JPH10262699A - Dna analysis - Google Patents

Dna analysis

Info

Publication number
JPH10262699A
JPH10262699A JP9074983A JP7498397A JPH10262699A JP H10262699 A JPH10262699 A JP H10262699A JP 9074983 A JP9074983 A JP 9074983A JP 7498397 A JP7498397 A JP 7498397A JP H10262699 A JPH10262699 A JP H10262699A
Authority
JP
Japan
Prior art keywords
dna
fragments
fragment
restriction enzyme
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9074983A
Other languages
Japanese (ja)
Inventor
Kazumune Uematsu
千宗 植松
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9074983A priority Critical patent/JPH10262699A/en
Publication of JPH10262699A publication Critical patent/JPH10262699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze a DNA by determining the sequences of restriction enzyme-treated fragments of the sample DNA, reconstructing the each fragment by arranging according to the whole permutation, cutting the sample DNA by another restriction enzyme, and comparing the lengths of the cut fragments of the sample DNA with that of the fragments of the reconstructed DNA. SOLUTION: A DNA is analyzed by determining the sequences obtained by forming the sample DNA 1 into fragments 2 by a restriction enzyme and amplifying the respective fragments 2, reconstructing the respective fragments 4 having determined sequence by arranging the fragments according to the whole permutation to produce virtual structural base sequence group 5, cutting the sample DNA by another restriction enzyme and measuring the lengths of the fragments, and comparing the lengths of the cut fragments of the sample DNA with the length of the fragments to be formed by cutting the reconstructed candidate base sequence group to determine the reconstructed base sequence bound in the correct order from the candidate reconstructed base sequence group in the method for analyzing the DNA. The DNA is readily analyzed by the method without time and effort for searching duplex parts for binding respective fragments and useless operation such as plural determinations of the sequence of the same part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はDNA解析法に関す
る。
[0001] The present invention relates to a DNA analysis method.

【0002】[0002]

【従来の技術】コスミドベクタに挿入された50kb程
のDNAの全塩基配列を決定する場合など、DNAシー
ケンサで一度に決定できる500塩基以上の長いDNA
の塩基配列を決定する場合には配列決定の前にDNAを
扱いやすい大きさにする段階を経る必要がある。DNA
を扱いやすい大きさにするには、従来二つの方法があ
る。第1の方法は制限酵素を用いてある特定の部位でD
NAを切断する方法である。第2の方法は超音波を用い
てランダムにDNAを切断してDNAを扱いやすい大き
さにする方法である。
2. Description of the Related Art When determining the entire base sequence of about 50 kb of DNA inserted into a cosmid vector, a long DNA of 500 bases or more can be determined at a time by a DNA sequencer.
When the base sequence is determined, it is necessary to go through a step of making the DNA easy to handle before the sequencing. DNA
There are two conventional methods for making the size easy to handle. The first is to use a restriction enzyme at a specific site
This is a method of cutting NA. The second method is to randomly cut DNA using ultrasonic waves to make the DNA easy to handle.

【0003】第1の方法で扱いやすい大きさにされたD
NAの塩基配列決定は切断DNA断片の位置関係を示す
制限酵素地図を作成してから行われる。つまりDNAを
複数種の制限酵素で切断して、それらの断片群の相対的
な位置関係を示す制限酵素地図を作成してから各断片の
塩基配列を決定し、制限酵素地図で明らかにされた位置
関係をもとに各断片から得られた塩基配列をつなぎ合わ
せて全塩基配列を決定するのである。
[0003] D sized to be easy to handle in the first method
The nucleotide sequence of NA is determined after preparing a restriction enzyme map showing the positional relationship of the cut DNA fragments. In other words, the DNA was cut with a plurality of types of restriction enzymes, a restriction enzyme map showing the relative positional relationship between the fragment groups was created, and then the nucleotide sequence of each fragment was determined. Based on the positional relationship, the base sequences obtained from the fragments are connected to determine the entire base sequence.

【0004】第2の方法はショットガン法といわれる方
法である。この方法ではDNAを扱いやすい大きさにす
る際にランダムにDNAを切断するため切断DNA断片
が互いに重複部分を持っていることを利用して、各断片
の塩基配列を決定してから得られた塩基配列情報をもと
にお互いの重複部分を重ね合わせて全塩基配列を再構成
するものである。
A second method is a method called a shotgun method. In this method, the DNA is randomly cut to make the DNA easy to handle, and the base sequence of each fragment is determined by utilizing the fact that the cut DNA fragments have an overlapping portion with each other. Based on the nucleotide sequence information, the overlapping portions are overlapped with each other to reconstruct the entire nucleotide sequence.

