を分別することなく一括して溶融処理することが可能で
あり廃棄物処理に要するコストの削減を図ることができ
ると共に、放射性核種であるセシウムのスラグ層内への
封じ込めを図ることができて放射線防護の観点からも有
利である。
2. Description of the Related Art As a method for treating radioactive solid waste discharged from a nuclear power plant or the like, for example, low-level radioactive solid waste, a technique of performing melting treatment by plasma heating has been studied. According to this method, low-level radioactive solid waste can be collectively melt-processed without separation, so that the cost required for waste treatment can be reduced, and the radioactive nuclide cesium in the slag layer This is advantageous from the viewpoint of radiation protection.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、原子力
発電所等で発生する低レベル放射性廃棄物には様々な種
類のものが混じっており、放射能汚染された塩化ビニル
が廃棄物として廃棄されることがある。塩化ビニルを含
む低レベル放射性廃棄物を一括して溶融処理した場合、
塩化ビニルに含まれる塩素によってスラグ層に捕捉され
ていた酸化セシウムが揮発してしまうという問題があ
る。即ち、プラズマ溶融処理中に酸化物としてスラグ層
に捕捉されていたセシウムが塩素と反応して塩化物にな
る。塩化セシウムはイオン結合性であるためにイオン融
体であるスラグ層中で容易に解離し、揮発するためと考
えられている。このことがプラズマ溶融処理方法の実用
化の障害となっている。
However, various types of low-level radioactive waste generated in nuclear power plants and the like are mixed, and radioactively contaminated vinyl chloride is discarded as waste. There is. When low-level radioactive waste containing vinyl chloride is melted at once,
There is a problem that cesium oxide trapped in the slag layer is volatilized by chlorine contained in vinyl chloride. That is, cesium trapped in the slag layer as an oxide during the plasma melting process reacts with chlorine to form chloride. Cesium chloride is considered to be easily dissociated and volatilized in the slag layer, which is an ionic melt, due to its ionic bonding property. This is an obstacle to the practical use of the plasma melting treatment method.

【0004】図2に、低レベル放射性固体廃棄物の処理
を想定して実施した溶融試験の結果を示す。これは、フ
ランスCAE(フランス原子力公社)が燃料再処理工程
等から発生する放射性廃棄物を模擬した試料を模擬核種
とともにプラズマ加熱によって溶融した際に得られた結
果である(引用文献:H.Massit,G.Naud,R.Atabek andW.
Hoffelner,"Evaluation of the plasma centrifugal pr
ocess for radioactive waste treatment",Internation
al Incinaeration Conference,May 1995,U.S.A )。試
料として、塩化ビニル、ポリエチレン、セルローズ等の
混合比を変えたA,B,Cの3種類の模擬廃棄物、廃棄
物処理施設等から発生する灰(アッシュ)及びイオン交
換樹脂を使用している。折れ線グラフは溶融試料に含有
される塩素の重量割合(wt%)を、棒グラフは溶融後
のスラグ層へ移行したセシウムの重量割合(wt%)を
それぞれ示している。図からも明らかなように、溶融試
料に含まれる塩素の重量割合が6%から19%に増加す
ると、スラグ層へ捕捉されるCs(セシウム)の割合が
22%から4%と大幅に低下していることが分かる。即
ち、溶融試料中の塩素濃度が高いと、セシウムのスラグ
層への移行率が低下することが明らかである。
FIG. 2 shows the results of a melting test performed assuming the treatment of low-level radioactive solid waste. This is a result obtained when a French CAE (French Atomic Energy Agency) melts a sample simulating radioactive waste generated from a fuel reprocessing step or the like together with a simulated nuclide by plasma heating (cited reference: H. Massit). , G.Naud, R.Atabek andW.
Hoffelner, "Evaluation of the plasma centrifugal pr
ocess for radioactive waste treatment ", Internation
al Incinaeration Conference, May 1995, USA). As samples, three types of simulated wastes A, B, and C with different mixing ratios of vinyl chloride, polyethylene, cellulose, etc., ash (ash) generated from waste treatment facilities, and ion exchange resin are used. . The line graph shows the weight ratio (wt%) of chlorine contained in the molten sample, and the bar graph shows the weight ratio (wt%) of cesium transferred to the slag layer after melting. As is clear from the figure, when the weight percentage of chlorine contained in the molten sample increases from 6% to 19%, the percentage of Cs (cesium) trapped in the slag layer drops significantly from 22% to 4%. You can see that it is. That is, it is clear that when the chlorine concentration in the molten sample is high, the transfer rate of cesium to the slag layer decreases.

