JPH07169663A - Semiconductor processing device - Google Patents

Semiconductor processing device

Info

Publication number
JPH07169663A
JPH07169663A JP31219293A JP31219293A JPH07169663A JP H07169663 A JPH07169663 A JP H07169663A JP 31219293 A JP31219293 A JP 31219293A JP 31219293 A JP31219293 A JP 31219293A JP H07169663 A JPH07169663 A JP H07169663A
Authority
JP
Japan
Prior art keywords
vacuum chamber
vacuum
vapor
chamber
semiconductor processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31219293A
Other languages
Japanese (ja)
Other versions
JP2666706B2 (en
Inventor
Yoshimitsu Morichika
善光 森近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31219293A priority Critical patent/JP2666706B2/en
Publication of JPH07169663A publication Critical patent/JPH07169663A/en
Application granted granted Critical
Publication of JP2666706B2 publication Critical patent/JP2666706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To prevent lowering of production yield and reliability of a semiconductor device of ultra-high integration by effectively removing fine particles having a particle size not exceeding a specific length and floating inside a vacuum tank of a semiconductor processing device. CONSTITUTION:A valve 5 for rapid evacuation is provided to a vacuum tank 1 in addition to an ordinary evacuation valve 6, and a valve 7 is also provided thereto for introducing vapor from a vapor supply part 8. After vapor of the vapor supply part 8 is introduced into the vacuum tank 1, evacuation is performed rapidly, heat insulating expansion state is generated, the diameter is enlarged by condensing vapor using fine particles as nuclus and removal efficiency by air flow of evacuation is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板へのパーテ
ィクルの付着を抑制して半導体装置の製造を可能とする
半導体処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor processing apparatus capable of suppressing the adhesion of particles to a semiconductor substrate and manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】半導体装置の製造において、半導体基板
は種々の真空槽を有する設備で処理される。前記真空槽
内にパーティクルがあると、パーティクルが半導体基板
へ付着し、基板の汚染が発生する。この基板の汚染は、
半導体装置の製造歩留りの低下及び、製造した半導体装
置の信頼性の低下を引き起す。
2. Description of the Related Art In the manufacture of semiconductor devices, semiconductor substrates are processed in equipment having various vacuum chambers. If there are particles in the vacuum chamber, the particles adhere to the semiconductor substrate, causing contamination of the substrate. Contamination of this substrate
This causes a decrease in manufacturing yield of semiconductor devices and a decrease in reliability of manufactured semiconductor devices.

【0003】このため、従来は槽を真空排気する前に槽
内を真空掃除機により清掃したり、アルコール等を含浸
させた綿布等による拭き掃除を行ったりしている。しか
し、以上の清掃方法だけでは、パーティクルを十分に除
去することはできず、槽内を真空排気する動作と大気圧
に戻す動作との繰り返しを行い、微小なパーティクルを
真空排気機構側へ吸入する清掃方法も一般に行われてい
る。
For this reason, conventionally, before the chamber is evacuated, the inside of the chamber is cleaned with a vacuum cleaner, or wiped with a cotton cloth impregnated with alcohol or the like. However, the above cleaning method alone cannot sufficiently remove the particles, and the operation of evacuating the inside of the tank and the operation of returning to the atmospheric pressure are repeated to suck the minute particles into the vacuum exhaust mechanism side. Cleaning methods are also commonly used.

【0004】[0004]

【発明が解決しようとする課題】この従来のパーティク
ル除去方法は、パーティクルの直径が1μm程度、ある
いはそれ以上のものに対しては有効であった。しかし、
直径が0.5μm以下となると、真空排気側への吸入が
行えず、超高集積度の半導体装置に対しては、製造歩留
りの低下防止の効果,信頼性の低下防止の効果がなくな
ってしまう。
This conventional particle removing method is effective for particles having a diameter of about 1 μm or more. But,
If the diameter is 0.5 μm or less, the suction to the vacuum exhaust side cannot be performed, and the effect of preventing the reduction of the manufacturing yield and the effect of preventing the reduction of the reliability are lost for the semiconductor device having an extremely high degree of integration. .