【0005】[0005]

【発明が解決しようとする課題】制限酵素地図を作成す
るにはDNAを複数種の制限酵素で切断して、それらの
断片を適当なベクタに組み込んでサブクローニングを行
う。この後、ある断片の塩基配列を末端から別の断片と
重なり合う部分まで決定して、断片同士の重なり合いの
情報を示す制限酵素地図を作成する。ある断片の末端か
ら配列を決定して行くとき別の断片と重なり合う部分が
どこに存在しているのかは予測できないため、重複部分
が見つかるまで末端から配列決定する必要がある。たい
ていの場合、末端からの一度の塩基配列決定では重複部
分まで到達しないのでこの操作はかなり時間のかかる作
業となる。各断片の相対的な位置関係を示す制限酵素地
図が得られれば、配列決定すべき断片を効率良く選び出
すことができ、配列決定での重複読みといった無駄を少
なくすることができる。しかし制限酵素地図の作成は非
常に手間と時間のかかる作業になるという難点がある。
In order to construct a restriction map, DNA is cut with a plurality of types of restriction enzymes, and their fragments are inserted into an appropriate vector for subcloning. Thereafter, the base sequence of a certain fragment is determined from the end to the portion overlapping with another fragment, and a restriction enzyme map showing information on the overlap between fragments is created. When sequencing from one end of a fragment, it is not possible to predict where the overlap with another fragment will be, so it is necessary to sequence from the end until an overlap is found. In most cases, this operation is quite time-consuming because a single sequencing from the end does not reach the overlap. If a restriction enzyme map showing the relative positional relationship of each fragment can be obtained, fragments to be sequenced can be selected efficiently, and waste such as duplicate reading in sequencing can be reduced. However, there is a drawback that creating a restriction map is a very laborious and time-consuming task.

【0006】一方、ショットガン法では超音波によって
短く断片化したDNAをサブクローニングして、この結
果得られたサブクローンをランダムにピックアップして
塩基配列決定を行う。その後、各サブクローンからの配
列情報を重ね合わせて全体の塩基配列を再構成していく
のであるが、サブクローンをランダムにピックアップす
るために同一種類のサブクローンをピックアップした
り、ほとんどオーバーラップしているサブクローンをピ
ックアップすることもあり、全体の配列を覆い尽くして
元のDNA配列を再構成するためにはその5倍から10
倍の長さの配列を読む必要がある。この方法では断片の
位置関係の情報を必要とせずに塩基配列決定作業に入る
ことができるが、せっかく配列決定した部分がすでに配
列のわかっている部分であることがあり、無駄の多いの
が難点である。
On the other hand, in the shotgun method, DNA fragmented into short fragments by ultrasonic waves is subcloned, and the subclones obtained as a result are randomly picked up to determine the nucleotide sequence. After that, the entire base sequence is reconstructed by superimposing the sequence information from each subclone, but the same type of subclone is picked up in order to pick up the subclone randomly, or almost overlapping. Subclone may be picked up, and to cover the entire sequence and reconstruct the original DNA sequence, 5 to 10 times
You need to read double-length arrays. In this method, the base sequence determination work can be started without the need for information on the positional relationship of the fragments, but the sequenced part may be a part whose sequence is already known, which is wasteful. It is.

【0007】本発明はこれらの難点を解決し、各断片を
繋ぎ合わせるために重複部分を探す手間や同じ部分を複
数回配列決定するという無駄をなくして簡便にDNAの
解析を可能にするものである。
[0007] The present invention solves these difficulties, and makes it possible to analyze DNA easily without the trouble of searching for overlapping portions to join each fragment and the waste of sequencing the same portion a plurality of times. is there.

【0008】[0008]

【課題を解決するための手段】上記目標を達成するため
に、本発明ではまず塩基配列決定を行うDNAを制限酵
素で切断する。制限酵素で切断したDNAをベクタに導
入して各断片をクローニングして増幅したのち、電気泳
動によってベクタに導入したDNA断片の大きさを測定
する。さらに各断片を含むクローンを電気泳動法により
精製する。精製した各クローンを再びクローニングして
十分増幅した後に各断片の塩基配列を決定する。精製し
たクローンを再増幅してから塩基配列を決定するため、
同じ部分を複数回配列決定することなく、無駄なく配列
決定を行うことができる。全ての断片の配列を決定した
後、決定した塩基配列長が電気泳動によって測定したDN
A断片長と一致することを確認する。
In order to achieve the above object, in the present invention, first, DNA to be sequenced is cut with a restriction enzyme. After introducing the DNA cut with the restriction enzyme into the vector, cloning and amplifying each fragment, the size of the DNA fragment introduced into the vector is measured by electrophoresis. Further, a clone containing each fragment is purified by electrophoresis. After purifying each clone again and sufficiently amplifying, the nucleotide sequence of each fragment is determined. In order to determine the nucleotide sequence after re-amplifying the purified clone,
The same part can be sequenced without waste without being sequenced a plurality of times. After determining the sequence of all fragments, the determined nucleotide sequence length was determined by electrophoresis DN
Confirm that it matches the A fragment length.

【0009】次に各断片を考えられるすべての順列によ
って並び替えた、再構成候補配列群を作成する。再構成
候補配列群のうちの一つが実際に各断片を正しい順序で
繋ぎ合わせた真の再構成配列である。再構成候補断片群
について数種類の制限酵素の認識配列の位置を検索し、
ある再構成候補配列を制限酵素によって切断した場合に
どのような長さのDNA断片を生じるかを計算して求め
る。
Next, a group of reconstructed candidate sequences is prepared by rearranging the fragments by all possible permutations. One of the reconstructed candidate sequences is a true reconstructed sequence obtained by actually connecting the fragments in the correct order. Search the positions of the recognition sequences of several types of restriction enzymes for the reconstructed candidate fragment group,
The length of a DNA fragment generated when a certain reconstitution candidate sequence is cleaved with a restriction enzyme is calculated and determined.

