JPH10262320A - Overhead power transmission line - Google Patents

Overhead power transmission line

Info

Publication number
JPH10262320A
JPH10262320A JP6159897A JP6159897A JPH10262320A JP H10262320 A JPH10262320 A JP H10262320A JP 6159897 A JP6159897 A JP 6159897A JP 6159897 A JP6159897 A JP 6159897A JP H10262320 A JPH10262320 A JP H10262320A
Authority
JP
Japan
Prior art keywords
transmission line
suspension
power transmission
line
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6159897A
Other languages
Japanese (ja)
Inventor
Takeo Munakata
武男 宗像
Yutaka Matsuzaki
豊 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6159897A priority Critical patent/JPH10262320A/en
Publication of JPH10262320A publication Critical patent/JPH10262320A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrict an increase in slackness and prevent a great rolling of power transmission line by erecting a suspension wire between steel towers and by using a linear body having a negative linear expansion property as a suspension wire. SOLUTION: A suspension wire 10 is located above the power transmission line 20 and erected with a slackness smaller than the maximum slackness of the power transmission line 20, its both end portions are anchored to an anchoring steel tower 30 through an anchor insulator string 11, and the intermediate position of the power transmission line 20 in the longitudinal direction is suspended from the suspension wire 10 through a suspension spacer 50. As a suspension wire 10, invar steel stranded wire, carbonized silicon fiber, alumina fiber, aramid fiber having a negative linear expansion characteristics or other inorganic or organic fiber stranded to a rope form is used as a linear body. By doing this, the increase in slackness can be restricted and large rolling of the power transmission line 20 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弛度を低減させ、
これによって横振れを減少させた架空送電線路に関する
ものである。
The present invention relates to a method for reducing sag,
The present invention relates to an overhead power transmission line in which lateral deflection is reduced.

【0002】[0002]

【従来の技術】従来、実開昭57─101522号に記
載されているように、鉄塔1間に鋼撚線等の機械的強度
の大きい吊線を架設し、該吊線に、複数の吊下げ用スペ
ーサを介して送電線を吊下げた架空送電線路が知られて
いる。
2. Description of the Related Art Conventionally, as described in Japanese Utility Model Application Laid-Open No. 57-102522, a suspension line having high mechanical strength such as a steel stranded wire is erected between steel towers 1 and a plurality of suspension lines are provided on the suspension line. 2. Description of the Related Art An overhead power transmission line in which a power transmission line is suspended via a spacer is known.

【0003】[0003]

【発明が解決しようとする課題】しかし上記構成の架空
送電線路においては、鋼撚線等の機械的強度の大きい吊
線に送電線を吊下げる構成であるので、送電線の弛度を
減少させ難く、このために送電線の横振れを抑制できな
いという問題があった。すなわち、鋼撚線等の機械的強
度の大きい吊線は一般に正の線膨張特性を有しているの
で、温度上昇に伴って伸びが大きくなる。このために、
特に夏期等において外気温度が上昇した場合には、吊線
自体の弛度が増加し、これに伴って送電線の弛度も増加
してしまい、結局送電線の弛度を減少させ難いという問
題が生じてしまうものである。送電線の弛度が大きい
と、送電線の横揺れ量が多くなるという問題が生じるも
のである。
However, in the overhead transmission line having the above configuration, the transmission line is hung on a suspension line having high mechanical strength such as a steel stranded wire, so that it is difficult to reduce the sag of the transmission line. For this reason, there is a problem that the lateral deflection of the transmission line cannot be suppressed. That is, since a suspension wire having a large mechanical strength such as a twisted steel wire generally has a positive linear expansion characteristic, the elongation increases as the temperature rises. For this,
In particular, when the outside air temperature rises in summer or the like, the sag of the suspension line itself increases, and accordingly the sag of the transmission line also increases, and it is difficult to reduce the sag of the transmission line after all. It will happen. If the sag of the transmission line is large, a problem arises in that the amount of rolling of the transmission line increases.

【0004】[0004]

【課題を解決するための手段】本発明は上記の如き課題
を解決した架空送電線路を提供するものであり、その構
成は、鉄塔間に吊線を架設し、該吊線に、吊下げ用スペ
ーサを介して送電線を吊下げてなる架空送電線路におい
て、前記吊線として負の線膨張特性を有する線状体を使
用したことを特徴とするものである(請求項1)。
SUMMARY OF THE INVENTION The present invention provides an overhead power transmission line which solves the above-mentioned problems, and has a construction in which a suspension line is provided between steel towers and a suspension spacer is provided on the suspension line. In an overhead power transmission line in which a transmission line is suspended via a wire, a linear body having a negative linear expansion characteristic is used as the suspension line (claim 1).