【0005】このような0.5μm以下のパーティクル
を除去する方法として、特開平2−233417号公報
に記載のものがある。この除去方法は、目的の処理を施
す箇所への搬送経路に予備室を設け、その予備室内へ蒸
気を導入し、冷却機構によりパーティクルを核として蒸
気を凝固させ、1μm程度以上にパーティクルを拡大し
排出効率を高めるものである。
As a method for removing such particles of 0.5 μm or less, there is a method described in JP-A-2-233417. In this removal method, a spare chamber is provided in the transfer path to the location where the desired treatment is performed, steam is introduced into the spare chamber, the steam is solidified with the particles as cores by the cooling mechanism, and the particles are expanded to about 1 μm or more. It improves the efficiency of discharge.

【0006】しかし、前述した蒸気を凝固させる方法
は、冷却機構を使用しているため、蒸気が凝固するまで
に槽内を冷却するのに相当な時間を要する。特に槽の容
積が大きいと、その時間はさらに長くなり、実際の生産
に使用するためには槽容積に制限が生ずる。また槽壁の
一面以上を冷却壁とするため、常温以上の温度で処理を
行う処理槽への適用は困難であり、予備室への適用に限
られる。
However, since the above-mentioned method for solidifying steam uses a cooling mechanism, it takes a considerable time to cool the inside of the tank before the steam solidifies. Especially when the volume of the tank is large, the time becomes longer, and the volume of the tank is limited for practical use. Further, since one or more surfaces of the tank wall are used as cooling walls, it is difficult to apply to a processing tank that performs processing at room temperature or higher, and is limited to application to a preliminary chamber.

【0007】本発明の目的は、真空槽内に浮遊する0.
5μm以下の微小パーティクルを効率的に除去し、超高
集積化した半導体装置の製造歩留りの向上,信頼性の低
下を防止する半導体処理装置を提供することにある。
The object of the present invention is to achieve a floating of 0.
It is an object of the present invention to provide a semiconductor processing apparatus capable of efficiently removing fine particles of 5 μm or less, improving the manufacturing yield of a semiconductor device with ultra-high integration, and preventing deterioration of reliability.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る半導体処理装置は、真空槽と、蒸気供
給部と、断熱膨張部と、パーティクル除去部とを有する
半導体処理装置であって、真空槽は、真空排気された雰
囲気中にて所望の処理を行うものであり、蒸気供給部
は、真空槽内での処理に先立って該真空槽内に形成され
た真空雰囲気中に蒸気を供給するものであり、断熱膨張
部は、真空槽内での処理に先立って該真空槽内に真空雰
囲気を形成し、該真空雰囲気中に前記蒸気が供給された
後に真空槽内を一旦大気圧に戻し、その後真空槽内を再
び急激に真空排気することにより、断熱膨張状態を生成
するものであり、パーティクル除去部は、真空槽内に生
成された断熱膨張状態の下に真空槽内のパーティクルを
核として蒸気が凝結した水分を槽外に除去するものであ
る。
In order to achieve the above object, a semiconductor processing apparatus according to the present invention is a semiconductor processing apparatus having a vacuum chamber, a vapor supply section, an adiabatic expansion section, and a particle removal section. The vacuum chamber is for performing a desired process in a vacuum-exhausted atmosphere, and the steam supply section is for performing a process in a vacuum atmosphere formed in the vacuum chamber prior to the process in the vacuum chamber. The adiabatic expansion section forms a vacuum atmosphere in the vacuum chamber prior to processing in the vacuum chamber, and once the vapor is supplied into the vacuum chamber, the inside of the vacuum chamber is temporarily increased. By returning to atmospheric pressure and then rapidly evacuating the vacuum chamber again, an adiabatic expansion state is generated, and the particle removing unit is configured to generate an adiabatic expansion state in the vacuum chamber under the adiabatic expansion state generated in the vacuum chamber. Steam condenses around particles as cores It is to remove water out of the tank.

【0009】また、トラップ室を有し、トラップ室は、
真空槽外に設けられ、コールドトラップを備えており、
コールドトラップは、パーティクルを核として蒸気が凝
縮して真空槽外に排気された水分を吸着するものであ
る。
Further, there is a trap chamber, and the trap chamber is
It is provided outside the vacuum chamber and equipped with a cold trap.
The cold trap is one in which vapor is condensed with particles as nuclei and adsorbs moisture exhausted outside the vacuum chamber.

【0010】[0010]

【作用】所望の処理が行われる真空槽内の雰囲気に断熱
膨張状態を生成し、その断熱膨張状態の下に、真空槽内
のパーティクルを核として蒸気を凝縮させ、これを気流
に乗せて槽外に除去することにより、槽内を清掃する。
[Function] An adiabatic expansion state is generated in the atmosphere in the vacuum chamber in which desired processing is performed, and under the adiabatic expansion state, the particles in the vacuum chamber are used as nuclei to condense the vapor and the vapor is placed on the air flow to cause the vaporization. The inside of the tank is cleaned by removing it to the outside.