【0010】次に切断部位を検索した制限酵素で実際に
配列決定を行うDNAを切断し、その結果生じた断片の
長さをゲル電気泳動で測定する。実際にゲル電気泳動で
決定したDNA断片の長さと、再構成候補配列群から生
じる断片の長さとを比較して、どの再構成候補配列が元
のDNA配列から生じる断片の長さと一致するような断
片を与えるかを調べ、この再構成配列が真の再構成配列
つまり元のDNA配列であることを求める。これによっ
て制限酵素によって切断された断片の繋ぎ合わせの順序
を決定することができ、再構成候補配列群の中から実際
のDNA配列を求めることができる。
Next, the DNA to be actually sequenced is cut with the restriction enzyme whose cleavage site has been searched, and the length of the resulting fragment is measured by gel electrophoresis. By comparing the length of a DNA fragment actually determined by gel electrophoresis with the length of a fragment generated from a group of reconstituted candidate sequences, it is determined that any reconstituted candidate sequence matches the length of a fragment generated from the original DNA sequence. It is determined whether a fragment is to be provided, and it is determined that this reconstructed sequence is a true reconstructed sequence, that is, the original DNA sequence. As a result, the order of joining fragments cut by the restriction enzyme can be determined, and the actual DNA sequence can be obtained from the reconstructed candidate sequence group.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施例)試料としてλファージDNAを用い
た。図1に示すようにλファージDNA1を第1の制限
酵素で切断する。切断された各DNA断片2をクローニ
ングベクタに導入してクローニングを行う。各DNA断
片をクローニングにより増幅した後、電気泳動により精
製を行う。精製されたDNA断片3を再びクローニング
で増幅して、塩基配列決定に必要な量を得る。各DNA
断片3について塩基配列決定を行う。
(First Example) Lambda phage DNA was used as a sample. As shown in FIG. 1, lambda phage DNA1 is cut with a first restriction enzyme. Each cut DNA fragment 2 is introduced into a cloning vector for cloning. After amplification of each DNA fragment by cloning, purification is performed by electrophoresis. The purified DNA fragment 3 is again amplified by cloning to obtain an amount necessary for nucleotide sequence determination. Each DNA
The nucleotide sequence of fragment 3 is determined.

【0012】第1の制限酵素で切断した結果生じる各D
NA断片の塩基配列決定後、配列決定されたDNA断片
4をあらゆる順序で繋ぎ合わせた再構成候補配列群5を
作成する。再構成候補配列群5はDNA断片をあらゆる
順序で繋ぎ合わせた配列であるので、DNA断片の数が
2本の場合には2候補配列、3本の場合には6候補配
列、n本の場合にはn!候補配列からなる。
Each D resulting from cleavage with the first restriction enzyme
After determining the base sequence of the NA fragment, the sequenced DNA fragments 4 are joined in any order to create a group of candidate reconstructed sequences 5. Since the reconstructed candidate sequence group 5 is a sequence obtained by joining DNA fragments in any order, two candidate sequences are used when the number of DNA fragments is two, six candidate sequences are used when the number of DNA fragments is three, and n N! Consists of candidate sequences.

【0013】次に図2に示すように先に用いた第1の制
限酵素とは異なる認識配列を持つ第2の制限酵素を用い
てλファージDNA1を切断する。第2の制限酵素によ
って生じたλファージDNA切断断片8のゲル電気泳動
を行う。その泳動パターン12と分子量マーカ11の移
動度から第2の制限酵素によって生じたDNA断片長を
測定する。さらに異なる認識配列を持つ制限酵素につい
ても同様にλファージDNAを切断し、ゲル電気泳動に
よりその長さを測定しておく。
Next, as shown in FIG. 2, the λ phage DNA 1 is cleaved using a second restriction enzyme having a recognition sequence different from the first restriction enzyme used previously. Gel electrophoresis is performed on the λ phage DNA fragment 8 generated by the second restriction enzyme. From the migration pattern 12 and the mobility of the molecular weight marker 11, the length of the DNA fragment generated by the second restriction enzyme is measured. Further, for restriction enzymes having different recognition sequences, λ phage DNA is similarly cut, and the length thereof is measured by gel electrophoresis.

【0014】図1および図3に示すように再構成候補配
列群について第2の制限酵素あるいはそのほかに用いた
制限酵素の認識配列の存在場所を検索プログラムを用い
てコンピュータ上で検索する。検索の結果それぞれの制
限酵素による切断位置6がわかる。再構成候補配列群の
配列それぞれについて、第2の制限酵素あるいはその他
に用いた制限酵素の切断位置からそれぞれの制限酵素に
よって生じる各DNA断片の長さの情報20を計算によ
って得る。
As shown in FIG. 1 and FIG. 3, the location of the second restriction enzyme or the recognition sequence of the restriction enzyme used in addition to the second restriction enzyme is searched on a computer using a search program. As a result of the search, the cleavage position 6 by each restriction enzyme is found. For each of the sequences of the reconstructed candidate sequence group, information 20 on the length of each DNA fragment generated by each restriction enzyme is obtained from the cleavage position of the second restriction enzyme or another restriction enzyme used by calculation.