【0005】このように、セシウムが塩素を含む廃棄物
によって揮発し易くなることが指摘されているものの、
効果的な対策は従来から採られておらず、プラズマ溶融
処理方法の実用化の為には有効な対策技術の開発が要望
されている。
Although it has been pointed out that cesium is easily volatilized by waste containing chlorine,
No effective countermeasures have been taken so far, and there is a demand for the development of effective countermeasure technologies for the practical use of the plasma melting treatment method.

【0006】本発明は、揮発性のセシウムを溶融固体化
中に捕捉させるために、塩素とスラグ層との接触を防止
できる放射性固体廃棄物のプラズマ溶融処理方法および
それに使用するプラズマ溶融処理設備を提供することを
目的とする。
The present invention relates to a plasma melting treatment method for radioactive solid waste capable of preventing contact of chlorine with a slag layer in order to trap volatile cesium during solidification, and a plasma melting treatment equipment used therefor. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1記載の発明は、放射性固体廃棄物をプラズ
マ加熱によって溶融させる放射性固体廃棄物のプラズマ
溶融処理方法において、放射性固体廃棄物を250℃以
上でかつセシウムの沸点未満の温度で予熱した後にプラ
ズマ加熱溶融処理を行うようにしている。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 provides a method for plasma melting a radioactive solid waste by melting the radioactive solid waste by plasma heating. After preheating at a temperature of 250 ° C. or higher and lower than the boiling point of cesium, the plasma heating and melting treatment is performed.

【0008】即ち、塩化ビニルなどに含まれる塩素は2
50℃で気体成分として抜け始め、300℃以上になる
と塩化ビニルなどから塩素が抜け出す速度が十分な速度
となり、400℃を越える温度では塩化ビニルなどの中
には塩素がほとんど残らないと考えられる。この温度は
セシウムの沸点(例えば、セシウムの沸点は760℃)
に比べて十分に低温である。反面、セシウムの沸点に達
すると、セシウムの蒸発が起こる上に脱塩素への影響は
400℃のときと大差ない。そこで、プラズマ溶融処理
前に、放射性固体廃棄物を250℃以上でかつセシウム
の沸点未満の温度、好ましくは請求項2に記載するよう
に300〜400℃で予熱すると、放射性固体廃棄物中
の塩化ビニル等に含まれる塩素が気体成分として抜き取
られる。ここで、予熱時間は特に重要ではなく、固体廃
棄物が300℃〜400℃に加熱されれば十分である。
That is, chlorine contained in vinyl chloride or the like is 2
It is considered that chlorine starts to be released as a gas component at 50 ° C., and when the temperature is 300 ° C. or more, the speed at which chlorine is released from vinyl chloride or the like becomes a sufficient speed. This temperature is the boiling point of cesium (eg, the boiling point of cesium is 760 ° C.)
It is much lower temperature than. On the other hand, when the boiling point of cesium is reached, cesium evaporates and the effect on dechlorination is not much different from that at 400 ° C. Therefore, before the plasma melting treatment, the radioactive solid waste is preheated at a temperature of 250 ° C. or higher and lower than the boiling point of cesium, preferably at 300 to 400 ° C. as described in claim 2, whereby the chloride in the radioactive solid waste is heated. Chlorine contained in vinyl or the like is extracted as a gas component. Here, the preheating time is not particularly important, and it is sufficient if the solid waste is heated to 300 ° C to 400 ° C.

【0009】したがって、放射性固体廃棄物を分別せず
に塩化ビニルなどを含んだ状態でプラズマ溶融処理を行
っても、プラズマ溶融処理中に塩素が発生することがな
く、あるいは塩素量が極めて少なくなり、スラグ層に捕
捉されている酸化セシウムが塩化物となって解離し揮発
することが少なくなる。
Therefore, even if the plasma melting treatment is carried out in a state containing vinyl chloride or the like without separating the radioactive solid waste, no chlorine is generated during the plasma melting treatment, or the amount of chlorine is extremely reduced. In addition, cesium oxide trapped in the slag layer is less likely to become chloride and dissociate and volatilize.

