JPH10263493A - Cleaning of interior of gas filling container and apparatus therefor - Google Patents

Cleaning of interior of gas filling container and apparatus therefor

Info

Publication number
JPH10263493A
JPH10263493A JP6872197A JP6872197A JPH10263493A JP H10263493 A JPH10263493 A JP H10263493A JP 6872197 A JP6872197 A JP 6872197A JP 6872197 A JP6872197 A JP 6872197A JP H10263493 A JPH10263493 A JP H10263493A
Authority
JP
Japan
Prior art keywords
gas
container
cleaning
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6872197A
Other languages
Japanese (ja)
Other versions
JP3949217B2 (en
Inventor
Ryuichiro Isaki
隆一郎 伊崎
Takuya Ikeda
拓也 池田
Hideharu Hasegawa
英晴 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP06872197A priority Critical patent/JP3949217B2/en
Publication of JPH10263493A publication Critical patent/JPH10263493A/en
Application granted granted Critical
Publication of JP3949217B2 publication Critical patent/JP3949217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and certainly remove particles sedimented and precipitated within a gas filling container by removing undersirable fine particles contained at a time of the use of a supply destination, for example, in the production of a semconductor to supply high purity gas containing no particles. SOLUTION: After a gas filling container 1 is evacuated by a vacuum exhaust means 13, inert gas obtained by passing cleaning gas through a filter 7 from a preliminarily pressurized cleaning gas source 5 to remove particles is introduced into the container 1 as a high speed flow to be pressurized to fill the container 1. Subsequently, the cleaning gas charged into the container 1 under pressure is discharged by a discharge pipe 11 to be brought to the vicinity of atmospheric pressure and, succeedingly, the container 1 is evacuated at a high speed by a vacuum exhaust means 13. Hereinafter, a series of treatment processes are operated repeatedly a plurality of times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、標準ガス、医療用
ガス及び半導体製造用ガスとして望まれる、不純物が含
有しない高純度のガスの供給のため、その対応の一つで
ある該種ガスを充填する容器内の不純物特に微少なパー
テイクルを除去し清浄化する方法と装置に関するもので
ある。
The present invention relates to a method for supplying a high-purity gas which does not contain impurities, which is desired as a standard gas, a medical gas and a semiconductor manufacturing gas. The present invention relates to a method and an apparatus for removing and cleaning impurities, particularly minute particles, in a container to be filled.

【0002】[0002]

【従来の技術】標準ガス、医療用ガス及び半導体製造用
ガスは、それぞれ厳しい基準値の確保や安全性の保持及
び製造製品の品質確保の上から高純度のガスの供給が望
まれている。そして化学組成物としての不純物は化学的
または物理的精製技術の進歩により、それぞれの分野で
望まれる程度の極めて微量な領域まで除去し得て高純度
化されている。しかるに、上記した分野で使用する該種
ガス類は主としてボンベと一般に称せられているガス充
填用容器に充填して使用先に供給されているのが実情で
ある。そしてこの種のガス充填用容器内にはその内壁の
酸化等により金属酸化物を主とする微少な塵埃(以下
「パーテイクル」という。)が存在する。このパーテイク
ルは該種ガスを使用先で使用する際に、導出するガスに
同伴して供給され、これを使用するとそれぞれ分野での
上記基準値の確保、安全性の保持及び製造製品の品質確
保等において、所定の機能の発揮を阻害することとなっ
ていた。
2. Description of the Related Art It is desired to supply a high-purity gas for a standard gas, a medical gas and a semiconductor manufacturing gas in order to secure strict standard values, maintain safety and ensure the quality of manufactured products. Impurities as a chemical composition can be removed to a very small amount as desired in each field and highly purified by the advance of chemical or physical purification techniques. However, the actual situation is that the seed gases used in the above-mentioned fields are mainly supplied to a use destination after being filled in a gas filling container generally called a cylinder. In this kind of gas filling container, minute dust (hereinafter, referred to as "particles") mainly composed of metal oxides is present due to oxidation of the inner wall or the like. This particle is supplied along with the derived gas when the seed gas is used at the place of use, and when used, the use of this gas will ensure the above-mentioned reference values in each field, maintain safety, ensure the quality of manufactured products, etc. In such a case, the performance of a predetermined function is impaired.

【0003】このため、従来よりこのパーテイクルをガ
ス充填用容器内より除去する清浄化作業が行われてい
る。そしてその清浄化する方法として、ガス充填用容器
内に窒素ガスの如き不活性ガスを清浄用ガスとしてフィ
ルターを通して導入し10×105Pa(1atmは約
1×105Pa)以上通常100×105〜400×10
5Pa程度の高い圧力で充填し、ついでこれを大気圧ま
で高速で放出する一連の工程処理を5〜10回繰り返す
いわゆる高圧加圧パージ法が行われていた。
For this reason, a cleaning operation for removing the particles from the inside of the gas filling container has been conventionally performed. As a cleaning method, an inert gas such as nitrogen gas is introduced into a gas filling container as a cleaning gas through a filter, and the gas is introduced into a gas filling container at a pressure of 10 × 10 5 Pa (1 atm is about 1 × 10 5 Pa) or more, usually 100 × 10 5 5 to 400 × 10
A so-called high-pressure pressurization method has been performed in which a series of process steps of filling at a high pressure of about 5 Pa and releasing the same at a high speed to the atmospheric pressure is repeated 5 to 10 times.

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記した従
来の高圧加圧パージによる清浄化方法では容器内の見か
け上のパーテイクルは除去されてはいるが、実際にこの
方法で清浄化を行った容器に充填したガスを導出してみ
ると、このガス中に多量のパーテイクルが検出されるこ
とがある。これは高圧加圧パージ法による清浄化の際、
ガス充填容器への清浄用ガスの充填及び続いて行う該ガ
スの放出等でのガス流速は容器内の壁面に近いほど遅い
ので、壁面に吸着しているパーテイクルは壁面より脱離
または剥離せずに容器内に残存する。また比較的粒子径
の大きいパーテイクルは重力により容器の底部に沈降
し、更に進行すると底部に沈着することとなる。
In the above-described conventional cleaning method using a high-pressure pressurizing purge, although apparent particles in the container are removed, the container actually cleaned by this method is used. When the gas charged into the gas is derived, a large amount of particles may be detected in the gas. This is when cleaning by the high pressure and pressure purge method,
Since the gas flow velocity at the time of filling the gas-filled container with the cleaning gas and subsequently releasing the gas is slower as it is closer to the wall surface inside the container, the particles adsorbed on the wall surface do not detach or separate from the wall surface. Remains in the container. Particles having a relatively large particle diameter settle to the bottom of the container due to gravity, and when they proceed further, settle to the bottom.