【0011】[0011]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1は、本発明の実施例1を
示す構成図である。
(Embodiment 1) FIG. 1 is a block diagram showing Embodiment 1 of the present invention.

【0013】図1において、本発明に係る半導体処理装
置は、真空槽1と、蒸気供給部8と、断熱膨張部と、パ
ーティクル除去部とを有している。
In FIG. 1, the semiconductor processing apparatus according to the present invention has a vacuum chamber 1, a vapor supply section 8, an adiabatic expansion section, and a particle removal section.

【0014】真空槽1は、主バルブ4を介して接続され
たプロセス用主ポンプ2を備えており、主バルブ4で制
御された主ポンプ2による真空排気の雰囲気中にて所望
の処理を行うものである。
The vacuum chamber 1 is equipped with a main process pump 2 connected through a main valve 4, and performs desired processing in an atmosphere of vacuum exhaust by the main pump 2 controlled by the main valve 4. It is a thing.

【0015】蒸気供給部8は、真空槽1内での処理に先
立って真空槽1内に形成された真空雰囲気中にバルブ7
を開いて蒸気を供給するものである。
The steam supply unit 8 is provided with a valve 7 in a vacuum atmosphere formed in the vacuum chamber 1 prior to processing in the vacuum chamber 1.
Is to open and supply steam.

【0016】断熱膨張部は、真空槽1内での処理に先立
って真空槽1内に真空雰囲気を形成し、該真空雰囲気中
に前記蒸気が供給された後に真空槽1内を一旦大気圧に
戻し、その後真空槽1内を再び急激に真空排気すること
により、断熱膨張状態を生成するものであり、実施例で
は、ロータリーポンプ3とバルブ5,6と、バルブ7等
から構成している。また、バルブ5を含む通路の口径
は、バルブ6を含む通路の口径より大きくし、ロータリ
ーポンプ3によりバルブ5を介して真空槽1内を急激に
真空排気可能としている。
The adiabatic expansion section forms a vacuum atmosphere in the vacuum chamber 1 prior to processing in the vacuum chamber 1, and once the vapor is supplied into the vacuum atmosphere, the inside of the vacuum chamber 1 is once brought to atmospheric pressure. The adiabatic expansion state is generated by returning to the vacuum chamber 1 and then rapidly evacuating the vacuum chamber 1 again. In the embodiment, the rotary pump 3 and the valves 5 and 6 and the valve 7 are used. The diameter of the passage including the valve 5 is larger than the diameter of the passage including the valve 6, so that the vacuum pump 1 can be rapidly evacuated through the valve 5 by the rotary pump 3.

【0017】パーティクル除去部は、真空槽1内に生成
された断熱膨張状態の下に真空槽1内のパーティクルを
核として蒸気が凝結した水分を槽外に除去するものであ
り、実施例では、ロータリーポンプ3により代用してい
る。
The particle removing unit removes the moisture, which is condensed by the vapor with the particles in the vacuum chamber 1 as nuclei, to the outside of the chamber under the adiabatic expansion state generated in the vacuum chamber 1. The rotary pump 3 is used instead.

【0018】尚、図1においては、本発明に関連する真
空排気系とパーティクル除去機構を示し、実際の半導体
基板に処理を施す箇所は省略してある。
Incidentally, FIG. 1 shows the vacuum exhaust system and the particle removing mechanism related to the present invention, and the actual processing portions of the semiconductor substrate are omitted.

【0019】実施例において、半導体基板の処理は、プ
ロセス用主ポンプ2により真空槽1を真空排気し、主バ
ルブ4で圧力を制御しながら行われる。半導体基板の処
理を行うまでのパーティクル除去手順を次に説明する。
In the embodiment, the semiconductor substrate is processed while the process main pump 2 evacuates the vacuum chamber 1 and the main valve 4 controls the pressure. The procedure for removing particles until the semiconductor substrate is processed will be described below.