【0005】また、請求項1記載の発明において、負の
線膨張特性を有する線状体は、弾性係数が10000〜
30000kgf/mm2 であることを特徴とするもの
である(請求項2)。
According to the first aspect of the present invention, the linear body having a negative linear expansion characteristic has an elastic modulus of 10,000 to 10,000.
It is characterized by being 30,000 kgf / mm 2 (claim 2).

【0006】更に、請求項1または請求項2記載の発明
において、吊下げ用スペーサは、鉄塔間に架設された送
電線の略等間隔位置に取付けられており、その数が3個
以下であることを特徴とするものである(請求項3)。
Further, in the invention according to claim 1 or 2, the suspension spacers are attached at substantially equal intervals of a transmission line installed between the steel towers, and the number of the suspension spacers is three or less. It is characterized by the following (claim 3).

【0007】請求項1記載の発明のように、吊線として
負の線膨張特性を有する線状体を使用すると、負の線膨
張特性を有する線状体は温度が上昇すると長さが短くな
る特性を有するので、夏期等において弛度の増加を抑制
することができる。このために送電線の横振れを減少さ
せることができるものである。
When a linear body having a negative linear expansion characteristic is used as a suspension line, the linear body having a negative linear expansion characteristic becomes shorter in length as the temperature rises. , It is possible to suppress an increase in sag in summer or the like. For this reason, the lateral deflection of the transmission line can be reduced.

【0008】また請求項2記載の発明のように、負の線
膨張特性を有する線状体として、弾性係数が10000
〜30000kgf/mm2 であるものを使用すると、
後述するように、鉄塔に作用する張力の増加が少ないの
で好ましいものである。
[0008] Further, as in the second aspect of the present invention, the linear body having a negative linear expansion characteristic has an elastic modulus of 10000.
Using what is ~30000kgf / mm 2,
As described later, this is preferable because the increase in tension acting on the steel tower is small.

【0009】更に請求項3記載の発明のように、吊下げ
用スペーサを、鉄塔間に架設された送電線の略等間隔位
置に取付けかつその数を3個以下にすると、後述するよ
うに、吊下げ用スペーサの使用個数を少なくして効率良
く弛度増加を抑制することができるものである。
Further, as described in the third aspect of the present invention, when the suspending spacers are attached at substantially equal intervals of the transmission line installed between the steel towers and the number thereof is set to three or less, as described later, The number of hanging spacers used can be reduced to efficiently suppress the increase in sag.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態を図を参
照して説明する。図1は本発明にかかる架空送電線路の
一実施の形態を示すものであり、10は吊線、20は送
電線、30は引留め鉄塔である。なお、図1は片回線の
みが示してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows one embodiment of an overhead power transmission line according to the present invention, in which 10 is a suspension line, 20 is a transmission line, and 30 is a retaining tower. FIG. 1 shows only one line.

【0011】吊線10は送電線20の上部に、送電線2
0の最大弛度よりも低く架設されており、その両端部は
引留め碍子連11を介して引留め鉄塔30に引き留めら
れている。吊線10としては、負の線膨張特性を有する
線状体が使用され、例えばインバー鋼撚線や炭化珪素繊
維、アルミナ繊維、アラミド繊維、その他の無機または
有機繊維を撚り合わせてロープ状にした線状体や上記繊
維とアルミまたはアルミ合金等の材料を複合した複合線
材を撚り合わせた線状体を使用することができる。
The suspension cable 10 is provided above the power transmission line 20 and the power transmission line 2.
It is installed lower than the maximum sag of 0, and both ends thereof are fixed to the retaining tower 30 via the retaining insulator string 11. A linear body having a negative linear expansion characteristic is used as the suspension wire 10, for example, a twisted invar steel wire, a silicon carbide fiber, an alumina fiber, an aramid fiber, or a wire formed by twisting other inorganic or organic fibers into a rope. A linear body obtained by twisting a composite body or a composite wire obtained by combining the above-mentioned fiber with a material such as aluminum or an aluminum alloy can be used.