【0005】このように壁面に吸着したり底部に沈降ま
たは沈着したパーテイクルは、使用に供するガスを充填
するに先だって予め容器内を真空排気する処理の際に脱
離したり剥離して容器内にパーテイクルとなって残存す
ることとなる。そしてこの容器内壁に吸着したり、底部
に沈着したパーテイクルを従来の高圧加圧パージ法で容
器内より除去するには、容器内に導入し高圧充填する清
浄用ガスの導入時の流速及びこのガスを大気に放出する
時の流速を、それぞれ容器内で乱流が生じる流速とする
必要がある。そのためには2300以上のレイノルズ数
を必要とする。そこで、このレイノルズ数2300以上
の乱流域を、例えば通常一般に用いられている47lの
容量のガス充填用容器で形成するには、200〜300
l/min以上の流量が必要となる。
[0005] Particles adsorbed on the wall surface or settled or deposited on the bottom are detached or peeled off in a process of evacuating the inside of the container in advance before filling the gas to be used, and the particles are separated into the container. And survive. In order to remove particles adsorbed on the inner wall of the container or deposited on the bottom from the inside of the container by a conventional high-pressure pressurizing method, the flow rate at the time of introduction of the cleaning gas to be introduced into the container and charged under high pressure and the gas flow rate It is necessary to set the flow velocity at the time of releasing methane into the atmosphere to the velocity at which turbulence occurs in each container. For that purpose, a Reynolds number of 2300 or more is required. Therefore, in order to form the turbulent flow region having a Reynolds number of 2300 or more with a gas filling container having a capacity of 47 liters which is generally used, for example, 200 to 300
A flow rate of 1 / min or more is required.

【0006】しかるにこのような流量で10×105
a以上の高圧のパーテイクルを含有しない不活性ガスよ
りなる清浄用ガスを供給することは実質上不可能であ
る。本発明は上記現状に鑑み、ガス充填用容器内にパー
テイクルがを残存することなく効果的に除去し、パーテイ
クルの含有しない高純度のガスを供給することを可能に
したガス充填用容器内の清浄化方法と装置を提供するこ
とを目的とする。
However, at such a flow rate, 10 × 10 5 P
It is practically impossible to supply a cleaning gas composed of an inert gas containing no high-pressure particles of a or more. SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a method for cleaning a gas-filled container that effectively removes particles without remaining in the gas-filled container and that supplies a high-purity gas that does not contain particles. It is an object of the present invention to provide a method and an apparatus for chemical conversion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、パージ用ガスを容器内に高圧に加圧充填し、ついで
これを大気に放出する従来の方法に代え、本発明は容器
内を真空排気し、ついで清浄用ガスを大気圧より幾分高
い圧力に充填する工程を繰り返して行うようにしたもの
である。そして本発明の請求項1は、ガス充填用容器内
を真空排気した後、パーテイクルを除去した清浄用ガス
を大気圧以上の圧力まで充填し、ついでガス充填用容器
内を大気圧を経て真空領域まで排気する工程よりなる処
理を繰り返し行うことを特徴とするガス充填用容器内の
清浄化方法としたものであり、請求項2は上記各工程処
理を、ガス充填用容器を100〜250℃の温度にして
行うことを特徴とする請求項1に記載のガス充填用容器
内の清浄化方法とし、また請求項3は各工程よりなる処
理の繰り返しを少なくとも2回以上行うことを特徴とす
る請求項1または請求項2のいずれか1項に記載のガス
充填用容器内の清浄化方法としたものである。そして請
求項4では真空排気する圧力が10〜100Paである
ことを特徴とする請求項1、請求項2または請求項3の
いずれか1項に記載のガス充填用容器内の清浄化方法と
し、また請求項5は大気圧以上の充填圧力が3×105
〜5×105Paであることを特徴とする請求項1乃至
請求項4のいずれか1項に記載のガス充填用容器内の清
浄化方法とし、更に請求項6は清浄用ガスが不活性ガス
であることを特徴とする請求項1乃至請求項6のいずれ
か1項に記載のガス充填用容器内の清浄化方法としたも
のである。
In order to attain the above object, the present invention replaces the conventional method of filling a container with a purge gas under high pressure and then discharging the gas to the atmosphere. The step of evacuating and then filling the cleaning gas with a pressure somewhat higher than the atmospheric pressure is repeated. According to a first aspect of the present invention, after the inside of the gas filling container is evacuated, the cleaning gas from which the particles have been removed is filled to a pressure higher than the atmospheric pressure. A method for cleaning the inside of a gas filling container characterized by repeatedly performing a process consisting of exhausting the gas to a temperature of 100 to 250 ° C. The method for purifying the interior of a gas filling container according to claim 1, wherein the method is performed at a temperature, and the method according to claim 3, wherein the process comprising each step is repeated at least twice. A method for cleaning a gas filling container according to any one of claims 1 and 2. In a fourth aspect of the present invention, there is provided the method for cleaning the inside of a gas filling container according to any one of the first to third aspects, wherein the pressure for evacuating is 10 to 100 Pa, Further, in claim 5, the filling pressure above atmospheric pressure is 3 × 10 5
A method of cleaning the container gas filling according to any one of claims 1 to 4, characterized in that it is ~5 × 10 5 Pa, further claims 6 cleaning gas inert The method for cleaning the inside of a gas filling container according to any one of claims 1 to 6, wherein the method is a gas.

【0008】そして更に、請求項7は清浄用ガスを清浄
化するガス充填用容器内に導入するよう、一端を容器弁
に連結し他端を清浄用ガス源と連結する管にフィルター
とその下流側に開閉弁とを配してなる清浄用ガス導入管
と、該清浄用ガス導入管の前記開閉弁の下流側で分岐し
て弁を介して真空排気手段に連結する真空排気系配管と
弁を介して大気に解放して放気する放出管とを設けてな
ることを特徴とするガス充填用容器内の清浄化装置と
し、請求項8は清浄化するガス充填用容器にこれを加熱
する加熱手段と容器弁にこれを冷却する冷却手段とを設
備してなることを特徴とする請求項7に記載のガス充填
用容器内の清浄化装置としたものである。
Further, a filter is connected to a pipe connecting one end to the container valve and the other end to the cleaning gas source so that the cleaning gas is introduced into the gas filling container for cleaning. A cleaning gas introduction pipe having an on-off valve disposed on the side thereof, and a vacuum evacuation system pipe and a valve branched off from the cleaning gas introduction pipe downstream of the on-off valve and connected to vacuum evacuation means via a valve. And a discharge pipe for releasing the air to the atmosphere through the gas supply device. A cleaning device in the gas filling container, wherein the gas filling container to be cleaned is heated. The apparatus for purifying an interior of a gas filling container according to claim 7, wherein a heating means and a cooling means for cooling the container valve are provided.