【0015】最後に計算によって得られた再構成候補配
列群の各配列の切断断片の長さの情報20と実際のDN
Aを制限酵素Bで切断し、ゲル電気泳動の泳動パターン
12から得た各DNA断片の長さを比較する。再構成候
補配列群のうち、正しい順序で各断片を繋ぎ合わせた配
列21だけが実際にDNAを第2の制限酵素で切断した
結果生じる断片長と一致する切断断片長を与えるので、
再構成候補配列群の中から正しい順番に並び変えて得ら
れた再構成配列22を決定することができる。
Finally, information 20 on the length of the cut fragment of each sequence of the reconstructed candidate sequence group obtained by calculation and the actual DN
A is cut with restriction enzyme B, and the length of each DNA fragment obtained from electrophoresis pattern 12 of gel electrophoresis is compared. Of the reconstructed candidate sequences, only the sequence 21 obtained by joining the fragments in the correct order gives a digested fragment length that matches the fragment length resulting from actually cutting the DNA with the second restriction enzyme,
It is possible to determine the reconstructed sequence 22 obtained by rearranging in the correct order from the reconstructed candidate sequence group.

【0016】(第2の実施例)第2の実施例に試料とし
てプラスミドに挿入されたヒトの遺伝子8.9k 塩基長
を用いた。
Second Example In the second example, a human gene of 8.9 k base length inserted into a plasmid was used as a sample.

【0017】(試料DNAの断片化と断片末端への既知
配列の導入)図4に示すように制限酵素を用いて試料D
NA30を切断してDNA断片31を得る。得られたD
NA断片31の両末端に既知配列を持つオリゴマを導入
する。オリゴマの導入方法はDNAリガーゼを用いて予
め合成された2本鎖オリゴマをDNA断片末端に結合さ
せて導入する方法とターミナルデオキシヌクレオチジル
トランスフェラーゼを用いて、dATPあるいはdUT
Pなどある特定の塩基をDNA断片末端に付加する方法
があり、どちらを用いてもよいが本実施例では前者を用
いた。
(Fragmentation of Sample DNA and Introduction of Known Sequence into Fragment End) As shown in FIG.
The DNA fragment 31 is obtained by cleaving NA30. D obtained
An oligomer having a known sequence at both ends of the NA fragment 31 is introduced. Oligomers can be introduced by binding a double-stranded oligomer synthesized in advance using DNA ligase to the end of a DNA fragment, or by introducing dATP or dUTP using terminal deoxynucleotidyl transferase.
There is a method of adding a specific base such as P to the end of the DNA fragment. Either of them may be used, but the former is used in this example.

【0018】DNA末端とオリゴマの間でホスホジエス
テル結合を形成させるため、DNA断片3′末端に接す
るオリゴマ40の5′末端をリン酸化しておく。DNA
断片同士の結合を防ぐためにアルカリフォスファターゼ
を用いてDNA断片5′末端のリン酸基を除去し、オリ
ゴマ同士の結合を防ぐためにDNA断片5′末端に位置
するオリゴマ41の3′末端をリン酸化しておく。DN
A断片に結合させるオリゴマ40とそれに相補的な配列
を持つオリゴマ41をハイブリダイズさせて2本鎖のア
ダプタ42を形成させ、DNAリガーゼを用いてDNA
断片31と結合させる。3′末端がリン酸化されたオリ
ゴマ41とDNA断片31の5′末端との間にはホスホ
ジエステル結合は形成されず、DNA断片31の3′末
端と5′末端がリン酸化されたオリゴマ40の間にホス
ホジエステル結合が形成される。その結果DNA断片3
1の+鎖,−鎖両方の3′末端にオリゴマを導入したDN
A断片32ができる。
In order to form a phosphodiester bond between the DNA end and the oligomer, the 5 'end of the oligomer 40 in contact with the 3' end of the DNA fragment is phosphorylated. DNA
The phosphate group at the 5 ′ end of the DNA fragment is removed using alkaline phosphatase to prevent the binding between the fragments, and the 3 ′ end of the oligomer 41 located at the 5 ′ end of the DNA fragment is phosphorylated to prevent the binding between the oligomers. Keep it. DN
The oligomer 40 to be bound to the fragment A and the oligomer 41 having a sequence complementary thereto are hybridized to form a double-stranded adapter 42, and the DNA is ligated using DNA ligase.
Ligation with fragment 31. No phosphodiester bond is formed between the oligomer 41 whose 3 'end is phosphorylated and the 5' end of the DNA fragment 31, and the oligomer 40 whose 3 'end and 5' end of the DNA fragment 31 are phosphorylated. A phosphodiester bond is formed between them. As a result, DNA fragment 3
DN with an oligomer introduced at the 3 'end of both + and-chains
A fragment 32 is formed.