【0012】送電線20は、その両端部に連結された引
留め碍子連21を介して引留め鉄塔30に引き留められ
ている。この送電線20の長手方向中間位置は、吊下げ
用スペーサ50を介して吊線10に吊り下げられてい
る。実施の形態においては、上層の送電線20はその長
手方向の略等間隔位置2箇所を吊下げ用スペーサ50を
介して吊線10から吊り下げてあり、また中層および下
層の送電線20は、その長手方向の中間位置1箇所を吊
下げ用スペーサ50を介して吊線10から吊り下げてあ
る。送電線20を吊線10に吊り下げ位置は特に限定す
るものではないが、後述するように、送電線の長手方向
の略等間隔位置の3箇所以下に取付けることが好まし
い。
The power transmission line 20 is retained by a retaining tower 30 via retaining insulator series 21 connected to both ends thereof. An intermediate position in the longitudinal direction of the transmission line 20 is suspended by the suspension line 10 via a suspension spacer 50. In the embodiment, the upper transmission line 20 is suspended from the suspension line 10 through two suspension spacers 50 at substantially equal intervals in the longitudinal direction, and the middle and lower transmission lines 20 are One intermediate position in the longitudinal direction is suspended from the suspension line 10 via the suspension spacer 50. The position where the transmission line 20 is suspended from the suspension line 10 is not particularly limited. However, as described later, it is preferable to attach the transmission line 20 to three or less locations at substantially equal intervals in the longitudinal direction of the transmission line.

【0013】なお、図1において、60は引留め鉄塔3
0の頂部に架設された架空地線、70は引留め鉄塔30
位置の送電線20相互を電気的に接続したジャンパ線で
ある。
In FIG. 1, reference numeral 60 denotes the retaining tower 3.
An overhead ground wire erected at the top of the zero
It is a jumper wire that electrically connects the transmission lines 20 at the positions.

【0014】吊下げ用スペーサ50は、図2に示すよう
に、ポリマー碍子本体51の両端に送電線把持金具52
を取付けた構造であり、送電線把持金具52を取付ける
位置の吊線10および送電線20には、該吊線10およ
び送電線20を保護するためにアーマーロッド23が巻
き付けてある。
As shown in FIG. 2, suspending spacers 50 are provided at both ends of a polymer insulator main body 51 at a transmission wire gripping bracket 52.
The armor rod 23 is wound around the suspension line 10 and the transmission line 20 at the position where the transmission line gripping bracket 52 is to be mounted to protect the suspension line 10 and the transmission line 20.

【0015】上記のように吊線10に吊下げ用スペーサ
50を介して送電線20を吊り下げると、送電線20の
弛度を小さくすることができる。このために送電線20
の横振れを減少さることができる。例えば鉄塔間に高低
差が無い場合に送電線の中央部1ヵ所を吊った場合の横
揺れ量を図3を参照して計算すると次のようになる。図
3において、D1は送電線の吊り上げ前の弛度、D2は
送電線を吊り上げた後の弛度で、D2=1/2D1の関
係があるものとする。またθは横振れ角、L1はD1の
弛度の際の横振れ量、L2はD2の弛度の際の横振れ
量、L0は横振れ減衰量(L0=L1−L2)である。
横振れ減衰量L0を求めると次のようになる。 L1=D1sinθ、L2=D2sinθ=1/2D1
sinθ L0=L1−L2=1/2D1sinθ 今、θ=60°とすると、sin60°=0.866で
あるので、L0=0.43D1となる。したがって吊り
下げ前に比して43%横振れ量を低減させることができ
ることになる。
When the transmission line 20 is suspended from the suspension line 10 via the suspension spacer 50 as described above, the sag of the transmission line 20 can be reduced. Therefore, the transmission line 20
Can be reduced. For example, when there is no height difference between the towers, the roll amount when one center portion of the transmission line is hung with reference to FIG. 3 is calculated as follows. In FIG. 3, D1 is the sag before the transmission line is lifted, D2 is the sag after the transmission line is lifted, and it is assumed that D2 = 1 / 2D1. Θ is the lateral shake angle, L1 is the lateral shake amount at the time of the sag of D1, L2 is the lateral shake amount at the time of the sag of D2, and L0 is the lateral shake attenuation (L0 = L1−L2).
When the lateral vibration attenuation amount L0 is obtained, the result is as follows. L1 = D1 sin θ, L2 = D2 sin θ = 1 / D1
Sin θ L0 = L1−L2 = 1 / D1 sin θ Now, if θ = 60 °, since sin60 ° = 0.866, L0 = 0.43D1. Therefore, the lateral runout amount can be reduced by 43% as compared to before the suspension.