【0009】[0009]

【発明の実施の形態】以下本発明の実施の態様を図1に
一例を例示して説明する。図1は本発明のガス充填用容
器内の清浄化装置の系統図である。符号1は清浄化処理
するガス充填用容器(以下「容器」と称す。)、2は容
器1の開口部に装着された容器弁、3は容器1を必要に
応じて適宜加熱する加熱手段で例えば電気ヒータやガス
加熱器等が用いられる。4は容器弁2を冷却する例えば
水冷式の冷却手段であり、前記容器1を加熱して処理を
行う際容器弁2に備付されている安全弁の作動をするヒ
ューズメタルが加熱により溶融するのを防止するために
使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a system diagram of an apparatus for cleaning a gas filling container according to the present invention. Reference numeral 1 denotes a gas filling container to be cleaned (hereinafter, referred to as “container”). Reference numeral 2 denotes a container valve attached to an opening of the container 1. Reference numeral 3 denotes a heating unit that appropriately heats the container 1 as needed. For example, an electric heater or a gas heater is used. Numeral 4 is a cooling means of, for example, a water-cooling type for cooling the container valve 2. When the container 1 is heated to perform a treatment, the fuse metal for operating the safety valve provided in the container valve 2 is melted by heating. Used to prevent.

【0010】そして5は清浄用ガス源で主として窒素、
アルゴン、ヘリウム等の不活性ガスが適用され、該清浄
用ガス源5は清浄用ガスを容器1に導入するため容器弁
2に一端が連結している清浄用ガス導入管6の他端に連
結され、該導入管6に配されたフィルター7、開閉弁8
を順次介して容器弁2に至り容器1内と連通している。
そして前記清浄用ガス導入管6の開閉弁8の下流側(容
器弁2側)で分岐して管9が設けられ、更に該管9は2
方に分岐して一方は弁10を介してその端部が大気に開
口している放出管11に連設され、他方は弁12を介し
てその端部に真空排気手段13が連設されている真空排
気用配管14が連結されている。なお符号15は清浄用
ガス導入管6に配設した大気圧以上の圧力と大気圧以下
の圧力との両方の圧力を測定表示する連成計であり、1
6は真空排気用配管14に配設した真空圧力を測定する
真空計である。なお又真空排気手段13としてはオイル
フリーでメカニカルシールを用いたドライな真空ポンプ
を使用することが不純物の混入防止と保安上の点で好ま
しい。
5 is a cleaning gas source mainly composed of nitrogen,
An inert gas such as argon or helium is applied, and the cleaning gas source 5 is connected to the other end of the cleaning gas introducing pipe 6 which is connected to the container valve 2 at one end to introduce the cleaning gas into the container 1. And a filter 7 and an on-off valve 8 arranged in the introduction pipe 6.
To the container valve 2 sequentially through the container 1, and communicates with the inside of the container 1.
A pipe 9 is provided at the downstream side of the on-off valve 8 of the cleaning gas introducing pipe 6 (on the side of the container valve 2), and a pipe 9 is provided.
One end is connected via a valve 10 to a discharge pipe 11 whose end is open to the atmosphere, and the other is connected via a valve 12 to an evacuation means 13 at its end. The vacuum evacuation pipe 14 is connected. Reference numeral 15 denotes a compound meter that measures and displays both the pressure higher than the atmospheric pressure and the pressure lower than the atmospheric pressure provided in the cleaning gas introduction pipe 6.
Reference numeral 6 denotes a vacuum gauge provided in the vacuum exhaust pipe 14 for measuring a vacuum pressure. In addition, it is preferable to use an oil-free dry vacuum pump using a mechanical seal as the vacuum evacuation means 13 from the viewpoint of prevention of contamination of impurities and safety.

【0011】次に上記した装置を使用して本発明の容器
内1を清浄化する方法について説明する。先ず清浄用ガ
スの流通による清浄化処理に先立って、容器弁2を閉
じ、加熱手段3を作動せしめてガス充填用容器1を10
0〜250℃の温度に加熱する。その際冷却手段4に冷
却水を流通せしめて容器弁2を冷却し、容器弁2に備付
されている安全弁用のフューズメタルの加熱による溶融
損傷を防止する。なお、加熱温度は100℃以下では容
器1内の水分を充分除去し得ず、満足し得る乾燥をする
ことができない。また250℃以上の温度では容器弁2
を構成する部品例えばパッキンやフューズメタルを損傷
せしめることとなり好ましくない。
Next, a method for cleaning the inside 1 of the container of the present invention using the above-described apparatus will be described. First, prior to the cleaning process by the flow of the cleaning gas, the container valve 2 is closed, the heating means 3 is operated, and the gas filling container 1
Heat to a temperature of 0-250C. At this time, cooling water is circulated through the cooling means 4 to cool the container valve 2, thereby preventing melting damage due to heating of the fuse metal for the safety valve provided in the container valve 2. If the heating temperature is lower than 100 ° C., water in the container 1 cannot be sufficiently removed, and satisfactory drying cannot be performed. At a temperature of 250 ° C or more, the container valve 2
Components, such as packing and fuse metal, are undesirably damaged.

【0012】一方この間容器1に連結されてい清浄用ガ
ス導入管6及び管9内を洗浄する。その洗浄にあたって
は、先ず最初に弁8及び弁10を閉じ、弁12を開いて
真空排気手段13により清浄用ガス導入管6内、管9内
及び真空排気用配管14を10〜100Pa程度の圧力
に真空排気する。続いて弁12を閉じて、弁8を開き清
浄用ガス源5から例えば不活性ガスである窒素ガスをフ
ィルター7でパーテイクルを除去して、清浄用ガス導入
管6内及び管9内に約5×105Paの圧力に充填した
後、弁8を閉じ弁10を開き充填した前記清浄用ガスを
放出管11より大気に放出する。前記清浄用ガス導入管
6と管9が大気圧になったら、弁10を閉じて弁8を開
いて再び清浄用ガス源5より清浄用ガスをフィルター7
を介して清浄用ガス導入管6内及び管9内に約5×10
5Paの圧力に加圧して充填し、以下大気放出ー加圧充
填を数回繰り返す(回分パージ法)。ついで弁8と弁1
0を開いて清浄用ガス源5より清浄用ガスを清浄用ガス
導入管6と管9に乱流状態で流通せしめて放出管11よ
り大気に放出せしめるいわゆる流通パージを行う。
On the other hand, the inside of the cleaning gas introduction pipe 6 and the pipe 9 connected to the container 1 are cleaned. In the cleaning, first, the valve 8 and the valve 10 are closed, the valve 12 is opened, and the inside of the cleaning gas introduction pipe 6, the inside of the pipe 9, and the vacuum exhaust pipe 14 are evacuated by the vacuum exhaust means 13 to a pressure of about 10 to 100 Pa. Evacuate to Subsequently, the valve 12 is closed, the valve 8 is opened, and particles of, for example, nitrogen gas, which is an inert gas, are removed from the cleaning gas source 5 by the filter 7. After filling to a pressure of × 10 5 Pa, the valve 8 is closed and the valve 10 is opened to discharge the filled cleaning gas from the discharge pipe 11 to the atmosphere. When the cleaning gas inlet pipe 6 and the pipe 9 reach atmospheric pressure, the valve 10 is closed, the valve 8 is opened, and the cleaning gas is again supplied from the cleaning gas source 5 to the filter 7.
About 5 × 10 in the cleaning gas introduction pipe 6 and the pipe 9
Filling is performed under a pressure of 5 Pa, and then the atmospheric release-pressure filling is repeated several times (batch purge method). Then valve 8 and valve 1
Then, a so-called flow purge is performed in which the cleaning gas is supplied from the cleaning gas source 5 to the cleaning gas introduction pipe 6 and the pipe 9 in a turbulent state, and discharged from the discharge pipe 11 to the atmosphere.