【0020】まず、大気圧状態の真空槽1をロータリー
ポンプ3によりバルブ6を通し10-2Torr台まで真
空排気し、バルブ6を閉じる。次に蒸気供給部8で生成
したエチルアルコール50〜100ppmの蒸気をバル
ブ7から真空槽1内の真空雰囲気中に導入し、バルブ7
を開いたままにして真空槽1内を一旦大気圧とする。そ
の後、バルブ7を閉じ、バルブ5を開いて真空槽1内を
ロータリーポンプ3により急激に真空排気する。この
際、真空槽1内部の圧力は急激に変化し、真空槽1内の
雰囲気は断熱膨張状態となり、蒸発供給部8から供給さ
れた蒸気は、真空槽1内に浮遊しているパーティクルを
核に凝結し、その凝縮した水分は、ロータリーポンプ3
による真空排気の気流に乗って真空槽1外に排出され
る。前記凝縮水分が排出された時点で真空槽1の圧力が
10-3Torr台となった後にバルブ5を閉じ、主バル
ブ4を開いて主ポンプ2による真空槽1内の圧力を半導
体基板を処理する圧力に保ち、真空槽1の真空雰囲気中
にて基板の処理を行う。
First, the vacuum chamber 1 under atmospheric pressure is evacuated to the 10 -2 Torr level through the valve 6 by the rotary pump 3 and the valve 6 is closed. Next, the vapor of ethyl alcohol of 50 to 100 ppm generated in the vapor supply unit 8 is introduced into the vacuum atmosphere in the vacuum chamber 1 through the valve 7,
The inside of the vacuum chamber 1 is once brought to the atmospheric pressure while being opened. After that, the valve 7 is closed, the valve 5 is opened, and the inside of the vacuum chamber 1 is rapidly evacuated by the rotary pump 3. At this time, the pressure inside the vacuum chamber 1 changes abruptly, the atmosphere inside the vacuum chamber 1 enters an adiabatic expansion state, and the vapor supplied from the evaporation supply unit 8 cores particles floating in the vacuum chamber 1. The condensed water is condensed by the rotary pump 3
Is discharged to the outside of the vacuum chamber 1 by riding on the air flow of the vacuum exhaust. At the time when the condensed water is discharged, the pressure in the vacuum chamber 1 reaches the level of 10 −3 Torr, the valve 5 is closed, the main valve 4 is opened, and the pressure in the vacuum chamber 1 is processed by the main pump 2 to process the semiconductor substrate. The substrate is processed in the vacuum atmosphere of the vacuum chamber 1 while maintaining the pressure.

【0021】以上の一連の動作により真空槽1内の微小
パーティクルを効率よく除去できる。また蒸発供給部8
による蒸気の導入とロータリーポンプ3による急激な真
空排気とを複数回繰り返すことにより、パーティクル除
去の効率はさらに高くなる。
By the above series of operations, the fine particles in the vacuum chamber 1 can be efficiently removed. Also, the evaporation supply unit 8
The efficiency of particle removal is further increased by repeating the introduction of the vapor by the method and the rapid evacuation by the rotary pump 3 a plurality of times.

【0022】清浄な半導体基板を真空槽1内に搬入し、
これを真空槽1から搬出した場合に、その基板表面に付
着したパーティクル数を測定する方法を用いることによ
り、実際のパーティクル除去の効果を評価した。パーテ
ィクル除去処理を全く行わない場合のパーティクル数を
100とした除去率は、蒸気を導入しない方法では、1
回の除去処理当り1.0μm以上のパーティクルは70
〜80%除去されるが、0.3μm〜0.8μmのパー
ティクルは10〜20%の除去しかできない。これに対
し蒸気を導入する本発明によれば、0.3μm〜0.8
μmのパーティクルにおいても、〜80%の除去が確認
された。
A clean semiconductor substrate is loaded into the vacuum chamber 1,
The effect of actual particle removal was evaluated by using the method of measuring the number of particles adhering to the substrate surface when this was carried out from the vacuum chamber 1. The removal rate when the number of particles is 100 when no particle removal processing is performed is 1 in the method that does not introduce steam.
70 particles of 1.0 μm or more per removal process
.About.80% is removed, but particles of 0.3 .mu.m to 0.8 .mu.m can only be removed by 10 to 20%. On the other hand, according to the present invention in which steam is introduced, 0.3 μm to 0.8
Even in the case of particles having a size of μm, the removal of ˜80% was confirmed.