【0016】図4および図5は本発明を懸垂鉄塔35に
適用した場合であり、前記実施の形態と異なる点は、懸
垂碍子連100の中間部に連結金具110を挿入接続
し、該連結金具110に、吊線10の端部に接続した引
き留め碍子連11を連結した点である。なお、図5にお
いて、符号115は懸垂クランプ、118はアーマーロ
ッドである。その他の点は前記実施の形態と同一である
ので同一符号を付して説明を省略する。
FIGS. 4 and 5 show a case where the present invention is applied to a suspension tower 35. The difference from the above-described embodiment is that a connection fitting 110 is inserted and connected to an intermediate portion of a suspension insulator series 100. The point is that the retaining insulator string 11 connected to the end of the suspension line 10 is connected to 110. In FIG. 5, reference numeral 115 denotes a suspension clamp, and 118 denotes an armor rod. The other points are the same as those of the above-described embodiment, and thus the same reference numerals are given and the description is omitted.

【0017】上記のように、懸垂碍子連100の中間部
に連結金具110を挿入接続し、該連結金具110に、
吊線10の端部に接続した引き留め碍子連11を連結す
るように構成すると、懸垂鉄塔35の左右に位置した吊
線10にアンバランス荷重が作用した際、そのアンバラ
ンス荷重を、懸垂碍子連100が径間方向に流れること
によって吸収することができる。したがって懸垂鉄塔3
5に直接吊線10を引き留める場合に比して、懸垂鉄塔
35に有害な応力を作用させることがなくなるものであ
る。なお、懸垂碍子連100の中間部に挿入接続する連
結金具110は、懸垂碍子連100の下方側に挿入接続
することが、懸垂碍子連100の径間方向の流れを有効
に利用する点から好ましい。
As described above, the connection fitting 110 is inserted and connected to the intermediate portion of the suspension insulator string 100, and the connection fitting 110 is
When the suspension insulator string 11 connected to the end of the suspension wire 10 is connected, when an unbalance load is applied to the suspension wire 10 located on the left and right of the suspension tower 35, the suspension insulator train 100 applies the unbalance load. It can be absorbed by flowing in the span direction. Therefore, the suspension tower 3
No harmful stress is applied to the suspension tower 35 as compared with the case where the hanging wire 10 is directly retained at 5. It is preferable that the connection fitting 110 inserted and connected to the intermediate portion of the suspension insulator series 100 be inserted and connected below the suspension insulator series 100 from the viewpoint of effectively utilizing the flow of the suspension insulator series 100 in the radial direction. .

【0018】(実施例)図6は吊線として4種類の負の
線膨張特性を有する線状体を使用した場合において、吊
り下げ位置の相違によって送電線の弛度減少長さがどの
ように変化するか、および吊り下げ位置の相違によって
吊線と送電線を引留めた引留め鉄塔に加わる張力(吊線
の張力と送電線の張力を加えた張力をいう)がどのよう
に変化するか、を調べたものである。
(Embodiment) FIG. 6 shows how the sag reduction length of the transmission line changes depending on the hanging position when four types of linear bodies having negative linear expansion characteristics are used as the hanging lines. And how the tension applied to the retaining tower that holds the suspension line and the transmission line (meaning the tension of the suspension line and the transmission line) changes depending on the difference in the suspension position. It is a thing.

【0019】送電線として810mm2 の鋼心アルム撚
線を使用し、該鋼心アルム撚線を距離が300m離れた
引留め鉄塔間に初期張力3000kgfで架設した。ま
た、吊線としては、負の線膨張特性を有する、ケプラー
(弾性係数10000kgf/mm2 )、インバー鋼線
(弾性係数15400kgf/mm2 )、PBO繊維
(ポリパラフェニレンベンゾビスオキサゾール繊維)
(弾性係数28000kgf/mm2 )、炭素繊維(弾
性係数58800kgf/mm2 )を使用し、その断面
積を78.5mm2 の線状体とした。この吊線を初期張
力3000kgfで引留め鉄塔に架設した。したがって
引留め鉄塔には、合計5000kgfの張力が作用して
いることになる。
A 810 mm 2 steel core aluminum stranded wire was used as a power transmission line, and the steel core aluminum stranded wire was laid over an anchoring tower having a distance of 300 m at an initial tension of 3000 kgf. Kepler (elastic coefficient 10,000 kgf / mm 2 ), Invar steel wire (elastic coefficient 15400 kgf / mm 2 ), PBO fiber (polyparaphenylene benzobisoxazole fiber) having negative linear expansion characteristics
(Elastic coefficient 28000 kgf / mm 2 ) and carbon fiber (elastic coefficient 58800 kgf / mm 2 ) were used to form a linear body having a cross-sectional area of 78.5 mm 2 . This suspension line was erected on a retaining tower with an initial tension of 3000 kgf. Therefore, a total tension of 5000 kgf is acting on the retaining tower.

【0020】一方、吊線に吊り下げられる送電線の位置
は、送電線の略中央部1点、送電線を略3等分する2
点、送電線を略4等分する3点、送電線を略12等分す
る11点とした。
On the other hand, the position of the transmission line suspended by the suspension line is approximately one point at the center of the transmission line and divides the transmission line into approximately three equal parts.
Points, three points that divide the transmission line into approximately four equal parts, and 11 points that divide the transmission line into approximately twelve equal parts.

【0021】その結果を示したものが図6であり、横軸
に弾性係数(kgf/mm2 )をまた縦軸に弛度(m)
と張力(kgf)がとってある。イは送電線の略中央部
1点を吊った場合の送電線の弛度減少長さ、ロは送電線
を略3等分する2点を吊った場合の送電線の弛度減少長
さ、ハは送電線を略4等分する3点を吊った場合の送電
線の弛度減少長さ、ニは送電線を略12等分する11点
を吊った場合の送電線の弛度減少長さ、ホは送電線を略
12等分する11点を吊った場合に引留め鉄塔に加わる
張力、ヘは送電線の略中央部1点を吊った場合、送電線
を略3等分する2点を吊った場合および送電線を略4等
分する3点を吊った場合に引留め鉄塔に加わる張力をそ
れぞれ示している。
FIG. 6 shows the results, in which the horizontal axis represents the elastic modulus (kgf / mm 2 ) and the vertical axis represents the sag (m).
And tension (kgf). B is the sag reduction length of the transmission line when one point is suspended substantially at the center of the transmission line, b is the sag reduction length of the transmission line when two points that divide the transmission line into approximately three equal parts, C is the sag reduction length of the transmission line when three points that divide the transmission line into approximately four equal parts, and d is the sag reduction length of the transmission line when the eleven points that divide the transmission line into approximately twelve equal parts are suspended. E is the tension applied to the anchoring tower when 11 points, which divide the transmission line into approximately 12 equal parts, are divided. The tension applied to the retaining tower when a point is hung and when three points that divide the transmission line into approximately four equal parts are shown, respectively.

【0022】図6から、送電線の弛度の減少長さは、吊
り点が3ヵ所以上になっても変化が少ないこと、鉄塔支
持点に加わる張力は、吊り点が変化してもあまり変わら
ないこと、吊線の弾性係数を上げれば送電線の弛度は少
なくなるが、鉄塔支持点に加わる張力も増加することが
判る。例えばインバー鋼線を使用して3点を吊った場
合、送電線の弛度を74%低減することができ、また鉄
塔支持点に加わる張力も5000kgfであり初期張力
とほとんど変化がないことが判る。またPBO繊維を使
用して3点を吊った場合、送電線の弛度を58%低減す
ることができ、また鉄塔支持点に加わる張力が5500
kgf程度となることが判る。
From FIG. 6, it can be seen from FIG. 6 that the reduced length of the sag of the transmission line does not change much even if there are three or more suspension points, and that the tension applied to the tower support point does not change much even if the suspension point changes. It can be seen that, if the elastic modulus of the suspension line is increased, the sag of the transmission line is reduced, but the tension applied to the tower support point also increases. For example, when three points are hung using an Invar steel wire, the sag of the transmission line can be reduced by 74%, and the tension applied to the tower support point is 5000 kgf, which means that there is almost no change from the initial tension. . When three points are suspended using PBO fiber, the sag of the transmission line can be reduced by 58%, and the tension applied to the tower support point is 5500.
It turns out that it becomes about kgf.

【0023】上記のように、鉄塔間に架設された送電線
の略等間隔位置に取付ける吊下げ用スペーサの数は3ヵ
所以下で十分であるので、3ヵ所以下にすることが好ま
しく、また送電線の弛度を少なくするには吊線の弾性係
数を上げればよいが、吊線の弾性係数が上がると鉄塔支
持点に加わる張力も増加することから、吊線の弾性係数
は、10000〜30000kgf/mm2 の範囲にあ
ることが好ましいものである。
As described above, the number of suspension spacers to be installed at substantially equal intervals of the transmission line installed between the towers is sufficient at three or less, so it is preferable that the number is not more than three. to reduce the sag of the wire may be increased elasticity coefficient of the suspension wire, but since it also increases the tension applied to the steel tower support points when the elastic modulus of the suspension wire is increased, the elastic modulus of the suspension wire is, 10000~30000kgf / mm 2 Is preferably within the range.

【0024】なお上記実施の形態においては送電線の数
が1本である単導体に本発明を適用した場合を示した
が、本発明は送電線の数が複数本(例えば4本)である
複導体の送電線にも同様に適用できるものである。また
本発明で使用する吊下げ用スペーサの形状等は特に限定
するものではない。
In the above embodiment, the case where the present invention is applied to a single conductor having one transmission line has been described. However, the present invention has a plurality of transmission lines (for example, four). The present invention can be similarly applied to a multi-conductor power transmission line. The shape and the like of the suspension spacer used in the present invention are not particularly limited.

【0025】[0025]

【発明の効果】以上のように、本発明に係る架空送電線
路は、鉄塔間に吊線を架設し、該吊線に、吊下げ用スペ
ーサを介して送電線を吊下げてなる架空送電線路におい
て、前記吊線として負の線膨張特性を有する線状体を使
用したことを特徴とするものであるため、弛度の増加を
抑制することができる。したがって送電線の大きな横振
れも防止することができる。
As described above, the overhead transmission line according to the present invention is an overhead transmission line in which a suspension line is erected between steel towers and the transmission line is suspended on the suspension line via a suspension spacer. Since a linear body having a negative linear expansion characteristic is used as the suspension line, an increase in sag can be suppressed. Therefore, it is also possible to prevent a large lateral deflection of the transmission line.

【0026】また、負の線膨張特性を有する線状体とし
て、弾性係数が10000〜30000kgf/mm2
であるものを使用すると、鉄塔支持点に作用する張力の
増加を少なくすることができる。
The linear body having a negative linear expansion characteristic has an elastic modulus of 10,000 to 30,000 kgf / mm 2.
By using the above, the increase in tension acting on the tower support point can be reduced.

【0027】更に、吊下げ用スペーサを、鉄塔間に架設
された送電線の略等間隔位置に取付けかつその数を3個
以下にすると、吊下げ用スペーサの使用個数を少なくし
て効率良く弛度増加を抑制することができる。
Further, when the suspending spacers are installed at substantially equal intervals of the transmission line installed between the steel towers and the number of the suspending spacers is set to three or less, the number of the suspending spacers to be used is reduced and the suspending spacers are efficiently relaxed. The degree of increase can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る架空送電線路の一実施の形態を示
す斜視図。
FIG. 1 is a perspective view showing an embodiment of an overhead power transmission line according to the present invention.

【図2】本発明で使用する吊下げ用スペーサの一実施の
形態を示す正面図。
FIG. 2 is a front view showing an embodiment of a hanging spacer used in the present invention.

【図3】送電線の横振れ量を示す説明図。FIG. 3 is an explanatory diagram showing a lateral runout of a transmission line.

【図4】本発明の他の実施の形態を示す斜視図。FIG. 4 is a perspective view showing another embodiment of the present invention.

【図5】図4の要部拡大正面図。FIG. 5 is an enlarged front view of a main part of FIG. 4;

【図6】吊線として4種類の負の線膨張特性を有する線
状体を使用した場合において、吊り下げ位置の相違によ
る送電線の弛度減少長さの変化および吊り下げ位置の相
違による引留め鉄塔に加わる張力変化を示す図。
FIG. 6 shows a case where four types of linear bodies having negative linear expansion characteristics are used as suspension lines, and a change in a sag reduction length of a transmission line due to a difference in a suspension position and a retention due to a difference in a suspension position. The figure which shows the tension change added to a steel tower.

【符号の説明】[Explanation of symbols]

10 吊線 20 送電線 30 引留め鉄塔 35 懸垂鉄塔 50 吊下げ用スペーサ 60 架空地線 70 ジャンパ線 100 懸垂碍子 DESCRIPTION OF SYMBOLS 10 Suspension line 20 Transmission line 30 Retention tower 35 Suspension tower 50 Suspension spacer 60 Overhead ground wire 70 Jumper wire 100 Suspension insulator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄塔間に吊線を架設し、該吊線に、吊下
げ用スペーサを介して送電線を吊下げてなる架空送電線
路において、前記吊線として負の線膨張特性を有する線
状体を使用したことを特徴とする架空送電線路。
1. An overhead transmission line in which a suspension line is erected between steel towers and a transmission line is suspended via a suspension spacer, a linear body having a negative linear expansion characteristic is provided as the suspension line. An overhead power transmission line, which is used.
【請求項2】 負の線膨張特性を有する線状体は、弾性
係数が10000〜30000kgf/mm2 であるこ
とを特徴とする請求項1記載の架空送電線路。
2. The overhead transmission line according to claim 1, wherein the linear body having a negative linear expansion characteristic has an elastic modulus of 10,000 to 30,000 kgf / mm 2 .
【請求項3】 吊下げ用スペーサは、鉄塔間に架設され
た送電線の略等間隔位置に取付けられており、その数が
3個以下であることを特徴とする請求項1または請求項
2記載の架空送電線路。
3. The suspension spacer according to claim 1, wherein the number of the suspension spacers is three or less, and the suspension spacers are attached at substantially equal intervals of a transmission line installed between the towers. The overhead transmission line described.
JP6159897A 1997-03-17 1997-03-17 Overhead power transmission line Pending JPH10262320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6159897A JPH10262320A (en) 1997-03-17 1997-03-17 Overhead power transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6159897A JPH10262320A (en) 1997-03-17 1997-03-17 Overhead power transmission line

Publications (1)

Publication Number Publication Date
JPH10262320A true JPH10262320A (en) 1998-09-29

Family

ID=13175763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6159897A Pending JPH10262320A (en) 1997-03-17 1997-03-17 Overhead power transmission line

Country Status (1)

Country Link
JP (1) JPH10262320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129094A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite electric wire
CN105002824A (en) * 2014-07-27 2015-10-28 方彩琴 Steel fluid pipeline power transmission line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129094A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite electric wire
CN105002824A (en) * 2014-07-27 2015-10-28 方彩琴 Steel fluid pipeline power transmission line

Similar Documents

Publication Publication Date Title
CN106786290A (en) A kind of pendulous device for preventing ground wire to fall and break
CN213585093U (en) Pre-twisted suspension clamp special for carbon fiber composite core wire
CA1174726A (en) Overhead electric and optical transmission system with suspension safety means
JPH10262320A (en) Overhead power transmission line
JP4334377B2 (en) Loose spacer for multiconductor, interphase spacer, mounting method of interphase spacer, and jumper structure of multiconductor transmission line
CN206272195U (en) A kind of pendulous device for preventing ground wire to fall and break
US3443019A (en) Spacer damper
CN214900077U (en) Vibration-proof hammer wire clamp with convex points
JP2851074B2 (en) Multi-conductor transmission line
JPH01129709A (en) Overhead conductor line
JPH08154318A (en) Overhead transmission line, cable hanger device and stringing method of cable
CN219512454U (en) ADSS optical cable capable of preventing cross wind vibration
JPH0767236A (en) Traversal swing preventer for jumper wire
JPH0614441A (en) Prevention method of ground fault trouble caused by overhead earth wire disconnection
JPH0314916Y2 (en)
JP2952395B2 (en) Y suspension suspension insulator device
JPH07336854A (en) Jumper device for composite optical fiber overhead ground-wire
JPH0326572Y2 (en)
JPS6115512A (en) Aerial electric wire line
JP2001270348A (en) Overhead wire supporting device
JP2910934B2 (en) Multi-conductor transmission line
JPS59164507A (en) Method for suspending self-support type optical cable
JP3764021B2 (en) Multi-conductor transmission line galloping prevention device
Jones et al. Comparative stress-strain characteristics of ACSR and SDC overhead conductors
JP2534257B2 (en) Method of preventing galloping of multi-conductor transmission line