【0013】以上のような予備的処理をした後、加熱手
段4の運転を停止して容器1の加熱を停止し(なお、こ
の加熱は必ずしも停止する必要はなく、適宜必要に応じ
て継続してもよい。)、弁8と弁10を閉じ、容器弁2
と弁12を開き真空排気手段13の作動により容器1内
の排気を行う(真空排気工程)。容器1内の真空圧力が
10〜100Paに達したら弁12を閉じ弁8を開い
て、予め清浄用ガス源5の圧力を3×105〜5×105
Paに加圧しておいた窒素ガスの如き不活性ガスよりな
る清浄用ガスをフィルターを通してパーテイクルを除去
して容器1内に導入する。このとき容器1内が10〜1
00Paで、導入する清浄用ガスの圧力が3×105
5×105Paであることから、清浄用ガスは100〜
150l/minの高流速で容器1内に流入し、このと
き超音波(20〜80KHz、70〜80dB)が生じ
る。この結果、容器1の内壁に付着しているパーテイク
ルに振動が与えられ壁から離脱する。そして容器1内の
圧力が5×105Paになったら、弁8を閉じて清浄用
ガスを容器1内に導入するのを停止する(清浄用ガス充
填工程)。
After the preliminary treatment as described above, the operation of the heating means 4 is stopped to stop the heating of the container 1 (this heating does not necessarily need to be stopped, but may be continued if necessary. The valves 8 and 10 are closed, and the container valve 2 is closed.
And the valve 12 are opened to evacuate the container 1 by the operation of the evacuation means 13 (evacuation step). When the vacuum pressure in the container 1 reaches 10 to 100 Pa, the valve 12 is closed and the valve 8 is opened, and the pressure of the cleaning gas source 5 is previously set to 3 × 10 5 to 5 × 10 5.
A cleaning gas composed of an inert gas such as nitrogen gas, which has been pressurized to Pa, is introduced into the container 1 after removing particles through a filter. At this time, 10-1
When the pressure of the cleaning gas to be introduced is 3 × 10 5
Since it is 5 × 10 5 Pa, the cleaning gas is 100 to
It flows into the container 1 at a high flow rate of 150 l / min, and at this time, ultrasonic waves (20 to 80 KHz, 70 to 80 dB) are generated. As a result, the particles attached to the inner wall of the container 1 are vibrated and separated from the wall. When the pressure in the container 1 reaches 5 × 10 5 Pa, the valve 8 is closed to stop introducing the cleaning gas into the container 1 (cleaning gas filling step).

【0014】続いて弁10を開いて、容器1内に充填し
た清浄用ガスを管6、管9及び弁10を介して放出管1
1より大気に放出する。この間容器1内の圧力5×10
5Paより大気圧への圧力差での放出流で100l/m
in以上の流速で放出することができ、容器1内の圧力
が2×105Pa程度になるまで放出する(大気放出工
程)。この圧力に達したら、弁10を閉じ、弁12を開
く。すると容器1内は2×105Paの圧力から継続し
て駆動されている真空排気手段13の圧力10Paに急
激に排気され、この圧力差により100l/min以上
の流速が生起される。そしてこの流速をを保つようにし
て10〜100Pa迄真空排気する(真空排気工程)。
続いて上記[清浄用ガス充填工程]−[大気放出工程]
−[真空排気工程]の各工程よりなる一連の処理を順次
繰り返し行う。なおこの一連の処理の繰り替えし回数
は、容器の容量の大小、容器内の汚れ等によって異なる
が、2回以上好ましくは5回以上繰り返して行うとよ
い。
Subsequently, the valve 10 is opened, and the cleaning gas filled in the container 1 is discharged through the pipe 6, the pipe 9 and the valve 10.
Release from 1 to the atmosphere. During this time, the pressure in the vessel 1 was 5 × 10
100 l / m at discharge flow with pressure difference from 5 Pa to atmospheric pressure
The discharge can be performed at a flow rate of at least in, and the discharge is performed until the pressure in the container 1 becomes about 2 × 10 5 Pa (atmospheric discharge step). When this pressure is reached, valve 10 is closed and valve 12 is opened. Then, the inside of the container 1 is rapidly evacuated from a pressure of 2 × 10 5 Pa to a pressure of 10 Pa of the vacuum evacuation means 13 which is continuously driven, and a flow rate of 100 l / min or more is generated by this pressure difference. Then, vacuum evacuation is performed to 10 to 100 Pa while maintaining this flow rate (vacuum evacuation step).
Subsequently, the above [cleaning gas filling step]-[atmospheric release step]
-A series of processes including the [evacuation step] are sequentially repeated. The number of repetitions of this series of processing depends on the size of the container, the degree of contamination in the container, and the like, but may be repeated two or more times, preferably five or more times.

【0015】このように本発明は清浄化するガス充填用
容器1内を10〜100Paの圧力まで真空排気した
後、加圧した清浄用ガスを充填するので容器1内に高流
速で清浄用ガスが流入し、容器1内壁面と清浄用ガスと
の接触摩擦及び容器1内への清浄用ガスの膨張流入によ
り超音波が発生して、容器1内の壁面を超音波作用によ
って洗浄する。即ち、パーテイクル除去作業に真空領域
を活用することにより、清浄用ガスの容器1内への流
入、及び排気を極めて容易に高流速化して行うことがで
き、しかも容器内へのガスの膨張流入による超音波の発
生と相俟ってパーテイクルの除去効果をより一層高め、
特に従来の加圧清浄方法では除去困難であった沈降や沈
着したパーテイクルをも除去可能とし得た。
As described above, according to the present invention, the inside of the container 1 to be cleaned is evacuated to a pressure of 10 to 100 Pa and then filled with the pressurized cleaning gas. Flows into the container 1, and ultrasonic waves are generated by the contact friction between the inner wall surface of the container 1 and the cleaning gas and the expansion and inflow of the cleaning gas into the container 1, and the wall surface in the container 1 is cleaned by the ultrasonic action. In other words, by utilizing the vacuum region for the particle removing operation, the cleaning gas can be flowed into the container 1 and the exhaust gas can be extremely easily increased at a high flow rate, and the gas can be expanded and flowed into the container. Together with the generation of ultrasonic waves, the particle removal effect is further enhanced,
In particular, sedimentation and deposited particles, which were difficult to remove by the conventional pressure cleaning method, could be removed.