【0019】(DNA断片の断片長の計測)調整された
DNA断片の断片長を変性ポリアクリルアミドゲル電気
泳動もしくはアガロース電気泳動で計測する。変性ポリ
アクリルアミドゲル電気泳動では1000塩基長程度の
DNA断片長をほぼ1塩基長の分解能で計測でき、アガ
ロース電気泳動では3000塩基長程度のDNA断片長
をほぼ10塩基長の分解能で計測できるので、DNA断
片の長さが1000塩基より短い場合には前者を用い、
1000塩基より長い場合には後者を用いて断片長の計
測を行う。DNA断片長が3000塩基を超える場合に
は計測の精度は落ちるが、試料DNAを複数の制限酵素
を用いて断片化すれば3000塩基を超えるDNA断片
も計測精度の良い断片長に断片化することができる。
(Measurement of Fragment Length of DNA Fragment) The fragment length of the adjusted DNA fragment is measured by denaturing polyacrylamide gel electrophoresis or agarose electrophoresis. In denaturing polyacrylamide gel electrophoresis, a DNA fragment length of about 1000 bases can be measured with a resolution of about 1 base length, and in agarose electrophoresis, a DNA fragment length of about 3000 bases can be measured with a resolution of about 10 bases. If the length of the DNA fragment is shorter than 1000 bases, use the former,
If the length is longer than 1000 bases, the latter is used to measure the fragment length. If the DNA fragment length exceeds 3,000 bases, the measurement accuracy will decrease, but if the sample DNA is fragmented using a plurality of restriction enzymes, the DNA fragments exceeding 3,000 bases will be fragmented to a fragment length with high measurement accuracy. Can be.

【0020】アガロース電気泳動による断片長の計測は
図2に示すように断片化したDNA8を電気泳動で分離
した後、エチジウムブロマイドなど2本鎖DNAに結合
するインターカレータと呼ばれる試薬で染色標識して検
出し分子量マーカ11の位置から断片長の計測を行う。
The fragment length was measured by agarose electrophoresis, as shown in FIG. 2, by separating the fragmented DNA 8 by electrophoresis and labeling it with a reagent called an intercalator that binds to double-stranded DNA such as ethidium bromide. The fragment length is measured from the position of the detected molecular weight marker 11.

【0021】変性ポリアクリルアミドゲル電気泳動によ
る断片長の計測ではDNA断片は1本鎖の状態で泳動さ
れるため、インターカレータによる標識はできない。そ
こで予め蛍光標識したプライマ48を利用して断片長の
測定を行う。蛍光標識したプライマ48は以下の特徴を
持つものを用意する。
In the measurement of fragment length by denaturing polyacrylamide gel electrophoresis, the DNA fragment is electrophoresed in a single-stranded state, and therefore cannot be labeled with an intercalator. Therefore, the fragment length is measured using the primer 48 that has been fluorescently labeled in advance. A fluorescently labeled primer 48 having the following characteristics is prepared.

【0022】断片長の計測に利用するプライマ48は塩
基配列決定反応にも使用できるプライマを用いる。すな
わち、制限酵素切断部位付近の配列を読めるようにアン
カプライマと成り得る配列50の部分、DNA断片に導
入したオリゴマの少なくとも一部と相補的な配列51の
部分、試料DNAを断片化するのに用いた制限酵素の認
識部位に相補的な配列52の部分、およびA,C,G,
T4塩基の任意の配列2塩基からなる配列53の部分か
ら構成させている。任意配列の部分は2塩基の全ての可
能な組み合わせである16種類からなるので、用意する
プライマは計16種類となる。プライマの3′末端の塩
基がハイブリダイズしていないとDNA鎖の伸長反応は起
こらない。このため3′末端に任意配列を有するプライ
マでは複数種のDNA断片のなかから選択的に伸長反応
が起きるDNA断片60を選択することが可能である。
このような性質から3′末端にこのような任意配列を有
するプライマを選択プライマと呼ぶ。
As the primer 48 used for measuring the fragment length, a primer which can be used for a base sequence determination reaction is used. That is, a portion of the sequence 50 which can be an anchor primer so that the sequence near the restriction enzyme cleavage site can be read, a portion of the sequence 51 complementary to at least a portion of the oligomer introduced into the DNA fragment, The part of sequence 52 complementary to the recognition site of the restriction enzyme used, and A, C, G,
It is composed of a part of sequence 53 consisting of two bases of an arbitrary sequence of T4 bases. Since the portion of the arbitrary sequence is composed of 16 types, which are all possible combinations of 2 bases, a total of 16 types of primers are prepared. If the base at the 3 'end of the primer is not hybridized, the elongation reaction of the DNA strand does not occur. For this reason, in the case of a primer having an arbitrary sequence at the 3 'end, it is possible to select a DNA fragment 60 in which an extension reaction occurs selectively from a plurality of types of DNA fragments.
Due to such properties, a primer having such an arbitrary sequence at the 3 'end is called a selection primer.

【0023】用意した選択プライマのうち1種類を用い
て相補鎖合成反応を行う。この反応は鋳型DNAの端ま
で伸長反応が進行するとそれ以上は鋳型DNAがないの
で伸長できない。従って過剰量の蛍光標識プライマと耐
熱性DNAポリメラーゼを用いて、DNA鎖の変性→D
NAとプライマとの結合→プライマの伸長反応という熱
サイクルにかけて伸長反応を複数回行うとDNA断片と
同じ断片長の蛍光標識された1本鎖DNAが反応産物と
して得られる。全てのDNA断片に対して1本鎖DNA
を同時に調製するとDNA断片の種類が多い場合には分
離が困難になる。しかし選択プライマを用いて反応を行
うと鋳型DNAのうち、プライマの3′末端にある任意
配列と鋳型DNAがハイブリダイズしたDNA断片に対
してだけ断片長の等しい蛍光標識された1本鎖DNA断
片が合成されるので断片の分離が容易になる。
A complementary strand synthesis reaction is performed using one of the prepared selection primers. In this reaction, when the extension reaction proceeds to the end of the template DNA, no further extension is possible because there is no template DNA. Therefore, denaturation of the DNA strand using an excessive amount of the fluorescent labeling primer and the thermostable DNA polymerase → D
When the elongation reaction is performed a plurality of times in a heat cycle of binding of NA to the primer → elongation reaction of the primer, a fluorescently labeled single-stranded DNA having the same fragment length as the DNA fragment is obtained as a reaction product. Single-stranded DNA for all DNA fragments
Are difficult to separate when there are many types of DNA fragments. However, when the reaction is carried out using the selection primer, a fluorescently labeled single-stranded DNA fragment having the same fragment length only for the DNA fragment of the template DNA that has hybridized with an arbitrary sequence at the 3 'end of the primer and the template DNA is obtained. Is synthesized, so that fragments can be easily separated.

【0024】用意したプライマ16種類に対して同様に
伸長反応を行うと全ての鋳型DNAに対する1本鎖DN
A断片を合成させることができる。16種類のプライマ
に対する各反応産物をそれぞれ別のレーンで変性ポリア
クリルアミドゲル電気泳動して断片長の計測を行う。
When extension reactions are similarly performed on the 16 types of primers prepared, single-stranded DNs for all template DNAs are obtained.
The A fragment can be synthesized. The reaction products for the 16 types of primers are subjected to denaturing polyacrylamide gel electrophoresis in separate lanes to measure the fragment length.

【0025】以上のような手順でDNA断片の断片長の
計測を行う。同様の手順を繰り返して試料DNAを異な
る制限酵素によって断片化した場合についてもDNA断
片の断片長の計測を行い、試料DNAを種々の制限酵素
で切断した場合に生じるDNA断片長を計測しておく。
The fragment length of the DNA fragment is measured according to the above procedure. Even when the sample DNA is fragmented with different restriction enzymes by repeating the same procedure, the fragment length of the DNA fragment is measured, and the DNA fragment length generated when the sample DNA is cut with various restriction enzymes is measured. .

【0026】(DNA塩基配列の決定)DNA塩基配列
決定は制限酵素で断片化したDNA断片の配列を順次決
定する。上述の方法で末端に既知配列を導入したDNA
断片の配列の決定は蛍光標識した選択プライマを用いれ
ば良い(DNA Research Vol.1,231−237,19
94)。またDNA断片末端の配列を決定するためにア
ンカ配列部分をプライマに用いてもよい。この場合には
断片長の計測から得られたDNA断片末端2塩基の情報
を用いてPCR増幅を行い配列決定するDNA断片を増
幅する。
(Determination of DNA Base Sequence) In DNA base sequence determination, the sequences of DNA fragments fragmented with restriction enzymes are sequentially determined. DNA having a known sequence introduced into the end by the above method
The sequence of the fragment may be determined using a fluorescently labeled selection primer (DNA Research Vol. 1, 231-237, 19).
94). An anchor sequence may be used as a primer to determine the sequence of the end of the DNA fragment. In this case, a DNA fragment to be sequenced is amplified by PCR amplification using information on the two bases at the end of the DNA fragment obtained from the measurement of the fragment length.

【0027】DNA制限酵素断片の+鎖,−鎖の断片長
は等しいので断片長計測時に伸長反応が進行した断片の
うち同じ断片長を持つものがそれぞれDNA断片の+鎖
と−鎖である。従って伸長反応が進行した選択プライマ
を組み合わせてPCR増幅を行えば、種々のDNA断片
が混合物しているなかからある特定のDNA断片だけを
増幅することができる。DNA塩基配列決定時にプライ
マを標識して配列決定反応を行う場合には未反応プライ
マの影響でプライマ近接部位の配列決定は困難なことが
あるが、増幅反応に用いた選択プライマのアンカ配列部
分をプライマとして塩基配列決定反応を行えば、配列決
定用のアンカプライマに近接する部位は増幅に用いた選
択プライマの部分になり、DNA断片末端部分は配列決
定用アンカプライマの末端と近接しなくなるので配列決
定時のエラーを低減することができる。
Since the lengths of the + and-chains of the DNA restriction enzyme fragments are the same, those having the same fragment length among the fragments that have undergone the extension reaction during the measurement of the fragment length are the + and-chains of the DNA fragment, respectively. Therefore, if PCR amplification is performed by combining the selection primers that have undergone the extension reaction, only a specific DNA fragment can be amplified from a mixture of various DNA fragments. When performing a sequencing reaction by labeling a primer at the time of DNA base sequencing, sequencing of a site adjacent to the primer may be difficult due to the effect of an unreacted primer, but the anchor sequence portion of the selected primer used for the amplification reaction may be difficult to determine. If a base sequence determination reaction is performed as a primer, the site adjacent to the anchor for sequencing will be the portion of the selection primer used for amplification, and the end of the DNA fragment will not be close to the end of the anchor for sequencing. Errors at the time of determination can be reduced.

【0028】配列決定反応にターミネータ標識法を用い
ても同様にDNA断片末端部分の読み間違いを少なくす
ることができる。
Even if the terminator labeling method is used in the sequencing reaction, the reading error at the end of the DNA fragment can be similarly reduced.

【0029】以上のように試料DNAを制限酵素処理し
て得られた各DNA断片の塩基配列を決定する。あとは
第1の実施例と同様に得られた各DNA断片を全ての順
列で繋ぎ合わせた再構成候補配列群を作製し、再構成候
補配列中に存在する制限酵素認識部位を検索する。試料
DNAを切断してその結果生じたDNA断片長を計測す
るのに用いた制限酵素の認識配列を検索し、再構成候補
配列の切断パターンを求める。再構成候補配列群のうち
の一つが正しい再構成配列であるので、各再構成候補配
列の切断パターンと実際の試料DNAの切断パターンを
比較して正しい再構成配列を求め、試料DNAの塩基配
列を決定する。
As described above, the base sequence of each DNA fragment obtained by treating the sample DNA with restriction enzymes is determined. Thereafter, in the same manner as in the first embodiment, a group of reconstructed candidate sequences is prepared by joining the obtained DNA fragments in all the permutations, and a restriction enzyme recognition site present in the reconstructed candidate sequence is searched. The sample DNA is cleaved, the recognition sequence of the restriction enzyme used for measuring the length of the resulting DNA fragment is searched, and the cleavage pattern of the reconstructed candidate sequence is obtained. Since one of the reconstructed candidate sequence groups is a correct reconstructed sequence, the correct reconstructed sequence is obtained by comparing the cleavage pattern of each reconstructed candidate sequence with the actual sample DNA cleavage pattern, and the base sequence of the sample DNA is determined. To determine.

【0030】[0030]

【発明の効果】本発明によれば塩基配列決定の際に行う
断片の繋ぎ合わせを塩基配列情報と別の制限酵素で切断
した断片の長さの情報から行うことができる。これによ
り従来非常に手間と時間を必要とした制限酵素地図の作
成を行うことなくDNAの解析が可能となる。またショ
ットガン法に見られるような同じ部分の重複読みを行う
必要がないため、決定する塩基配列数の何倍もの塩基数
を読むことなく、効率良く塩基配列決定を行うことがで
きる。
According to the present invention, the joining of fragments at the time of base sequence determination can be carried out from the base sequence information and the information on the length of the fragment cut with another restriction enzyme. As a result, DNA analysis can be performed without creating a restriction enzyme map which has conventionally required much labor and time. In addition, since it is not necessary to perform duplicate reading of the same portion as in the shotgun method, it is possible to determine the base sequence efficiently without reading the number of bases which is many times the number of base sequences to be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における再構成候補配列
群作成の説明図。
FIG. 1 is an explanatory diagram of creation of a reconfiguration candidate sequence group in a first embodiment of the present invention.

【図2】本発明の第1の実施例におけるDNA切断断片
の断片長測定の説明図。
FIG. 2 is an explanatory view of the measurement of the fragment length of a DNA fragment in the first embodiment of the present invention.

【図3】本発明の第1の実施例における再構成配列決定
の説明図。
FIG. 3 is an explanatory diagram of reconfiguration sequencing in the first embodiment of the present invention.

【図4】本発明の第2の実施例のDNA塩基配列決定方
法の説明図。
FIG. 4 is an explanatory diagram of a DNA base sequence determination method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…λファージDNA、2…λファージDNA切断断
片、3…λファージDNA切断断片、4…DNA断片の
配列、5…再構成候補配列群、6…切断部位、8…λフ
ァージDNA切断断片。
1 ... lambda phage DNA, 2 ... lambda phage DNA fragment, 3 ... lambda phage DNA fragment, 4 ... sequence of DNA fragment, 5 ... reconstructed candidate sequence group, 6 ... cleavage site, 8 ... lambda phage DNA fragment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料DNAを制限酵素を用いて断片化し各
断片を増幅した後に配列決定を行うプロセスと、配列決
定された各断片を全ての順列で並べて繋ぎ合わせた仮想
再構成塩基配列群を作製するプロセスと、試料DNAを
別の制限酵素で切断してその断片長を測定するプロセス
と、再構成候補塩基配列群をその制限酵素で切断した場
合に生じる断片長と試料DNAを切断して得られた断片
長を比較して再構成候補塩基配列群のなかから正しい順
番で繋ぎ合わされた再構成塩基配列を決定するプロセス
からなることを特徴とするDNA解析法。
1. A process in which a sample DNA is fragmented using a restriction enzyme to amplify each fragment, followed by sequencing, and a virtual reconstructed base sequence group in which the sequenced fragments are arranged in all permutations and connected. The process of preparing, the process of cutting the sample DNA with another restriction enzyme and measuring the fragment length, and the process of cutting the fragment length and the sample DNA generated when the reconstructed candidate nucleotide sequence group is cut with the restriction enzyme A DNA analysis method comprising a step of comparing the obtained fragment lengths and determining a reconstructed base sequence joined in a correct order from a group of reconstructed candidate base sequences.
【請求項2】試料DNAから制限酵素を用いて断片を生
成し各断片の塩基配列決定によって得られる塩基配列情
報と、別の複数の制限酵素によって得られるDNA断片
長の情報を比較することによって制限酵素切断断片同士
の位置関係を決定することを特徴とするDNA解析法。
2. A fragment is generated from a sample DNA by using a restriction enzyme, and nucleotide sequence information obtained by determining the nucleotide sequence of each fragment is compared with DNA fragment length information obtained by a plurality of different restriction enzymes. A DNA analysis method characterized by determining the positional relationship between restriction fragments.
【請求項3】請求項1において、配列決定を行った断片
同士を考えられ得るすべての順列に繋ぎ合わせた再構成
候補配列群を作成し、それらの配列情報を用いて各断片
同士の位置関係を決定するDNA解析法。
3. The method according to claim 1, wherein a reconstructed candidate sequence group is created by linking the sequenced fragments to all possible permutations, and the positional relationship between the fragments is determined using the sequence information. DNA analysis method to determine
【請求項4】請求項1において、配列決定を行った断片
同士を考えられ得るすべての順列に繋ぎ合わせた再構成
候補配列群を作成するDNA解析プロセス。
4. The DNA analysis process according to claim 1, wherein the sequenced fragments are connected to all possible permutations to form a group of reconstructed candidate sequences.
【請求項5】断片化したDNAを繋ぎ合わせる際に塩基
配列の重複読みを行わずに断片同士の位置関係を決定す
ることを特徴とするDNA解析方法。
5. A DNA analysis method comprising determining the positional relationship between fragments without performing overlapping reading of a base sequence when joining fragmented DNAs.
JP9074983A 1997-03-27 1997-03-27 Dna analysis Pending JPH10262699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074983A JPH10262699A (en) 1997-03-27 1997-03-27 Dna analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074983A JPH10262699A (en) 1997-03-27 1997-03-27 Dna analysis

Publications (1)

Publication Number Publication Date
JPH10262699A true JPH10262699A (en) 1998-10-06

Family

ID=13563038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074983A Pending JPH10262699A (en) 1997-03-27 1997-03-27 Dna analysis

Country Status (1)

Country Link
JP (1) JPH10262699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006924B2 (en) 2000-07-14 2006-02-28 Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization Method and system for searching for relationships between base sequences in genes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006924B2 (en) 2000-07-14 2006-02-28 Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization Method and system for searching for relationships between base sequences in genes

Similar Documents

Publication Publication Date Title
US5227288A (en) DNA sequencing vector with reversible insert
Luo et al. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis
US6228999B1 (en) Nucleic acid indexing
Brunner et al. Promoter recognition and promoter strength in the Escherichia coli system.
JP3612092B2 (en) DNA separation / sorting method and analysis method
JPS63219380A (en) Improved method for determining chain termination dna sequence and primer linker used therein
EP2183388A2 (en) Molecular redundant sequencing
JP2008546405A (en) Improved strategy for sequencing complex genomes using high-throughput sequencing techniques
Wallace et al. The araC gene of Escherichia coli: transcriptional and translational start-points and complete nucleotide sequence
ES2058893T3 (en) IMPROVED PROCEDURES FOR IN VITRO DNA AMPLIFICATION AND FOR GENOME CLONING AND CARTOGRAPHY.
Unrau et al. Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA ‘indexers’
CN114540473A (en) Novel nucleic acid sequencing system
US5985556A (en) DNA sequencing method and DNA sample preparation method
US5968743A (en) DNA sequencing method and reagents kit
JPH10262699A (en) Dna analysis
US4863848A (en) Double-stranded vector and process using it
Edens et al. Mapping of promoter sites on the genome of bacteriophage M13
Christie et al. A secondary attachment site for bacteriophage λ in trpC of E. coli
Contreras et al. Nucleotide sequence of the restriction fragment Hind F-Eco RI2 of SV40 DNA
JP3608312B2 (en) Sample preparation method and reagent kit used therefor
EP0170146B1 (en) Intact gene and method of excising and cloning same
JPH08173164A (en) Preparation of dna
JP3582891B2 (en) Primer and DNA sequencing method using the same
Furuyama et al. DNA sequencing directly from a mixture using terminal-base-selective primers
Sedat et al. Direct determination of DNA nucleotide sequences. Structure of large specific fragments of bacteriophage φX174 DNA