【0010】また、請求項3記載の発明は、プラズマ溶
融炉からの排ガスの熱で廃棄物予熱を行うようにしてい
る。この場合、プラズマ溶融処理で発生した熱を有効利
用できる。
[0010] Further, in the invention according to claim 3, the waste is preheated by the heat of the exhaust gas from the plasma melting furnace. In this case, the heat generated in the plasma melting process can be effectively used.

【0011】また、請求項4記載のプラズマ溶融処理設
備は、プラズマ溶融炉に投入される前の放射性固体廃棄
物を250℃以上でかつセシウムの沸点未満の温度に予
熱すると共に発生したガスを抜き取る排気手段を備えた
予熱部を設けている。この場合、廃棄物の予熱による塩
素の抜き取りとプラズマ溶融処理とが連続的に実施可能
である。
Further, the plasma melting treatment equipment according to claim 4 preheats the radioactive solid waste before being introduced into the plasma melting furnace to a temperature of 250 ° C. or higher and lower than the boiling point of cesium, and removes generated gas. A preheating unit having an exhaust unit is provided. In this case, it is possible to continuously perform chlorine extraction and plasma melting treatment by preheating the waste.

【0012】更に、請求項5記載の発明は、プラズマ溶
融炉の排ガスを予熱部を通して予熱部で発生したガスと
共に排気することにより、プラズマ溶融炉からの排ガス
を予熱部の熱源として利用するようにしている。この場
合、予熱部で発生した塩素ガスがプラズマ溶融炉側へ逆
流することがなく、スラグ層に捕捉されている酸化セシ
ウムと塩素との反応を確実に防止してセシウムの捕捉率
を上げる。
Further, according to the present invention, the exhaust gas of the plasma melting furnace is exhausted together with the gas generated in the preheating section through the preheating section, so that the exhaust gas from the plasma melting furnace is used as a heat source of the preheating section. ing. In this case, the chlorine gas generated in the preheating section does not flow back to the plasma melting furnace side, and the reaction between cesium oxide and chlorine trapped in the slag layer is reliably prevented to increase the cesium trapping rate.

【0013】[0013]

【発明の実施の形態】以下、本発明の構成を図面に示す
最良の形態に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on the best mode shown in the drawings.

【0014】図1に、本発明を低レベル放射性固体廃棄
物のプラズマ溶融処理方法に適用した実施形態をプラズ
マ溶融処理設備の概念を示す。プラズマ溶融炉1の投入
口の前には排気手段たる排ガス処理装置6を備えた予熱
部2が設けられている。予熱部2は、例えばプラズマ溶
融炉1よりも高い位置に設けられており、予熱部2で発
生したガスがプラズマ溶融炉1側へより流入し難くなる
ように設けられている。また、排ガス処理装置6は、例
えば予熱部2のプラズマ溶融炉1から離れた方の端部に
接続され、プラズマ溶融炉1内で発生した高温の排ガス
が予熱部2内に導かれてから予熱部2で発生したガスと
共に排出されるように設けられている。したがって、プ
ラズマ溶融炉1からの排ガスによって、予熱部2内では
低レベル放射性固体廃棄物(以下、単に固体廃棄物とい
う)3が予熱され、排ガス熱回収が行われる。固体廃棄
物3は、プラズマ溶融炉1からの排ガスによって、ある
いは外部予熱装置8によって、若しくは双方の熱によっ
て、250℃以上でかつセシウムの沸点未満の温度例え
ば760℃未満、好ましくは300〜400℃の範囲に
予熱される。また、プラズマ溶融炉1への固体廃棄物3
の投入は、投入装置7によって予熱部2へまず投入され
てから所定の予熱処理が施された後に重力落下あるいは
公知の送り手段ないし供給手段によってプラズマ炉1へ
適量ずつ連続的に送られる。
FIG. 1 shows the concept of a plasma melting treatment facility according to an embodiment in which the present invention is applied to a method for plasma melting treatment of low-level radioactive solid waste. In front of the inlet of the plasma melting furnace 1, a preheating unit 2 provided with an exhaust gas treatment device 6 as an exhaust means is provided. The preheating unit 2 is provided, for example, at a position higher than the plasma melting furnace 1, and is provided so that the gas generated in the preheating unit 2 is less likely to flow into the plasma melting furnace 1. Further, the exhaust gas treatment device 6 is connected to, for example, an end of the preheating unit 2 remote from the plasma melting furnace 1, and the high temperature exhaust gas generated in the plasma melting furnace 1 is guided into the preheating unit 2 and then preheated. It is provided so as to be discharged together with the gas generated in the section 2. Therefore, the low-level radioactive solid waste (hereinafter, simply referred to as solid waste) 3 is preheated in the preheating unit 2 by the exhaust gas from the plasma melting furnace 1, and the exhaust gas heat is recovered. The solid waste 3 is heated by the exhaust gas from the plasma melting furnace 1 or by the external preheating device 8 or by both heats to a temperature of 250 ° C. or more and less than the boiling point of cesium, for example, less than 760 ° C., preferably 300 to 400 ° C. Preheated to the range. The solid waste 3 into the plasma melting furnace 1
Is first charged into the preheating unit 2 by the charging device 7 and then subjected to a predetermined preheat treatment, followed by gravity drop or continuous feeding to the plasma furnace 1 by an appropriate amount by a known feeding means or supply means.

【0015】なお、図中符号4はプラズマアークを発生
させるプラズマトーチ、5は溶湯を固化させる固化装
置、9は固体廃棄物3が溶融した溶湯である。
In the figure, reference numeral 4 denotes a plasma torch for generating a plasma arc, 5 a solidifying device for solidifying the molten metal, and 9 a molten metal in which the solid waste 3 is melted.

【0016】以上のように構成されたプラズマ溶融処理
設備を使用して本発明のプラズマ溶融処理方法は次のよ
うに実施される。勿論、本発明のプラズマ溶融処理方法
は、図1のプラズマ溶融処理設備以外の設備でも実施可
能である。
The plasma melting treatment method of the present invention using the plasma melting treatment equipment configured as described above is carried out as follows. Needless to say, the plasma melting treatment method of the present invention can be carried out with equipment other than the plasma melting treatment equipment shown in FIG.

【0017】まず、原子力発電所等から排出された低レ
ベル放射性固体廃棄物3は、投入装置7によって予熱部
2内に送り込まれる。そして、固体廃棄物3は、予熱部
2を通過する間に250℃以上でかつセシウムの沸点未
満の温度、即ち廃棄物3中に含まれているセシウムを蒸
発させることがない程度の温度に予熱される。ここで、
固体廃棄物3の予熱温度を250℃以上にするのは、固
体廃棄物3に含まれる塩化ビニルから塩素を気体成分と
して抜き取るためで、この温度よりも低い場合には塩素
が気体成分として抜けないからである。一方、廃棄物3
の予熱温度をセシウムの沸点未満の温度にするのは、予
熱部2においてセシウムの蒸発を防ぐためである。予熱
温度が250℃でも脱塩素は開始されるが、300℃以
上で十分に早い処理速度で塩素の抜けが起こる。また、
400℃を越えると塩化ビニルなどの中には塩素がほと
んど残らないと考えられるし、セシウムの沸点近くでは
セシウムの蒸発の虞が生ずるにも拘わらず脱塩素効果は
400℃のときと大差ない。そこで、本実施形態では、
固体廃棄物3は、300℃〜400℃の範囲で予熱され
る。勿論、それ以上の高温度に予熱することは可能であ
るしその場合には予熱時間が短くできることから400
℃を越える高温に予熱することを妨げるものではない
が、セシウムの沸点近くまで予熱温度を上げることはセ
シウムの蒸発を防ぐという観点からは好ましくはない。
また、予熱には塩化ビニルに含まれる塩素が十分に抜き
取られるに必要な時間をかけることが好ましく、固体廃
棄物3に含まれている塩化ビニルの大きさや取付位置、
形状などによって異なるが、要は固体廃棄物3が300
℃〜400℃に加熱される条件であれば足りる。
First, the low-level radioactive solid waste 3 discharged from a nuclear power plant or the like is sent into the preheating unit 2 by the charging device 7. The solid waste 3 is preheated to a temperature of 250 ° C. or higher and lower than the boiling point of cesium while passing through the preheating unit 2, that is, a temperature at which cesium contained in the waste 3 is not evaporated. Is done. here,
The reason for setting the preheating temperature of the solid waste 3 to 250 ° C. or higher is to extract chlorine as a gaseous component from vinyl chloride contained in the solid waste 3. If the temperature is lower than this temperature, chlorine does not escape as a gaseous component. Because. On the other hand, waste 3
The preheating temperature is set to a temperature lower than the boiling point of cesium in order to prevent cesium from evaporating in the preheating unit 2. Dechlorination is started even at a preheating temperature of 250 ° C., but at 300 ° C. or higher, chlorine escape occurs at a sufficiently high processing rate. Also,
If the temperature exceeds 400 ° C., it is considered that chlorine hardly remains in vinyl chloride or the like. In the vicinity of the boiling point of cesium, the dechlorination effect is not much different from that at 400 ° C. despite the possibility of cesium evaporation. Therefore, in this embodiment,
The solid waste 3 is preheated in the range of 300C to 400C. Of course, it is possible to preheat to a higher temperature, and in that case, the preheating time can be shortened.
Although it does not prevent preheating to a high temperature exceeding ℃, increasing the preheating temperature to near the boiling point of cesium is not preferable from the viewpoint of preventing cesium evaporation.
In addition, it is preferable that the preheating takes a time necessary for sufficiently extracting chlorine contained in the vinyl chloride, and the size, the mounting position, and the like of the vinyl chloride contained in the solid waste 3 are preferable.
Although it depends on the shape, etc., the point is that the solid waste 3 is 300
It is sufficient if the heating is performed at a temperature of from 400C to 400C.

【0018】ここで、固体廃棄物3の予熱がプラズマ溶
融炉1からの排ガスの熱によってのみ達成されない場合
には、予熱装置8によって予熱を補助しても良い。この
ようにして、予熱部2内で固体廃棄物3が上述の温度に
予熱されることで、固体廃棄物3中の塩化ビニル等に含
有される塩素が気体成分となって当該固体廃棄物3から
抜ける。
Here, when the preheating of the solid waste 3 cannot be achieved only by the heat of the exhaust gas from the plasma melting furnace 1, the preheating may be assisted by the preheating device 8. In this way, the solid waste 3 is preheated to the above-mentioned temperature in the preheating unit 2, whereby chlorine contained in vinyl chloride or the like in the solid waste 3 becomes a gaseous component and becomes a gaseous component. Get out of.

【0019】固体廃棄物3に含まれる塩化ビニルから塩
素が十分に抜けると、当該固体廃棄物3はプラズマ溶融
炉1に投入される。そして、固体廃棄物3が塩化ビニル
を含んだ状態のまま一括してアーク加熱されて溶融処理
され、固体廃棄物中のセシウムがスラグ層に捕捉され
る。このとき、固体廃棄物3に含まれる塩化ビニルから
は既に塩素が気体成分として抜かれているので、スラグ
層に捕捉されている酸化セシウムが塩化物となって解離
し揮発することがない。したがって、塩化ビニルなどの
塩素を含む物質を含んだまま固体廃棄物3をプラズマ加
熱によって溶融処理しても、セシウムの捕捉率が低下す
ることはない。
When the chlorine is sufficiently removed from the vinyl chloride contained in the solid waste 3, the solid waste 3 is put into the plasma melting furnace 1. Then, the solid waste 3 is collectively arc-heated and melted while containing vinyl chloride, and cesium in the solid waste is captured in the slag layer. At this time, since chlorine has already been removed from the vinyl chloride contained in the solid waste 3 as a gaseous component, the cesium oxide captured in the slag layer does not dissociate as chloride and volatilize. Therefore, even if the solid waste 3 is melted by plasma heating while containing a chlorine-containing substance such as vinyl chloride, the capture rate of cesium does not decrease.

【0020】なお、上述の形態は本発明の好適な形態の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、上述の説明では、プラズマ溶融炉1からの
排ガスの熱を利用して予熱部2での予熱を行っている
が、プラズマ溶融炉1からの排ガスは別の排ガス処理装
置によって直接プラズマ溶融炉1から排気し、予熱部2
は加熱装置だけで加熱するようにしても良い。また、プ
ラズマ溶融炉1からの排ガスを予熱部2内に設置した熱
交換器を通して熱源として利用することも可能である。
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and can be variously modified without departing from the gist of the present invention. For example, in the above description, the preheating in the preheating unit 2 is performed using the heat of the exhaust gas from the plasma melting furnace 1, but the exhaust gas from the plasma melting furnace 1 is directly heated by another exhaust gas processing apparatus. Exhaust from 1 and preheat section 2
May be heated only by a heating device. Further, the exhaust gas from the plasma melting furnace 1 can be used as a heat source through a heat exchanger installed in the preheating unit 2.

【0021】また、一連のプラズマ溶融処理は、必ずし
もプラズマ溶融炉1とは別個に予熱部2を設けた設備で
連続的に実施する必要はなく、既存のプラズマ溶融炉1
内でまず上記の予熱温度まで予熱して塩素をガス成分と
して抜き取り排気した後に、次いでプラズマ加熱により
溶融処理を行うバッチ処理でも可能である。
A series of plasma melting processes does not necessarily need to be performed continuously in a facility provided with a preheating unit 2 separately from the plasma melting furnace 1.
It is also possible to perform a batch process in which after preheating to the above preheating temperature, extracting chlorine as a gas component and exhausting, and then performing a melting process by plasma heating.

【0022】さらに、固体廃棄物3の予熱温度として
は、必ずしも上述の300℃〜400℃の範囲に限るも
のではなく、固体廃棄物3に含まれるセシウムの気化を
防止し且つ塩素を気化させることが可能な温度であれば
良い。
Further, the preheating temperature of the solid waste 3 is not necessarily limited to the above-mentioned range of 300 ° C. to 400 ° C., and it is necessary to prevent the cesium contained in the solid waste 3 from being vaporized and to vaporize chlorine. Any temperature can be used.

【0023】[0023]

【発明の効果】以上説明したように、請求項1記載の放
射性固体廃棄物のプラズマ溶融処理方法は、放射性固体
廃棄物を250℃以上でかつセシウムの沸点未満の温度
で予熱した後にプラズマ溶融処理を行うので、固体廃棄
物に塩化ビニルなどの塩素を含む物質が含まれているま
ま溶融処理を行っても、プラズマ溶融処理中に塩素がス
ラグ層に捕捉されている酸化セシウムと反応して塩化物
として揮発させることがない。したがって、原子力発電
所から発生する放射性固体廃棄物例えば低レベル放射性
固体廃棄物を塩化ビニルなどの塩素を含む物質を除かず
にそのまま溶融処理しても、揮発性の放射性核種を安定
的にスラグ層に捕捉させることができ、放射性物質の環
境放出を防いで放射線の防護に一層寄与できる。即ち、
プラズマ加熱による放射性固体廃棄物の溶融処理の実用
化を可能とする。
As described above, the method for plasma-melting radioactive solid waste according to the first aspect of the present invention comprises preheating the radioactive solid waste at a temperature of 250 ° C. or higher and lower than the boiling point of cesium, and then performing the plasma melting process. Therefore, even if the solid waste contains a chlorine-containing substance such as vinyl chloride and is melted, the chlorine reacts with the cesium oxide trapped in the slag layer during the plasma melting process, resulting in chloride. It does not volatilize as a substance. Therefore, even if radioactive solid waste generated from a nuclear power plant, for example, low-level radioactive solid waste is melted as it is without removing chlorine-containing substances such as vinyl chloride, volatile radioactive nuclides can be stably converted into a slag layer. To prevent the radioactive material from being released into the environment, thereby further contributing to the protection of radiation. That is,
Practical application of melting treatment of radioactive solid waste by plasma heating.

【0024】また、塩化ビニルなどの塩素を含む物質を
分別するための前処理を省くことが可能になるので、放
射性固体廃棄物を一括して溶融処理できるというプラズ
マ溶融処理方法の利点を最大限に生かすことができる。
In addition, since it is possible to omit the pretreatment for separating chlorine-containing substances such as vinyl chloride, it is possible to maximize the advantage of the plasma melting treatment method in which radioactive solid waste can be collectively melted. It can be used for

【0025】更に、セシウムは廃棄物最終処分の前に適
用されるスケーリングファクター法のキー核種でもある
ので、廃棄体の放射能量の確認に役立つ。特に、請求項
2に記載のように、300℃〜400℃で予熱すると
き、最も安定した脱塩素が良好な処理時間で実施でき
る。
Further, since cesium is also a key nuclide in the scaling factor method applied prior to final disposal of the waste, it is useful for confirming the radioactivity of the waste. In particular, as described in claim 2, when preheating at 300 ° C to 400 ° C, the most stable dechlorination can be performed in a good processing time.

【0026】また、請求項3記載のプラズマ溶融処理方
法は、プラズマ炉からの排ガスの熱で予熱を行うように
しているので、排熱回収によりプラズマ溶融処理設備の
熱効率を向上させ得る。
Further, in the plasma melting treatment method according to the third aspect, since the preheating is performed by the heat of the exhaust gas from the plasma furnace, the heat efficiency of the plasma melting treatment equipment can be improved by exhaust heat recovery.

【0027】また、請求項4記載のプラズマ溶融処理設
備は、プラズマ溶融炉に投入される前の放射性固体廃棄
物を250℃以上でかつセシウムの沸点未満の温度に予
熱すると共に発生したガスを抜き取る排気手段を備えた
予熱部を設けているので、固体廃棄物の予熱による塩素
の抜き取りとプラズマ溶融処理とが連続的に実施可能で
ある。
Further, the plasma melting treatment equipment according to claim 4 preheats the radioactive solid waste before being introduced into the plasma melting furnace to a temperature of 250 ° C. or higher and lower than the boiling point of cesium, and removes generated gas. Since the preheating section provided with the exhaust means is provided, it is possible to continuously perform chlorine extraction and plasma melting processing by preheating solid waste.

【0028】更に、請求項5記載の発明は、プラズマ溶
融炉の排ガスを予熱部を通して予熱部で発生したガスと
共に排気することにより、プラズマ溶融炉からの排ガス
を予熱部の熱源として利用するようにしているので、予
熱部で発生した塩素ガスがプラズマ溶融炉側へ逆流する
ことがなく、スラグ層に捕捉されている酸化セシウムと
塩素との反応を確実に防止してセシウムの捕捉率を上げ
る。
Further, according to a fifth aspect of the present invention, the exhaust gas from the plasma melting furnace is used as a heat source of the preheating section by exhausting the exhaust gas of the plasma melting furnace through the preheating section together with the gas generated in the preheating section. As a result, the chlorine gas generated in the preheating section does not flow back to the plasma melting furnace side, and the reaction between cesium oxide and chlorine trapped in the slag layer is reliably prevented to increase the cesium trapping rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したプラズマ溶融処理方法を実施
する施設の一例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of a facility for performing a plasma melting treatment method to which the present invention is applied.

【図2】放射性廃棄物の塩素含有率とセシウムのスラグ
層への移行率との関係を示す図てある。
FIG. 2 is a graph showing the relationship between the chlorine content of radioactive waste and the transfer rate of cesium to a slag layer.

【符号の説明】[Explanation of symbols]

1 プラズマ溶融炉 2 予熱部 3 放射性固体廃棄物 6 予熱部の排気手段たる排ガス処理装置 8 予熱部の予熱装置 DESCRIPTION OF SYMBOLS 1 Plasma melting furnace 2 Preheating part 3 Radioactive solid waste 6 Exhaust gas treatment device as exhaust means of preheating part 8 Preheating device of preheating part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放射性固体廃棄物をプラズマ加熱によっ
て溶融させる放射性固体廃棄物のプラズマ溶融処理方法
において、前記放射性固体廃棄物を250℃以上でかつ
セシウムの沸点未満の温度で予熱した後に前記プラズマ
加熱溶融処理を行うことを特徴とする放射性固体廃棄物
のプラズマ溶融処理方法。
1. A method for plasma melting a radioactive solid waste in which radioactive solid waste is melted by plasma heating, wherein said radioactive solid waste is preheated to a temperature of 250 ° C. or higher and lower than the boiling point of cesium, and then said plasma heating is performed. A plasma melting treatment method for radioactive solid waste, comprising performing a melting treatment.
【請求項2】 前記予熱は放射性固体廃棄物が300℃
〜400℃になる温度であることを特徴とする請求項1
記載の放射性固体廃棄物のプラズマ溶融処理方法。
2. The method according to claim 1, wherein the preheating is performed at a temperature of 300 ° C.
2. The temperature at which the temperature reaches to 400 [deg.] C.
A method for plasma melting of radioactive solid waste according to the above.
【請求項3】 プラズマ溶融炉からの排ガスの熱で前記
予熱を行うことを特徴とする請求項1または2記載の放
射性固体廃棄物のプラズマ溶融処理方法。
3. The method according to claim 1, wherein the preheating is performed using heat of exhaust gas from a plasma melting furnace.
【請求項4】 放射性固体廃棄物をプラズマ加熱によっ
て溶融させる放射性固体廃棄物のプラズマ溶融処理設備
において、プラズマ溶融炉に投入される前の前記放射性
固体廃棄物を250℃以上でかつセシウムの沸点未満の
温度に予熱すると共に発生したガスを抜き取る排気手段
を備える予熱部を有することを特徴とする放射性固体廃
棄物のプラズマ溶融処理設備。
4. A radioactive solid waste plasma melting treatment facility for melting radioactive solid waste by plasma heating, wherein the radioactive solid waste before being introduced into a plasma melting furnace is at least 250 ° C. and less than the boiling point of cesium. A radioactive solid waste plasma melting treatment facility, comprising: a preheating section provided with an exhaust means for preheating to a temperature and extracting generated gas.
【請求項5】 前記プラズマ溶融炉の排ガスを前記予熱
部を通して前記予熱部で発生したガスと共に排気するこ
とにより、前記プラズマ溶融炉からの排ガスを前記予熱
部の熱源として利用することを特徴とする請求項4記載
の放射性固体廃棄物のプラズマ溶融処理設備。
5. An exhaust gas from the plasma melting furnace is used as a heat source of the preheating unit by exhausting exhaust gas from the plasma melting furnace together with gas generated in the preheating unit through the preheating unit. A plasma melting treatment facility for radioactive solid waste according to claim 4.
JP18239596A 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor Expired - Fee Related JP3764528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18239596A JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18239596A JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Publications (2)

Publication Number Publication Date
JPH1026696A true JPH1026696A (en) 1998-01-27
JP3764528B2 JP3764528B2 (en) 2006-04-12

Family

ID=16117573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18239596A Expired - Fee Related JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Country Status (1)

Country Link
JP (1) JP3764528B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246081A (en) * 2012-05-28 2013-12-09 Few Technology Co Ltd Method for processing burned ash containing radioactive material and processed solid matter
JP2014132249A (en) * 2013-01-07 2014-07-17 National Institute For Materials Science Cesium extraction method
CN104966540A (en) * 2015-05-12 2015-10-07 中科华核电技术研究院有限公司 Plasma low-intermediate level radioactive solid waste disposal method
JP2016148669A (en) * 2016-03-01 2016-08-18 日本碍子株式会社 Treatment method of radioactive cesium contaminant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246081A (en) * 2012-05-28 2013-12-09 Few Technology Co Ltd Method for processing burned ash containing radioactive material and processed solid matter
JP2014132249A (en) * 2013-01-07 2014-07-17 National Institute For Materials Science Cesium extraction method
CN104966540A (en) * 2015-05-12 2015-10-07 中科华核电技术研究院有限公司 Plasma low-intermediate level radioactive solid waste disposal method
JP2016148669A (en) * 2016-03-01 2016-08-18 日本碍子株式会社 Treatment method of radioactive cesium contaminant

Also Published As

Publication number Publication date
JP3764528B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
US4895678A (en) Method for thermal decomposition treatment of radioactive waste
US5678236A (en) Method and apparatus for eliminating volatiles or airborne entrainments when vitrifying radioactive and/or hazardous waste
KR100930225B1 (en) Reprocessing device and method for reprocessing paraffin concentrate solidification drum in nuclear power plant
Nedwed et al. A survey of lead battery recycling sites and soil remediation processes
KR100369612B1 (en) System and Treatment Method for Low-and Intermediate-Level Radioactive Waste
JP3764528B2 (en) Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor
JPH02201199A (en) Treatment of high-radioactive waste
US6241800B1 (en) Acid fluxes for metal reclamation from contaminated solids
EP0358431B1 (en) Spent fuel treatment method
Sobolev et al. High temperature treatment of intermediate-level radioactive wastes-sia radon experience
KR102497975B1 (en) A treatment method for concentrated radioactive waste solidified by using paraffin wax and stored in the interim storage on the nuclear power plants
JPS6341520B2 (en)
JP3858368B2 (en) Decontamination method and apparatus for fine metal waste
WO2017203567A1 (en) Radionuclide separation method and radionuclide separation device
Timmons et al. Vitrification tested on hazardous wastes
JP6524532B2 (en) Purification method of iron containing radioactive cesium
JPS6063329A (en) Treatment of dust
JP2004286627A (en) Processing method and system of activated graphite
JP2966349B2 (en) Elemental separation method from mixed melt of high-level radioactive waste and glass raw material
JPS63315998A (en) Treatment of radioactive waste liquid
Gräbener et al. Volume reduction, treatment and recycling of radioactive waste
JPS6061698A (en) Method of solidifying and treating radioactive liquid organic waste
Deckers et al. Testing and Starting up of the Plasma Melting Facility for Industrial Treatment of Radioactive Waste–17362
JPS63218894A (en) Reprocessing method of spent nuclear fuel
JPS594197B2 (en) Waste melting and solidification processing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051012

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Effective date: 20060120

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130127

LAPS Cancellation because of no payment of annual fees