【0016】[0016]

【実施例】次に本発明の実施例について2つの例を例示
して説明する。実施例1はパーテイクル除去の清浄化処
理を、清浄化する容器を加熱することなく常温で処理し
た例であり、実施例2は清浄化処理する容器を120℃
に加熱した状態で処理した例を示した。また、真空を使
用しない加圧充填ー大気放出の工程よりなる従来の高圧
加圧パージ法を参考のため比較例として示した。なお実
施例及び比較例でパーテイクルを除去し清浄化するガス
充填用容器1として、マンガン鋼製の内容積47lの容
器を使用し、洗浄用ガスとしては不活性ガスである窒素
ガスを使用した。またいずれの例においても実施に先立
って予め配管系統を窒素ガスによる回分パージ5回の後
流通パージを行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to two examples. Example 1 is an example in which the cleaning process for removing particles is performed at room temperature without heating the container to be cleaned.
The example in which the treatment was carried out in a heated state was shown. Also, a conventional high-pressure pressurizing method including a process of pressurizing filling and releasing to the atmosphere without using a vacuum is shown as a comparative example for reference. In the examples and comparative examples, a manganese steel container having an inner volume of 47 l was used as the gas filling container 1 for removing and purifying particles, and nitrogen gas as an inert gas was used as the cleaning gas. In each case, prior to the implementation, the piping system was preliminarily purged five times with nitrogen gas and then purged with circulation.

【0017】実施例1:弁8、弁10閉じ、容器弁2、
弁12を開き真空排気手段13の作動により容器1内を
10Paの圧力まで真空排気した(真空排気工程)。つ
いで、弁10、弁12を閉じ、容器弁2、弁8を開い
て、予め5×105Paに加圧してある清浄用ガス源5
よりフィルター7を通してパーテイクルを除去した窒素
ガスを容器1内に100〜150l/minの流速を保
って導入し、5×105Pa迄加圧充填した(清浄用ガ
ス充填工程)。この時容器1内で最高80KHzで、2
0〜80KHzの範囲の超音波が発生したのを確認し
た。
Embodiment 1: Valves 8 and 10 are closed, container valve 2 is closed,
The valve 12 was opened and the inside of the container 1 was evacuated to a pressure of 10 Pa by the operation of the evacuation means 13 (evacuation step). Next, the valves 10 and 12 are closed, the container valve 2 and the valve 8 are opened, and the cleaning gas source 5 is pressurized to 5 × 10 5 Pa in advance.
Nitrogen gas from which particles were removed through the filter 7 was introduced into the container 1 at a flow rate of 100 to 150 l / min, and was charged under pressure up to 5 × 10 5 Pa (cleaning gas charging step). At this time, a maximum of 80 KHz
It was confirmed that an ultrasonic wave in the range of 0 to 80 KHz was generated.

【0018】ついで弁8、弁12を閉じ、容器弁2と弁
10を開いて容器1内の5×105Paに加圧した窒素
ガスを放出管11より大気に放出し、容器1内の圧力が
約2×105Paになるまで放出した(大気放出工
程)。引き続き弁8、弁10を閉じ、容器弁2及び弁1
2を開とし、既に10Paの圧力に真空排気されている
真空排気手段13に連通せしめて容器1内を2×105
Paより10Paまで急速に真空排気した(真空排気工
程)。その後上記[清浄用ガス充填工程]ー[大気放出
工程]−[真空排気工程]の一連の工程処理を30回繰
り返し行った。
Next, the valves 8 and 12 are closed, the container valve 2 and the valve 10 are opened, and nitrogen gas pressurized to 5 × 10 5 Pa in the container 1 is discharged from the discharge pipe 11 to the atmosphere. Release was performed until the pressure reached about 2 × 10 5 Pa (atmospheric release step). Subsequently, the valves 8 and 10 are closed, and the container valve 2 and the valve 1 are closed.
2 is opened and communicated with the vacuum evacuation means 13 which has already been evacuated to a pressure of 10 Pa to evacuate the container 1 to 2 × 10 5
Evacuation was rapidly performed from Pa to 10 Pa (evacuation step). Thereafter, a series of the above-described [cleaning gas filling step]-[atmospheric release step]-[evacuation step] was repeated 30 times.

【0019】上記清浄化処理を行った容器1に、商取引
の慣習に則り容器1内を約10Paの圧力に真空排気し
た後に、清浄用ガス源5より窒素ガスをフィルター7を
通してパーテイクルを除去して5×105Paの圧力まで
充填して容器弁を閉じた。そして1日放置した後容器弁
2より充填ガスを採取し、パーテイクルカンターにより
0.1μm以上のパーテイクルを測定した。その結果パ
ーテイクルは検出されなかった。なお、本実施例で使用
したガス充填用容器1の清浄化処理前のパーテイクルの
存在について、同様に容器1内を真空排気処理の後にパ
ーテイクルを除去した窒素ガスを5×105Paの圧力に
充填した後該充填ガス中の0.1μm以上のパーテイク
ルを検査したところ、1,000,000個/ft
3(1ft3=28.3l)であった。
The container 1 having been subjected to the above-mentioned cleaning treatment is evacuated to a pressure of about 10 Pa according to the custom of commercial transactions, and then the nitrogen gas is removed from the cleaning gas source 5 through the filter 7 to remove particles. After filling to a pressure of 5 × 10 5 Pa, the container valve was closed. After being left for one day, a filling gas was sampled from the container valve 2 and particles having a diameter of 0.1 μm or more were measured by a particle counter. As a result, no particles were detected. In addition, regarding the existence of particles before the cleaning treatment of the gas filling container 1 used in the present embodiment, similarly, the inside of the container 1 was evacuated, and after removing the particles, the nitrogen gas was removed to a pressure of 5 × 10 5 Pa. After filling, particles of 0.1 μm or more in the filling gas were inspected to find that 1,000,000 particles / ft.
3 (1 ft 3 = 28.3 l).