【0023】(実施例2)図2は本発明の実施例2を示
す構成図である。本発明は、実施例1の構成に加えて、
コールドトラップ11を備えたトラップ室10を設けて
いる。実施例1と同様な手順で真空槽1へ蒸気を導入し
た後、バルブ5と、トラップ室バルブ9を開けて、真空
槽1を急激に真空排気し断熱膨張状態を生成する。この
とき、コールドトラップ11は200Kの温度に保って
いる。
(Embodiment 2) FIG. 2 is a block diagram showing Embodiment 2 of the present invention. The present invention, in addition to the configuration of the first embodiment,
A trap chamber 10 equipped with a cold trap 11 is provided. After introducing the steam into the vacuum chamber 1 by the same procedure as in Example 1, the valve 5 and the trap chamber valve 9 are opened, and the vacuum chamber 1 is rapidly evacuated to generate an adiabatic expansion state. At this time, the cold trap 11 is kept at a temperature of 200K.

【0024】このようにすることにより、パーティクル
を核に凝結した蒸気の水分はコールドトラップ11に吸
着され、パーティクル除去効率をさらに向上できるとい
う利点を有する。本実施例において、実施例1と同様な
評価を行ったところ、0.3〜0.8μmのパーティク
ルの除去率は90%に達した。
By doing so, there is an advantage that the water content of the vapor that has condensed the particles into the core is adsorbed by the cold trap 11, and the particle removal efficiency can be further improved. When the same evaluation as in Example 1 was performed in this example, the removal rate of particles of 0.3 to 0.8 μm reached 90%.

【0025】[0025]

【発明の効果】以上説明したように本発明は、通常の真
空排気では除去できない0.5μm〜のパーティクルに
断熱膨張により蒸気を凝結させて粒径を大きくし、真空
排気による除去を可能としたので、超高集積の半導体装
置を処理する真空槽に有効に利用でき、半導体装置の製
造歩留りの向上,信頼性の向上を図ることができる。
As described above, according to the present invention, the particles having a particle size of 0.5 μm or more, which cannot be removed by ordinary vacuum exhaust, are condensed by vapor by adiabatic expansion to increase the particle size, and the particles can be removed by vacuum exhaust. Therefore, it can be effectively used in a vacuum chamber for processing ultra-highly integrated semiconductor devices, and the manufacturing yield and reliability of semiconductor devices can be improved.

【0026】また、特開昭2−233417号に示され
た従来例のように槽全体を冷却するための機構は不要と
なり、実際に半導体装置を処理する真空槽にも適用で
き、パーティクル除去に要する時間を短縮できる。
Further, unlike the conventional example shown in JP-A-2-233417, a mechanism for cooling the entire chamber is not required, and it can be applied to a vacuum chamber for actually processing a semiconductor device to remove particles. The time required can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の実施例2を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽 2 プロセス用主ポンプ 3 ロータリーポンプ 4 主バルブ 5 バルブ 6 バルブ 7 バルブ 8 蒸気供給部 9 トラップ室バルブ 10 トラップ室 11 コールドトラップ 1 Vacuum Tank 2 Process Main Pump 3 Rotary Pump 4 Main Valve 5 Valve 6 Valve 7 Valve 8 Steam Supply Section 9 Trap Chamber Valve 10 Trap Chamber 11 Cold Trap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空槽と、蒸気供給部と、断熱膨張部
と、パーティクル除去部とを有する半導体処理装置であ
って、 真空槽は、真空排気された雰囲気中にて所望の処理を行
うものであり、 蒸気供給部は、真空槽内での処理に先立って該真空槽内
に形成された真空雰囲気中に蒸気を供給するものであ
り、 断熱膨張部は、真空槽内での処理に先立って該真空槽内
に真空雰囲気を形成し、該真空雰囲気中に前記蒸気が供
給された後に真空槽内を一旦大気圧に戻し、その後真空
槽内を再び急激に真空排気することにより、断熱膨張状
態を生成するものであり、 パーティクル除去部は、真空槽内に生成された断熱膨張
状態の下に真空槽内のパーティクルを核として蒸気が凝
結した水分を槽外に除去するものであることを特徴とす
る半導体処理装置。
1. A semiconductor processing apparatus having a vacuum chamber, a vapor supply unit, an adiabatic expansion unit, and a particle removal unit, wherein the vacuum chamber performs a desired process in a vacuum-exhausted atmosphere. The steam supply unit is for supplying steam into the vacuum atmosphere formed in the vacuum chamber prior to the treatment in the vacuum chamber, and the adiabatic expansion unit is prior to the treatment in the vacuum chamber. To form a vacuum atmosphere in the vacuum chamber, and after the vapor is supplied into the vacuum chamber, the inside of the vacuum chamber is temporarily returned to atmospheric pressure, and then the vacuum chamber is rapidly evacuated again to perform adiabatic expansion. The particle removing unit removes the moisture condensed by the vapor outside the tank by using the particles in the vacuum tank as cores under the adiabatic expansion state generated in the vacuum tank. Characteristic semiconductor processing equipment.
【請求項2】 トラップ室を有する半導体処理装置であ
って、 トラップ室は、真空槽外に設けられ、コールドトラップ
を備えており、 コールドトラップは、パーティクルを核として蒸気が凝
縮して真空槽外に排気された水分を吸着するものである
ことを特徴とする請求項1に記載の半導体処理装置。
2. A semiconductor processing apparatus having a trap chamber, wherein the trap chamber is provided outside the vacuum chamber, and is provided with a cold trap. The cold trap is outside the vacuum chamber when vapor is condensed with particles as nuclei. The semiconductor processing apparatus according to claim 1, wherein the semiconductor processing apparatus adsorbs moisture exhausted to the inside.
JP31219293A 1993-12-13 1993-12-13 Semiconductor processing equipment Expired - Lifetime JP2666706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31219293A JP2666706B2 (en) 1993-12-13 1993-12-13 Semiconductor processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31219293A JP2666706B2 (en) 1993-12-13 1993-12-13 Semiconductor processing equipment

Publications (2)

Publication Number Publication Date
JPH07169663A true JPH07169663A (en) 1995-07-04
JP2666706B2 JP2666706B2 (en) 1997-10-22

Family

ID=18026327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31219293A Expired - Lifetime JP2666706B2 (en) 1993-12-13 1993-12-13 Semiconductor processing equipment

Country Status (1)

Country Link
JP (1) JP2666706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000440A1 (en) * 2003-06-25 2005-01-06 Tokyo Electron Limited Trapping device, processing system, and method for removing impurities
US7306680B2 (en) 2002-09-12 2007-12-11 Asml Netherlands B.V. Method of cleaning by removing particles from surfaces, a cleaning apparatus and a lithographic projection apparatus
US7522263B2 (en) 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306680B2 (en) 2002-09-12 2007-12-11 Asml Netherlands B.V. Method of cleaning by removing particles from surfaces, a cleaning apparatus and a lithographic projection apparatus
WO2005000440A1 (en) * 2003-06-25 2005-01-06 Tokyo Electron Limited Trapping device, processing system, and method for removing impurities
CN100348288C (en) * 2003-06-25 2007-11-14 东京毅力科创株式会社 Trapping device, processing system, and method for removing impurities
US7488374B2 (en) 2003-06-25 2009-02-10 Tokyo Electron Limited Trapping device, processing system, and method removing impurities
US7522263B2 (en) 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method
US8064038B2 (en) 2005-12-27 2011-11-22 Asml Netherlands B.V. Inspection apparatus, lithographic system provided with the inspection apparatus and a method for inspecting a sample

Also Published As

Publication number Publication date
JP2666706B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP4036751B2 (en) Cleaning and etching method and apparatus
JP3122228B2 (en) Process equipment
JP3539446B2 (en) By-product trap device and cleaning method thereof
JP3047248B2 (en) Cleaning method
JP2666706B2 (en) Semiconductor processing equipment
JP3020567B2 (en) Vacuum processing method
JP4763339B2 (en) How to clean piping
US6024105A (en) Semiconductor manufacturing device and method of removing particles therefrom
JP4116149B2 (en) Single wafer load lock device
JP3156452B2 (en) Clean air supply device and supply method
JPH0116309B2 (en)
WO2015059972A1 (en) Method for drying inner face of container
JP2717170B2 (en) Vertical heat treatment apparatus and heat treatment method
JP2544129B2 (en) Plasma processing device
JPS6067664A (en) Dust removal of vapor deposition apparatus
JPH08213360A (en) Manufacturing equipment and manufacturing method for manufacturing semiconductor device
JPH01110234A (en) Analyzer for gas contained in metal material
JP2666710B2 (en) Vacuum forming method and vacuum apparatus
JP2002028599A (en) Method for cleaning reused part
JPH0219186B2 (en)
JP2000150442A (en) Washing device
JPH07265685A (en) Evacuating pipe and evacuating system
JPH04154121A (en) Sputtering apparatus
JPH04199708A (en) Plasma etching method
JP2000160322A (en) Method and device for sputtering