【0020】実施例2:この実施例での容器1のパーテ
イクル除去の清浄化処理は、容器1を加熱器3により1
20℃の温度に加熱保持して、上記実施例1と同様に
[真空排気工程]ー[清浄用ガス充填工程]−[大気放
出工程]ー[真空排気工程]の一連の工程処理を繰り返
し操作して行った。この間容器弁2は冷却水が流通され
ている冷却器4により常に冷却していた。そして上記一
連の工程の繰り返し回数とパーテイクルの除去効果との
関係を、繰り返し回数毎に上記実施例1と同様に真空排
気後に5×105Paの圧力にパーテイクルを除去した窒
素ガスを容器1に充填した後、この充填したガスを導出
して含有するパーテイクルの存在を検査したところ、こ
の実施例2では15回の繰り返しで0.1μm以上のパ
ーテイクルが検出されなくなったことを確認した。
Embodiment 2 In this embodiment, the cleaning treatment for removing particles from the container 1 is performed by heating the container 1 with the heater 3.
While heating and holding at a temperature of 20 ° C., a series of process steps of [evacuation step]-[cleaning gas filling step]-[atmospheric discharge step]-[evacuation step] are repeatedly performed in the same manner as in Example 1 above. I went. During this time, the container valve 2 was constantly cooled by the cooler 4 through which the cooling water was circulated. The relationship between the number of repetitions of the above series of steps and the effect of particle removal was determined for each number of repetitions in the same manner as in Example 1 above, by removing nitrogen to the container 1 at a pressure of 5 × 10 5 Pa after vacuum evacuation. After filling, the filled gas was led out and examined for the presence of contained particles. As a result, in Example 2, it was confirmed that particles of 0.1 μm or more were not detected after 15 repetitions.

【0021】この結果、清浄化処理する容器1を加熱し
て上記本発明の一連の工程で処理すると、加熱しない実
施例1の場合より、上記一連の工程処理の繰り返しが少
なくて同様の効果を得ることが判明した。それ故この実
施例2では除去効果がより一層高まり、作業効率が向上
する。なお、本実施例2で使用した容器1の清浄化処理
前のパーテイクル存在について、真空排気後に容器1内
にパーテイクルを除去した窒素ガスを5×105Paの圧
力に充填し、このガスを導出して0.1μm以上のパー
テイクルの数を検査した結果1,000,000個/f
3(1ft3=28.3l)であった。なお、加熱する
温度は清浄化処理する容器の状態により異なるが、10
0℃以下では容器1内の水分を充分除去し得ず、満足し
得る乾燥をすることができない。また250℃以上の温
度では容器弁2を構成する部品例えばパッキンやフュー
ズメタルを損傷せしめることとなり好ましくない。
As a result, when the container 1 to be cleaned is heated and treated in the series of steps of the present invention, the repetition of the series of steps is reduced and the same effect is obtained as in the case of Example 1 in which the container 1 is not heated. It turned out to get. Therefore, in the second embodiment, the removing effect is further enhanced, and the working efficiency is improved. In addition, regarding the presence of particles before the cleaning treatment of the container 1 used in the present Example 2, nitrogen gas from which particles were removed was filled into the container 1 after the evacuation to a pressure of 5 × 10 5 Pa, and this gas was derived. And the number of particles of 0.1 μm or more was inspected, and the result was 1,000,000 particles / f.
t 3 (1 ft 3 = 28.3 l). The heating temperature varies depending on the state of the container to be cleaned.
If the temperature is lower than 0 ° C., the water in the container 1 cannot be sufficiently removed, and satisfactory drying cannot be performed. On the other hand, if the temperature is higher than 250 ° C., the components constituting the container valve 2, for example, packing and fuse metal may be damaged, which is not preferable.

【0022】比較例:次に参考のためガス充填用容器1
を真空に排気することなく、容器1内に清浄用ガスを加
圧充填ー大気放出を繰り返す従来の高圧加圧パージ法に
よって清浄化を行った。弁10、弁12を閉じて、容器
弁2と弁8を開き予め100×105Paの高い圧力に
圧縮した窒素ガスを清浄用ガス源5よりフィルター8を
通してパーテイクルを除去して100l/minの流速
で容器1内に100×105Paの圧力まで充填した。
ついで弁8、弁12を閉じ、弁10を開いて容器1内に
充填したガスを放出管11より大気に放出し、容器1内
圧力が約2×105Paになるまで放出する。引き続き
弁10、弁12を閉じ、弁8を開いて先に行ったと同様
に100×105Paの高い圧力に圧縮してある清浄用
ガスを100l/minの流速で容器1内に導入して1
00×105Paの圧力まで充填する。以下前記大気放
出ー加圧充填の一連の工程を30回繰り返し操作して行
った。
Comparative Example: Next, a gas filling container 1 for reference.
Was purified by a conventional high-pressure pressurizing method in which the gas for cleaning was repeatedly charged and released into the atmosphere in the container 1 without evacuating to a vacuum. The valve 10 and the valve 12 are closed, the container valve 2 and the valve 8 are opened, and nitrogen gas previously compressed to a high pressure of 100 × 10 5 Pa is removed from the cleaning gas source 5 through the filter 8 to remove particles, and the flow rate is reduced to 100 l / min. The container 1 was filled at a flow rate to a pressure of 100 × 10 5 Pa.
Next, the valves 8 and 12 are closed, the valve 10 is opened, and the gas filled in the container 1 is discharged to the atmosphere from the discharge pipe 11 until the pressure in the container 1 becomes about 2 × 10 5 Pa. Subsequently, the valves 10 and 12 are closed, the valve 8 is opened, and the cleaning gas compressed to a high pressure of 100 × 10 5 Pa is introduced into the vessel 1 at a flow rate of 100 l / min in the same manner as described above. 1
Fill up to a pressure of 00 × 10 5 Pa. Hereinafter, a series of steps of the above-described atmospheric release-pressure filling was repeatedly performed 30 times.

【0023】この清浄化処理後の容器1内を通常の商取
引の慣習と同様に真空引きした後に、清浄用ガス源5よ
りフィルター7を通してパーテイクルを除去した窒素ガ
スを5×105Paの圧力まで充填した後、このガスを
容器1より採取して0.1μm以上のパーテイクルの存
在を検査した結果、20,000個/ft3(1ft3
28.3l)であった。なおこの容器1の清浄化処理す
る前の容器中のパーテイクル数は、同様にして測定した
ところ、20,000個/ft3(1ft3=28.3
l)であった。従ってこの比較例での加圧充填ー大気放
出よりなる工程を単調に繰り返す従来の高圧加圧パージ
法では、容器内壁や容器底部に沈降したり、沈着したパ
ーテイクルが除去することができずに容器内に残存して
いることが判った。
After evacuating the interior of the container 1 after the cleaning treatment in the same manner as in normal commercial practice, nitrogen gas from which particles have been removed from the cleaning gas source 5 through the filter 7 is supplied to a pressure of 5 × 10 5 Pa. After filling, this gas was collected from the container 1 and inspected for the presence of particles of 0.1 μm or more. As a result, 20,000 particles / ft 3 (1 ft 3 =
28.3 l). The number of particles in the container 1 before the cleaning treatment of the container 1 was measured in the same manner, and was found to be 20,000 / ft 3 (1 ft 3 = 28.3).
l). Therefore, in the conventional high-pressure purging method in which the process of pressurized filling and atmospheric release in this comparative example is monotonously repeated, the container is settled on the inner wall of the container or the bottom of the container or the deposited particles cannot be removed. It was found that it remained inside.

【0024】なお、上記実施例において、清浄用ガスと
して窒素ガスを例示して説明したが本発明はこれに限定
されるものでなく、パーテイクルが混入する機会の少な
いガスであれば、如何なるガスでもよいが、清浄化処理
する容器に充填するガスの対象が半導体製造用ガスであ
ることが多いこと、及び取り扱いの安全性の点から窒
素、アルゴン、ヘリウム、ネオン等の不活性ガスを使用
することが好ましい。
In the above embodiment, a nitrogen gas has been described as an example of the cleaning gas. However, the present invention is not limited to this, and any gas may be used as long as the gas is less likely to be mixed with particles. Good, but the gas to be charged into the container to be cleaned is often a semiconductor manufacturing gas, and use inert gas such as nitrogen, argon, helium, or neon from the viewpoint of handling safety. Is preferred.

【0025】また、上記実施例では、清浄化処理するた
めの[真空排気工程]ー[清浄用ガス充填工程]ー[大
気放出工程]ー[真空排気工程]の一連の工程の繰り返
し回数が30回、15回の例を例示したが、この繰り返
し回数はその処理する容器の過去の使用状況や内容積の
多少及び使用目的によって異なるもので、この例示の回
数に限定されるものではない。内容積の小さい容器や過
去に反応性のないガス例えば不活性ガス用に使用してい
た容器の場合は、少ない繰り返し回数でよく、更にこれ
らの条件が重複する場合には最低2回の繰り返しでもパ
ーテイクル除去する清浄化が可能である。一方内容積が
大きい容器や、反応性の高いガスを充填していた容器で
は内壁が酸化されて多くの酸化物が生成し、壁や底部に
沈降したり沈着するのでパーテイクルの除去に多くの繰
り返し回数が必要となる。
In the above embodiment, the number of repetitions of a series of steps of [evacuation step]-[cleaning gas filling step]-[air release step]-[evacuation step] for the cleaning treatment is 30. Although the example of 15 times has been illustrated, the number of repetitions varies depending on the past use condition of the container to be processed, the amount of the internal volume, and the purpose of use, and is not limited to the illustrated number. In the case of a container with a small internal volume or a gas used in the past for a non-reactive gas such as an inert gas, a small number of repetitions is sufficient, and if these conditions overlap, at least two repetitions are required. Purification to remove particles is possible. On the other hand, in a container with a large internal volume or a container filled with a highly reactive gas, the inner wall is oxidized to generate a large amount of oxides, which settles and deposits on the wall and the bottom, so that the particles are repeatedly removed. The number of times is required.

【0026】[0026]

【発明の効果】本発明のパーテイクル除去の清浄化方法
は、ガス充填容器内を真空排気した後に、予め加圧した
清浄用ガスを容器内に導入するので、両者の間に大きな
圧力差が生じ、この圧力差により高速度の流速で清浄用
ガスを容器内に導入せしめて充填することができる。こ
の結果、容器内壁での高流速のガスの接触摩擦と容器内
への膨張導入とにより超音波が発生する。また一方容器
内に加圧充填した清浄用ガスの放出を大気圧より更に強
制的に10〜100Paの真空領域まで容器内を排気し
て、圧力差を大きくなるようにしたので、排気時にも1
00l/minの流速で容器内を排気することができる
ようになった。
According to the cleaning method for removing particles of the present invention, a pre-pressurized cleaning gas is introduced into the gas-filled container after evacuating the gas-filled container. By this pressure difference, the cleaning gas can be introduced into the container at a high flow rate and filled. As a result, ultrasonic waves are generated by the contact friction of the gas at a high flow rate on the inner wall of the container and the expansion and introduction into the container. On the other hand, the pressure of the cleaning gas discharged into the container is increased by forcibly evacuating the container to a vacuum range of 10 to 100 Pa from the atmospheric pressure to increase the pressure difference.
The inside of the container can be evacuated at a flow rate of 00 l / min.

【0027】このような清浄用ガスの容器内への導入充
填時における超音波の発生及びこのガス充填時と真空排
気時の高流速のガス流れの生成との相乗作用により、容
器内に沈降したり、沈着しているパーテイクルは効果的
に洗浄用ガスに取り込まれ該ガス中に混合して同伴され
て外部に排除されて容器内が清浄化されるようになり、
パーテイクルが標準ガス、医療用ガス、及び半導体製造
用ガス等としての使用に妨げとならないような満足し得
る程度に除去することが可能となった。
When the cleaning gas is introduced into the container and filled therein, the generation of ultrasonic waves and the synergistic effect of the gas filling and the generation of a high-flow gas flow during vacuum evacuation cause the sedimentation in the container. Or, the particles that have been deposited are effectively taken into the cleaning gas, mixed with the gas and entrained, removed to the outside, and the inside of the container is cleaned,
It has become possible to remove particles to a satisfactory extent without interfering with their use as standard gases, medical gases, gases for semiconductor production and the like.

【0028】このようなことより、本発明は精度の高い
標準ガス、安全性が確保される医療ガス及び品質の向上
を保持する半導体製造用ガスに適したより清浄度の高
い、高純度で高品質のガスを供給することができるガス
充填用容器を提供し得て、これらの事業分野へ及ぼす効
果は極めて著しい。また本発明方法では、従来の高圧加
圧パージ法での如く清浄用ガスを10×105Pa以上
の高圧を必要としないで、低圧で充分パーテイクルの除
去が可能なので、高圧ガスの設備が必要なく、安全性の
面ばかりでなく価格面においても極めて多大な効果を奏
する。
As described above, the present invention provides a higher purity, higher purity and higher quality suitable for a highly accurate standard gas, a medical gas for which safety is ensured, and a gas for manufacturing semiconductors having improved quality. Can provide a gas-filling container capable of supplying the above-mentioned gas, and the effect on these business fields is extremely remarkable. Further, in the method of the present invention, the particles for cleaning can be sufficiently removed at a low pressure without requiring a high pressure of 10 × 10 5 Pa or more as in the conventional high pressure purge method. In addition, not only safety but also the price is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の清浄化方法を実施するための装置の
系統略図である。
FIG. 1 is a schematic system diagram of an apparatus for performing the cleaning method of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス充填用容器、 2 容器弁、 3 加熱手段、
4 冷却手段、5 清浄用ガス源、 6 清浄用ガス
導入管、 7 フィルター、 9 管 8、10、12 弁、 11 放出管、 13 真空排
気手段 14 真空排気系配管、 15 連成計、 16 真空
1 gas filling container, 2 container valve, 3 heating means,
Reference Signs List 4 cooling means, 5 cleaning gas source, 6 cleaning gas introduction pipe, 7 filter, 9 pipes 8, 10, 12 valves, 11 discharge pipe, 13 evacuation means 14 evacuation system piping, 15 compound meter, 16 vacuum Total

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガス充填用容器内を真空排気した後、パ
ーテイクルを除去した清浄用ガスを大気圧以上の圧力ま
で充填し、ついでガス充填用容器内を大気圧を経て真空
領域まで排気する工程よりなる処理を繰り返し行うこと
を特徴とするガス充填用容器内の清浄化方法。
1. A step of evacuating the inside of a gas filling container, filling the cleaning gas from which particles have been removed to a pressure higher than the atmospheric pressure, and then evacuating the gas filling container to a vacuum region via the atmospheric pressure. A method for cleaning the interior of a gas filling container, comprising repeatedly performing the following processing.
【請求項2】 上記各工程処理をガス充填用容器を10
0〜250℃の温度にして行うことを特徴とする請求項
1に記載のガス充填用容器内の清浄化方法。
2. Each of the above processes is performed by using a gas
The method for cleaning the inside of a gas filling container according to claim 1, wherein the method is performed at a temperature of 0 to 250 ° C.
【請求項3】 各工程よりなる処理の繰り返しを少なく
とも2回以上行うことを特徴とする請求項1または請求
項2のいずれか1項に記載のガス充填用容器内の清浄化
方法。
3. The method for purifying the interior of a gas filling container according to claim 1, wherein the process comprising each step is repeated at least twice.
【請求項4】 真空排気する圧力が10〜100Paで
あることを特徴とする請求項1、請求項2または請求項
3のいずれか1項に記載のガス充填用容器内の清浄化方
法。
4. The method according to claim 1, wherein the pressure for evacuating is 10 to 100 Pa.
【請求項5】 大気圧以上の充填圧力が3×105〜5
×105Paであることを特徴とする請求項1乃至請求
項4のいずれか1項に記載のガス充填用容器内の清浄化
方法。
5. A filling pressure higher than the atmospheric pressure is 3 × 10 5 to 5
The method for cleaning the inside of a gas filling container according to any one of claims 1 to 4, wherein the pressure is × 10 5 Pa.
【請求項6】 清浄用ガスが不活性ガスであることを特
徴とする請求項1乃至請求項6のいずれか1項に記載の
ガス充填用容器内の清浄化方法。
6. The method for cleaning a gas-filled container according to claim 1, wherein the cleaning gas is an inert gas.
【請求項7】 清浄用ガスを清浄化するガス充填用容器
内に導入するよう、一端を容器弁に連結し他端を清浄用
ガス源と連結する管にフィルターとその下流側に開閉弁
とを配してなる清浄用ガス導入管と、該清浄用ガス導入
管の前記開閉弁の下流側で分岐して弁を介して真空排気
手段に連結する真空排気系配管と弁を介して大気に解放
して放気する放出管とを設けてなることを特徴とするガ
ス充填用容器内の清浄化装置。
7. A pipe connected at one end to a container valve and connected at the other end to a cleaning gas source, and a filter on the downstream side thereof for introducing a cleaning gas into a gas filling container for cleaning. A cleaning gas introduction pipe, and a vacuum exhaust pipe connected to a vacuum exhaust means via a valve, which branches off on the downstream side of the on-off valve of the cleaning gas introduction pipe and to the atmosphere via a valve. An apparatus for purifying an interior of a gas filling container, comprising: a discharge pipe for releasing and releasing air.
【請求項8】 清浄化するガス充填用容器にこれを加熱
する加熱手段と容器弁にこれを冷却する冷却手段とを設
備してなることを特徴とする請求項7に記載のガス充填
用容器内の清浄化装置。
8. The gas filling container according to claim 7, wherein a heating means for heating the gas filling container to be cleaned and a cooling means for cooling the container valve are provided. Cleaning equipment inside.
JP06872197A 1997-03-21 1997-03-21 Cleaning method in gas filling container Expired - Fee Related JP3949217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06872197A JP3949217B2 (en) 1997-03-21 1997-03-21 Cleaning method in gas filling container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06872197A JP3949217B2 (en) 1997-03-21 1997-03-21 Cleaning method in gas filling container

Publications (2)

Publication Number Publication Date
JPH10263493A true JPH10263493A (en) 1998-10-06
JP3949217B2 JP3949217B2 (en) 2007-07-25

Family

ID=13381953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06872197A Expired - Fee Related JP3949217B2 (en) 1997-03-21 1997-03-21 Cleaning method in gas filling container

Country Status (1)

Country Link
JP (1) JP3949217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273366A (en) * 2001-03-19 2002-09-24 Nippon Soda Co Ltd Pipe cleaning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273366A (en) * 2001-03-19 2002-09-24 Nippon Soda Co Ltd Pipe cleaning method
JP4596665B2 (en) * 2001-03-19 2010-12-08 日本曹達株式会社 Tube cleaning method

Also Published As

Publication number Publication date
JP3949217B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP5155315B2 (en) Cleaning device and method for cleaning a workpiece
WO2005050725A1 (en) Method for manufacturing semiconductor device and substrate processing apparatus
TWI532676B (en) System and method for xenon recovery
JP2002097007A (en) Method for collecting rare gas and its implement
TWI779771B (en) Method and apparatus for purifying target material for euv light source
JP3949217B2 (en) Cleaning method in gas filling container
JPH04157161A (en) Cleaning method
JP4854838B2 (en) Liquid processing equipment
US5792271A (en) System for supplying high-pressure medium gas
JP2686447B2 (en) Reactor
JPS63199071A (en) Vacuum brazing device
JP2001015498A (en) Heat treatment device
JP4127586B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US6539953B2 (en) Method and apparatus for cleaning a heater bellow in a chemical vapor deposition chamber
JP2002054799A (en) Impurity removing method for high-pressure gas vessel
JP3609619B2 (en) Fluorine supply system, fluorine supply device and gas recycling system
JP2865619B2 (en) Cleaning method and cleaning apparatus using gas
JP3825522B2 (en) Method and apparatus for removing siloxane in silicon compound gas
JP7312066B2 (en) Vacuum processing equipment
JPH07169663A (en) Semiconductor processing device
JPS6027114A (en) Dust removing method in vacuum film forming device
JPH01151918A (en) Fine particle collecting apparatus for vacuum gas exhaust system
JPH0390510A (en) Method and apparatus for recovering gas
JPS63310618A (en) Fine particle collecting device for vacuum exhausting system
JP4252638B2 (en) Connecting pipe for high pressure gas container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees