JPH10261238A - Optical pickup device - Google Patents
Optical pickup deviceInfo
- Publication number
- JPH10261238A JPH10261238A JP9211247A JP21124797A JPH10261238A JP H10261238 A JPH10261238 A JP H10261238A JP 9211247 A JP9211247 A JP 9211247A JP 21124797 A JP21124797 A JP 21124797A JP H10261238 A JPH10261238 A JP H10261238A
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- light
- central
- area
- pickup device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,基板厚の異なる情
報記録媒体に対して互換性を保つことができるようにし
た光ピックアップ装置に関する。[0001] 1. Field of the Invention [0002] The present invention relates to an optical pickup device capable of maintaining compatibility with information recording media having different substrate thicknesses.
【0002】[0002]
【従来の技術】従来,対物レンズによりレーザ光を集光
してレーザスポットを形成し,当該レーザスポットを情
報記録媒体(以下,ディスクという)の記録部材に照射
することにより,マーク(ピット)を形成して情報の記
録を行い,また記録部材からの反射光を受光して当該記
録部材に記録されている情報の再生を行う光ピックアッ
プ装置が知られている。なお,以下の説明ではマークが
存在する領域をマーク領域と称し,当該マーク領域の間
の領域をスペース領域と称する。2. Description of the Related Art Conventionally, a laser beam is condensed by an objective lens to form a laser spot, and the laser spot is applied to a recording member of an information recording medium (hereinafter, referred to as a disk) to form a mark (pit). 2. Description of the Related Art There is known an optical pickup device which forms and records information, and receives reflected light from a recording member to reproduce information recorded on the recording member. In the following description, an area where a mark exists is called a mark area, and an area between the mark areas is called a space area.
【0003】近年の高密度情報化の要請を受けて,前記
ディスクにおいてもいわゆるDVDと称される高記録密
度ディスクが開発されている。In response to recent demands for higher-density information, a high-recording-density disk called a so-called DVD has been developed as the above-mentioned disk.
【0004】かかるディスクは,プラスチック等の透明
部材により記録部材が挟まれた構成になっており,レー
ザ光が照射される側の透明部材(この透明部材を特に透
明基板と記載する)の厚みは,従来の記録密度を持つデ
ィスクでは1.2mmであり,DVDでは0.6mmと
なっている。Such a disk has a structure in which a recording member is sandwiched between transparent members such as plastics. The thickness of a transparent member to which laser light is irradiated (this transparent member is particularly referred to as a transparent substrate) has a thickness. The diameter is 1.2 mm for a disk having a conventional recording density, and 0.6 mm for a DVD.
【0005】なお,本明細書では従来の記録密度を持つ
ディスクを標準密度ディスク,当該標準密度ディスクに
対して高記録密度化されたディスクを高密度ディスクと
いい,これらを総称し,又は特に区別する必要がないと
きは単にディスクという。従って,高密度ディスクはD
VDに限定されないが,以下の説明ではこれを例に説明
する。In this specification, a disk having a conventional recording density is called a standard density disk, and a disk having a higher recording density than the standard density disk is called a high density disk. When you don't need to do that, you simply call it a disk. Therefore, the high density disk is D
Although not limited to VD, this will be described as an example in the following description.
【0006】かかる高記録密度ディスクの開発に伴い,
光ピックアップ装置の付加価値を高める観点から,透明
基板の厚みが異なるディスクに対しても情報の記録又は
再生等が行えることが望まれている。With the development of such high recording density disks,
From the viewpoint of increasing the added value of the optical pickup device, it is desired that information can be recorded or reproduced on disks having different thicknesses of the transparent substrate.
【0007】記録部材に記録された情報を適正に再生す
るためには,レーザスポット径を標準密度ディスクで約
1.5μm,高密度ディスクで約0.95μmに集光す
る必要がある。レーザスポット径は,対物レンズと透明
基板との光学特性により決るため,透明基板厚の異なる
ディスクに対して同一の対物レンズを用いて同一波長の
レーザ光を集光すると,集光されたレーザ光の周辺部に
おける球面収差が大きくなり,当該球面収差が大きくな
った周辺部分が記録部材面上に合焦しなくなる。このた
め,標準密度ディスクと高密度ディスクとの互換性が保
もたれなくなる問題が指摘されている。In order to properly reproduce the information recorded on the recording member, it is necessary to converge the laser spot diameter to about 1.5 μm for a standard density disc and about 0.95 μm for a high density disc. Since the laser spot diameter is determined by the optical characteristics of the objective lens and the transparent substrate, when laser light of the same wavelength is focused on disks with different transparent substrate thicknesses using the same objective lens, the focused laser light The spherical aberration in the peripheral portion becomes large, and the peripheral portion in which the spherical aberration becomes large does not focus on the recording member surface. For this reason, it has been pointed out that the compatibility between the standard density disk and the high density disk cannot be maintained.
【0008】そこで,透明基板厚が薄い高密度ディスク
に対して球面収差が最も小さくなるように対物レンズを
最適設計し,透明基板厚の厚い標準密度ディスクに対し
ては対物レンズに入射するレーザ光の周辺部をアパーチ
ャ等を用いて遮光する光ピックアップ装置が提案されて
いる。Therefore, an objective lens is optimally designed to minimize spherical aberration for a high-density disk having a thin transparent substrate, and a laser beam incident on the objective lens is applied to a standard-density disk having a thick transparent substrate. An optical pickup device has been proposed in which the peripheral portion of the optical pickup is shielded using an aperture or the like.
【0009】かかる問題を図を参照して説明する。図1
1は,高密度ディスクに対して光学特性が最適設計され
た対物レンズを用いてレーザ光を集光した際の集光状態
を示す図で,図11(a)は高密度ディスクHD,図1
1(b)は標準密度ディスクLDの場合を示している。This problem will be described with reference to the drawings. FIG.
FIG. 11A is a diagram showing a focusing state when a laser beam is focused using an objective lens whose optical characteristics are optimally designed for a high-density disc. FIG.
1 (b) shows the case of the standard density disk LD.
【0010】図11(a)からわかるように,対物レン
ズの光学特性が高密度ディスクHDに対して最適設計さ
れている場合には,当該対物レンズにより集光された全
てのレーザ光Lを記録部材M面上に合焦させることがで
きるが,かかる対物レンズを標準密度ディスクLDに対
して用いると,図11(b)に見られるようにレーザ光
Lの周辺部が合焦せず略中央部分のみ合焦した状態とな
る。As can be seen from FIG. 11A, when the optical characteristics of the objective lens are optimally designed for the high-density disk HD, all the laser beams L condensed by the objective lens are recorded. Focusing can be performed on the surface of the member M. However, when such an objective lens is used for a standard density disk LD, the peripheral portion of the laser beam L is not focused and substantially at the center as shown in FIG. Only the part is in focus.
【0011】即ち,レーザ光Lの光軸に近い部分は,良
好に記録部材Mの面上に合焦させることができるが,当
該レーザ光Lの周辺部は,大きな球面収差により記録部
材M面上に合焦させることができなくなり,当該周辺部
分はぼやけた状態となる。That is, the portion near the optical axis of the laser beam L can be favorably focused on the surface of the recording member M, but the peripheral portion of the laser beam L has a large spherical aberration due to the large spherical aberration. The focus cannot be focused upward, and the peripheral portion becomes blurred.
【0012】ここで,高密度ディスクに対しては対物レ
ンズの有効径内全ての光線に対し集光特性が最適化され
ているので,「最適設計」と言いい,標準ディスクに対
しては中心部の光線は良好に集光しても(最適化されて
いても),外周部も含めた対物レンズの有効径全てに対
して最適化は不可能であるのでこのいみで「最適化され
ていない」と記載する。Here, for a high-density disc, the light-collecting characteristics are optimized for all rays within the effective diameter of the objective lens. Even if the light rays of the part are well condensed (even if they are optimized), it is impossible to optimize the entire effective diameter of the objective lens including the outer peripheral part. No. "
【0013】図12(a),(b)は,レーザ光が記録
部材の面上に良好に集光された際の反射光の光強度分布
を示す模式図で,ドット密度により光強度分布を示して
いる。図12(a)は,スペース領域にレーザ光Lが照
射されたときの反射光の光強度分布を示し,図12
(b)は,マーク領域にレーザ光Lが照射されたときの
反射光の光強度分布を示している。FIGS. 12A and 12B are schematic diagrams showing the light intensity distribution of the reflected light when the laser light is satisfactorily focused on the surface of the recording member. Is shown. FIG. 12A shows the light intensity distribution of the reflected light when the laser light L is applied to the space area.
(B) shows the light intensity distribution of the reflected light when the mark area is irradiated with the laser light L.
【0014】同図からわかるように,スペース領域から
の反射光の周辺部には,光強度の強い部分Iaが「島
状」に存在している。一方,マーク領域からの反射光の
周辺部には,このような光強度の強い部分が存在してい
ない。As can be seen from FIG. 1, a portion Ia having a high light intensity exists in an "island" around the periphery of the reflected light from the space area. On the other hand, there is no such a portion with high light intensity around the reflected light from the mark area.
【0015】そして,スペース領域及びマーク領域から
の反射光の光強度分布は,所定の円Ibにより区分けす
ることができ,スペース領域からの反射光では当該円I
bにより島状領域が存在する領域を,またマーク領域か
らの反射光では当該円Ibにより光強度が強い領域を識
別することが可能である。The light intensity distribution of the reflected light from the space area and the mark area can be divided by a predetermined circle Ib.
It is possible to identify a region where an island region exists by b, and a region with high light intensity by the circle Ib in the reflected light from the mark region.
【0016】この様な状況でレーザスポットがトラック
を走査すると,その反射光の信号強度は,図12(c)
における曲線Icのようになる。なお比較のために,後
述するアパーチャにより対物レンズに入射するレーザ光
の周辺部を遮光した場合の信号強度を曲線Idとして示
している。When the laser spot scans the track in such a situation, the signal intensity of the reflected light becomes as shown in FIG.
As in the curve Ic. For comparison, the signal intensity when the peripheral portion of the laser beam incident on the objective lens is shielded by an aperture described later is shown as a curve Id.
【0017】信号強度は,マーク中央部で最小値を示す
変化を示している。そこで,例えば閾値を適宜設定する
ならば,信号強度が当該閾値を越えるか否かでマーク領
域とスペース領域との識別が可能になる。この場合,マ
ーク領域とスペース領域とを正確又は明確に識別するた
めには,信号強度の変化量Dが大きいことが要求され
る。The signal strength shows a change that shows a minimum value at the center of the mark. Therefore, for example, if a threshold value is appropriately set, it is possible to discriminate between the mark area and the space area based on whether the signal intensity exceeds the threshold value. In this case, in order to accurately or clearly distinguish between the mark area and the space area, it is required that the change amount D of the signal strength is large.
【0018】しかし,レーザスポットの周辺部での球面
収差が大きくなり,記録部材M面上に合焦しない部分が
生じてレーザースポット径が大きくなると,レーザスポ
ットの中心部がマーク領域の中央部を照射していても,
当該レーザスポットの周辺部がスペース領域を照射して
いる状況が生じて,信号強度の変化量Dを大きくするこ
とが困難になる。However, when the spherical aberration at the peripheral portion of the laser spot becomes large and an unfocused portion is formed on the surface of the recording member M and the laser spot diameter becomes large, the central portion of the laser spot moves to the central portion of the mark area. Even when irradiating,
A situation occurs in which the peripheral portion of the laser spot irradiates the space area, and it becomes difficult to increase the variation D of the signal intensity.
【0019】この様な問題に対してアパーチャにより対
物レンズに入射するレーザスポットの周辺部を遮光し
て,対物レンズで集光されたレーザスポットに球面収差
の大きい周辺部分が含まれないようにして,ディスクに
入射するレーザ光が全て合焦し得るようにする方法が提
案されている(例えば,応用物理学会予講集 平成7年
秋 29a−ZA−6 「厚さの異なる2種類のディス
クにおける互換性の検討」 を参照されたい)。To solve such a problem, the peripheral portion of the laser spot incident on the objective lens is shielded by the aperture so that the laser spot condensed by the objective lens does not include a peripheral portion having a large spherical aberration. A method has been proposed in which all the laser beams incident on a disc can be focused (for example, JSAP Preliminary Proceedings, Fall 1995, 29a-ZA-6, "Compatibility between two types of discs having different thicknesses"). Examination of gender ”).
【0020】[0020]
【発明が解決しようとする課題】しかしながら,少なく
とも対物レンズの光学特性が一方のディスクに対して最
適設計されている場合には,当該ディスクの記録再生を
行うときはアパーチャが不要となる。従って,ディスク
の種類に対応して,アパーチャを光路から出し入れする
必要がある。例えば,対物レンズの光学特性が高密度デ
ィスクHDに対して最適設計されている場合に,高密度
ディスクHDを再生するときはアパーチャを光路から待
避させ,標準密度ディスクLDを再生するときはアパー
チャを光路に挿入する必要がある。However, when the optical characteristics of at least the objective lens are optimally designed for one disk, an aperture is not required when recording and reproducing the disk. Therefore, it is necessary to move the aperture in and out of the optical path according to the type of the disk. For example, when the optical characteristics of the objective lens are optimally designed for the high-density disc HD, the aperture is retracted from the optical path when reproducing the high-density disc HD, and the aperture is used when reproducing the standard-density disc LD. It must be inserted in the optical path.
【0021】このためアパーチャを出し入れするための
機構が別途必要になると共に,当該アパーチャの挿入位
置の位置精度に高精度が要求され,またアパーチャの出
し入れ機構の部品や組立てに対しても高精度が要求され
るので光ピックアップ装置の生産性を低下及びコストア
ップを招く問題がある。For this reason, a mechanism for inserting and removing the aperture is required separately, and a high precision is required for the positional accuracy of the insertion position of the aperture, and a high precision is also required for parts and assembly of the aperture removing mechanism. Since it is required, there is a problem that productivity of the optical pickup device is reduced and cost is increased.
【0022】そこで本発明は,アパーチャを用いること
なく反射光における球面収差の影響が大きい周辺部を中
央部と分離して受光可能にし,球面収差の影響の少ない
高品質な信号を検出することが可能な光ピックアップ装
置を提供することを目的とする。Accordingly, the present invention is to separate a peripheral portion, which is largely affected by spherical aberration in reflected light, from a central portion so as to be able to receive light without using an aperture, and to detect a high-quality signal which is less affected by spherical aberration. It is an object to provide a possible optical pickup device.
【0023】[0023]
【課題を解決するための手段】請求項1にかかる発明
は,透明基板の基板厚が異なる情報記録媒体にレーザ光
を射出するレーザ発生手段と,少なくとも一方の情報記
録媒体に対して光学特性が最適設計されて,入射したレ
ーザ光を集光する対物レンズと,情報記録媒体からの反
射光を受光して再生信号及びサーボ信号を出力する受光
手段とを有する光ピックアップ装置において,受光手段
が,対物レンズの光学特性を最適設計していない情報記
録媒体からの反射光における球面収差の影響が小さい中
央部分を受光する中央光受光領域を有することを特徴と
する。According to the first aspect of the present invention, there is provided a laser generating means for emitting a laser beam to an information recording medium having a transparent substrate having a different substrate thickness, and an optical characteristic for at least one of the information recording mediums. In an optical pickup device which is optimally designed and has an objective lens for condensing incident laser light and a light receiving means for receiving reflected light from an information recording medium and outputting a reproduction signal and a servo signal, the light receiving means comprises: It is characterized by having a central light receiving area for receiving a central portion where the influence of spherical aberration on reflected light from an information recording medium for which optical characteristics of the objective lens is not optimally designed is small.
【0024】即ち,対物レンズの光学特性を基板厚の異
なる情報記録媒体の一方に対して最適設計した場合に,
他方の情報記録媒体からの反射光には球面収差の影響が
大きい周辺部が含まれるので,当該周辺部以外の反射光
のみを受光する中央光受光領域を受光手段に形成したこ
とを特徴とする。That is, when the optical characteristics of the objective lens are optimally designed for one of the information recording media having different substrate thicknesses,
Since the reflected light from the other information recording medium includes a peripheral portion which is greatly affected by spherical aberration, a central light receiving area for receiving only reflected light other than the peripheral portion is formed in the light receiving means. .
【0025】請求項2にかかる発明は,グレーティング
が一様に形成されて,入射した反射光を±n次(n=
0,1,…)の回折光としてそれぞれ異なる角度で回折
する回折手段を有し,受光手段が,回折手段による+次
数の回折光を受光する正次数受光部と,−次数の回折光
を受光する負次数受光部とを有すると共に,回折手段に
形成されたグレーティング方向と直交する方向に配設さ
れ,かつ,正又は負次数受光部の一方に中央光受光領域
が形成されてなることを特徴とする。According to a second aspect of the present invention, the grating is formed uniformly, and the incident reflected light is reflected by ± nth order (n =
0, 1,...) Diffracting means for diffracting the diffracted light at different angles, the light receiving means receiving a positive order light receiving section for receiving the + order diffracted light by the diffracting means, and receiving the negative order diffracted light. And a negative order light receiving section, which is arranged in a direction orthogonal to the grating direction formed on the diffraction means, and a central light receiving area is formed in one of the positive or negative order light receiving section. And
【0026】即ち,回折手段が反射光を±n次(n=
0,1,…)の回折光として回折し,かつ,+次数の回
折光と−次数の回折光とは,0次光を中心に反対方向に
回折されるので,+次数の回折光を受光する正次数受光
部と−次数の回折光を受光する負次数受光部とにより受
光手段を形成する。そして,例えば,薄い基板厚の情報
記録媒体からの反射光における回折光を正次数受光部で
受光し,厚い基板厚の情報記録媒体からの反射光におけ
る回折光を負次数受光部で受光するようにして,少なく
とも正,負次数受光部のどちらかに中央光受光領域を形
成したことを特徴とする。That is, the diffracting means converts the reflected light into ± n orders (n =
0, 1,...), And the + order diffracted light and the − order diffracted light are diffracted in opposite directions around the 0 order light, so that the + order diffracted light is received. A light receiving means is formed by a positive order light receiving unit for receiving the negative order diffracted light and a negative order light receiving unit for receiving the negative order diffracted light. Then, for example, the diffracted light in the reflected light from the information recording medium having a small substrate thickness is received by the positive-order light receiving portion, and the diffracted light in the reflected light from the information recording medium having the thick substrate is received by the negative-order light receiving portion. And a central light receiving area is formed in at least one of the positive and negative order light receiving sections.
【0027】請求項3にかかる発明は,正及び負次数受
光部のそれぞの略中心部に受光中心領域が形成され,そ
の内の1つが中央光受光領域をなし,かつ,2つの受光
中心領域の少なくとも1つが2分割されて,当該分割さ
れた各領域からの光電変換信号の差分に基づきトラッキ
ング信号を検出することを特徴とする。According to a third aspect of the present invention, a light receiving center region is formed at a substantially central portion of each of the positive and negative order light receiving portions, one of which forms a central light receiving region and two light receiving centers. At least one of the regions is divided into two, and a tracking signal is detected based on a difference between photoelectric conversion signals from each of the divided regions.
【0028】即ち,正及び負次数受光部の略中心部に受
光中心領域を形成する。このとき,正又は負次数受光部
の一方が中央光受光領域となるようにする。そして,正
及び負次数受光部の受光中心領域を,例えばトラッキン
グにより受光面上の反射光が移動する方向と直交する方
向に2分割して,当該分割された受光中心領域からの光
電変換信号の差分に基づきトラッキング信号を検出する
ようにしたことを特徴とする。That is, a light receiving center region is formed substantially at the center of the positive and negative order light receiving portions. At this time, one of the positive or negative order light receiving sections is set as the central light receiving area. Then, the light receiving central area of the positive and negative order light receiving sections is divided into two in a direction orthogonal to the direction in which the reflected light moves on the light receiving surface by tracking, for example, and the photoelectric conversion signal from the divided light receiving central area is divided. A tracking signal is detected based on the difference.
【0029】請求項4にかかる発明は,正及び負次数受
光部のそれぞの略中心部に受光中心領域が形成され,そ
の内の1つが中央光受光領域をなし,かつ,2つの受光
中心領域がの少なくとも1つが2分割され,その内の1
つが当該2分割した方向と直角方向に更に2分割され
て,当該更に分割した各領域からの光電変換信号の差分
に基づきトラッキング信号を検出することを特徴とす
る。According to a fourth aspect of the present invention, a light receiving center region is formed at a substantially central portion of each of the positive and negative order light receiving portions, one of which forms a central light receiving region and two light receiving centers. At least one of the regions is divided into two, one of which
One is further divided into two in the direction perpendicular to the direction of the two divisions, and a tracking signal is detected based on a difference between photoelectric conversion signals from each of the further divided regions.
【0030】即ち,正及び負次数受光部の略中心部に受
光中心領域を形成する。このとき,正又は負次数受光部
の一方が中央光受光領域となるようにする。そして,正
及び負次数受光部の受光中心領域を,例えばトラッキン
グにより受光面上の反射光が移動する方向に2分割し,
さらにその内の1つをトラッキングにより受光面上の反
射光が移動する方向と直交する方向に2分割する。そし
て,トラッキングにより受光面上の反射光が移動する方
向と直交する方向に2分割された領域からの光電変換信
号の差分に基づきトラッキング信号を検出するようにし
たことを特徴とする。That is, a light receiving center region is formed substantially at the center of the positive and negative order light receiving portions. At this time, one of the positive or negative order light receiving sections is set as the central light receiving area. Then, the light receiving center area of the positive and negative order light receiving units is divided into two in the direction in which the reflected light on the light receiving surface moves by, for example, tracking,
Further, one of them is divided into two by tracking in a direction orthogonal to the direction in which the reflected light on the light receiving surface moves. A tracking signal is detected based on a difference between photoelectric conversion signals from a region divided into two in a direction orthogonal to a direction in which reflected light on the light receiving surface moves by tracking.
【0031】請求項5にかかる発明は,対物レンズの光
学特性を最適設計した情報記録媒体からの反射光におけ
る回折光から再生信号を検出するときは,中央光受光領
域と当該中央光受光領域の周囲に形成された受光周囲領
域とからの光電変換信号により検出し,また対物レンズ
の光学特性を最適設計していない情報記録媒体からの反
射光における回折光から再生信号を検出するときは,中
央光受光領域からの光電変換信号により検出することを
特徴とする。According to a fifth aspect of the present invention, when a reproduced signal is detected from a diffracted light in a reflected light from an information recording medium in which an optical characteristic of an objective lens is optimally designed, the central light receiving region and the central light receiving region are detected. When the detection is performed based on the photoelectric conversion signal from the surrounding light receiving peripheral area formed and the reproduced signal is detected from the diffracted light of the reflected light from the information recording medium for which the optical characteristics of the objective lens are not optimally designed, the center is used. The detection is performed by a photoelectric conversion signal from the light receiving area.
【0032】即ち,対物レンズの光学特性を最適設計し
た情報記録媒体からの反射光における回折光から再生信
号を検出するときは,中央光受光領域と当該中央光受光
領域の周囲に形成された受光周囲領域とからの光電変換
信号により検出し,また対物レンズの光学特性を最適設
計していない情報記録媒体からの反射光における回折光
から再生信号を検出するときは,中央光受光領域からの
光電変換信号により検出して,再生信号を中央光受光領
域が形成された正又は負次数受光部のみから検出するよ
うにしたことを特徴とする。That is, when a reproduced signal is detected from the diffracted light in the reflected light from the information recording medium in which the optical characteristics of the objective lens are optimally designed, the central light receiving area and the light receiving formed around the central light receiving area are detected. When the reproduction signal is detected from the diffracted light in the reflected light from the information recording medium for which the optical characteristics of the objective lens are detected by the photoelectric conversion signal from the surrounding area and the optical characteristics of the objective lens are not optimally designed, The reproduced signal is detected only from the positive or negative order light receiving section in which the central light receiving area is formed by detecting the converted signal.
【0033】請求項6にかかる発明は,正及び負次数受
光部のそれぞれの略中心部に受光中心領域が形成され,
その内の1つが中央光受光領域をなして,これら2つの
受光中心領域がグレーティング方向に分割されてなるこ
とを特徴とする。According to a sixth aspect of the present invention, a light receiving center region is formed substantially at the center of each of the positive and negative order light receiving portions.
One of them forms a central light receiving area, and these two light receiving central areas are divided in the grating direction.
【0034】即ち,正及び負次数受光部のそれぞれの略
中心部に受光中心領域が形成され,その内の1つが中央
光受光領域をなして,中央光受光領域をなす受光中心領
域は,対物レンズの光学特性を最適設計していない情報
記録媒体からの反射光における球面収差の影響が小さい
中央部分のみを受光し,他方の受光中心領域は対物レン
ズの光学特性を最適設計した情報記録媒体からの反射光
を全て受光する。また,例えば温度変化によりレーザ発
生手段から出射されるレーザー光の波長が変動すると,
回折光の回折角はグレーティング方向と直交する面内で
変化するので,それぞれの受光中心領域に当該グレーテ
ィング方向と直交する方向に分割線を形成して分割し,
これにより回折角が変動しても回折光が対応する受光領
域から外れないようにしたことを特徴とする。That is, a light receiving center area is formed at substantially the center of each of the positive and negative order light receiving sections, one of which forms a central light receiving area, and the light receiving central area forming the central light receiving area is an object. Only the central part where the influence of spherical aberration on the reflected light from the information recording medium for which the optical characteristics of the lens is not optimally designed is small is received, and the other light receiving central region is from the information recording medium for which the optical characteristics of the objective lens are optimally designed. All reflected light is received. Also, for example, when the wavelength of the laser light emitted from the laser generating means changes due to a temperature change,
Since the diffraction angle of the diffracted light changes in a plane perpendicular to the grating direction, a dividing line is formed in each light receiving center area in a direction perpendicular to the grating direction, and the light is divided.
Thereby, even if the diffraction angle changes, the diffracted light is prevented from deviating from the corresponding light receiving area.
【0035】請求項7にかかる発明は,中央光受光領域
の周囲に,受光周囲領域を2重に形成し,かつ,中央光
受光領域及び2つの周囲光受光領域が2分割されてなる
ことを特徴とする。According to a seventh aspect of the present invention, the light receiving peripheral region is formed doubly around the central light receiving region, and the central light receiving region and the two peripheral light receiving regions are divided into two. Features.
【0036】即ち,受光手段に形成された中央光受光領
域の周囲に周囲光受光領域が2重に形成し,かつ,中央
光受光領域及び2つの周囲光受光領域を2分割する。そ
して,対物レンズの光学特性が最適設計された情報記録
媒体からの反射光における回折光から再生信号を検出す
るときは,2つの周囲光受光領域と中央光受光領域とか
らの光電変換信号から検出し,また対物レンズの光学特
性が最適設計されていない情報記録媒体からの反射光に
おける回折光から再生信号を検出するときは,中央光受
光領域からの光電変換信号により検出することを特徴と
する。That is, the surrounding light receiving region is formed doubly around the central light receiving region formed in the light receiving means, and the central light receiving region and the two surrounding light receiving regions are divided into two. When a reproduced signal is detected from the diffracted light in the reflected light from the information recording medium in which the optical characteristics of the objective lens are optimally designed, the detected signal is detected from the photoelectric conversion signals from the two ambient light receiving areas and the central light receiving area. When the reproduction signal is detected from the diffracted light of the reflected light from the information recording medium whose optical characteristics of the objective lens are not optimally designed, it is detected by the photoelectric conversion signal from the central light receiving area. .
【0037】請求項8にかかる発明は,レーザ発生手段
と受光手段とが,ユニット化されていることを特徴とす
る。The invention according to claim 8 is characterized in that the laser generating means and the light receiving means are unitized.
【0038】即ち,レーザ発生手段と受光手段とを,1
つの缶に収納してユニット化したことを特徴とする。That is, the laser generating means and the light receiving means are
It is characterized by being housed in one can and unitized.
【0039】[0039]
【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。図1は本発明にかかる光ピックアップ装置
における光学系の概略構成図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an optical system in an optical pickup device according to the present invention.
【0040】当該光ピックアップ装置は,レーザ光を出
射するレーザ発生手段1,該レーザ発生手段1からのレ
ーザ光を収束して略平行光にするコリメートレンズ2,
該コリメートレンズ2からのレーザ光を通過させると共
に,ディスクからの反射光を偏向するビームスプリッタ
3,高密度ディスクHDに対して所定の開口数に対して
収差が小さくなるように光学特性が最適設計されて,入
射するレーザ光を集光する対物レンズ5,反射光を収束
する検出レンズ10,該検出レンズ10により収束され
た反射光を回折するホログラム11,回折光を受光して
トラッキング信号,フォーカス信号及び再生信号を出力
する受光手段20等を有している。The optical pickup device comprises a laser generating means 1 for emitting laser light, a collimating lens 2 for converging the laser light from the laser generating means 1 into substantially parallel light,
A beam splitter 3 that allows the laser beam from the collimating lens 2 to pass and deflects the reflected light from the disk. Optimal optical characteristics of the high-density disk HD are designed so that the aberration is reduced for a predetermined numerical aperture. Then, an objective lens 5 for condensing the incident laser light, a detection lens 10 for converging the reflected light, a hologram 11 for diffracting the reflected light converged by the detection lens 10, a tracking signal for receiving the diffracted light, and a focus signal It has a light receiving means 20 for outputting a signal and a reproduction signal.
【0041】なお,図示しないがコリメートレンズと検
出レンズを共通にする構成も可能である。Although not shown, a configuration in which the collimator lens and the detection lens are used in common is also possible.
【0042】図2(a)に示すように,ホログラム11
にはグレーティングが一様方向に形成されて,入射した
反射光を所定面内で回折するようになっている。このよ
うにグレーティングを一様方向に形成すると,当該ホロ
グラム11が容易に製作でき,低コスト化が図られる利
点がある。As shown in FIG. 2A, the hologram 11
Has a grating formed in a uniform direction to diffract incident reflected light within a predetermined plane. When the grating is formed in a uniform direction in this manner, there is an advantage that the hologram 11 can be easily manufactured and cost can be reduced.
【0043】受光手段20は,図2(b)に示すように
2つの受光部21,22を有し,受光部21は領域21
a〜21dに分割され,受光部22は領域22a〜22
dに分割されて,各領域21a〜21d,22a〜22
dからは,光電変換信号S21a〜S21d,S22a
〜S22dが出力される。The light receiving means 20 has two light receiving portions 21 and 22 as shown in FIG.
a to 21d, and the light receiving unit 22 is divided into regions 22a to 22d.
d, and each of the regions 21a to 21d, 22a to 22
d, the photoelectric conversion signals S21a to S21d, S22a
To S22d are output.
【0044】領域21b〜21d,22b〜22dは受
光中心領域をなし,領域21a,22aは受光周囲領域
をなしている。The areas 21b to 21d and 22b to 22d form a light receiving center area, and the areas 21a and 22a form light receiving peripheral areas.
【0045】ここで受光部21は,標準密度ディスクL
Dからの反射光の受光に用いられ,受光部22は高密度
ディスクHDからの反射光の受光に用いられるものとす
る。この場合,高密度ディスクHDに対して光学特性が
最適設計された対物レンズ5を用いて,透明基板厚の厚
い標準密度ディスクLDに対してレーザ光の集光を行う
と,当該レーザ光の周辺部が記録部材面上に合焦せず,
中央部のみが合焦した状態になるので,受光部21の受
光中心領域21b〜21dは,当該反射光における周辺
部を受光しないように形成されて,中央光受光領域をな
している。Here, the light receiving section 21 is a standard density disc L
The light receiving unit 22 is used for receiving the reflected light from the high-density disk HD. In this case, when the laser beam is condensed on the standard density disc LD having a thick transparent substrate using the objective lens 5 whose optical characteristics are optimally designed for the high density disc HD, the periphery of the laser beam is Part does not focus on the recording member surface,
Since only the central portion is in focus, the light receiving central regions 21b to 21d of the light receiving portion 21 are formed so as not to receive the peripheral portion of the reflected light, forming a central light receiving region.
【0046】ところで,光が回折すると±n次光(n=
0,±1,±2…)に分離され,0次光は光路を変えな
いが,+1次光,+2次光…等と,−1次光,−2次光
…等とは,0次光を挟んで逆方向に回折され,同次数の
回折光の光強度は同じになる。By the way, when the light is diffracted, ± n-order light (n =
0, ± 1, ± 2 ...), and the 0th-order light does not change the optical path, but the + 1st-order light, + 2nd-order light, etc., and the -1st-order light, -2nd-order light, etc. are the 0th-order light. The light is diffracted in the opposite direction across the light, and the light intensity of the diffracted light of the same order becomes the same.
【0047】そこで,+次数光側(図2(b)では左側
としている)の光路に標準密度ディスクLDからの反射
光を受光する受光部21を配設し,これを正次数受光部
21と記載し,−次数光側(図2(b)では右側として
いる)の光路に高密度ディスクHDからの反射光を受光
する受光部22を配設し,これを負次数受光部22と記
載する。Therefore, a light receiving section 21 for receiving the reflected light from the standard density disk LD is disposed in the optical path on the + order light side (the left side in FIG. 2B). The light receiving section 22 for receiving the reflected light from the high-density disk HD is disposed in the optical path on the minus order light side (the right side in FIG. 2B), and this is referred to as the negative order light receiving section 22. .
【0048】先に述べたように,次数により回折角が異
なり,高次数になるほど光強度が小さくなる。そこで,
本実施の形態では,±1次光を受光できるように正及び
負次数受光部21,22が配設されている。しかし本発
明はこれに限定されず,例えば±2次光等としても良
く,また同次数でなくてもよいことを附記する。As described above, the diffraction angle varies depending on the order, and the light intensity decreases as the order increases. Therefore,
In the present embodiment, the positive and negative order light receiving sections 21 and 22 are provided so as to be able to receive ± 1st order light. However, the present invention is not limited to this, and it is noted that the light may be, for example, ± second order light, and may not have the same order.
【0049】なお,−次数光,0次光,+次数光の光軸
は1つの平面上に存在し,かつ,当該平面はホログラム
11に形成されたグレーティング方向と直角の方向とな
っている。The optical axes of the −order light, the 0th order light, and the + order light exist on one plane, and the plane is perpendicular to the grating direction formed on the hologram 11.
【0050】上記構成に基づき動作を説明する。レーザ
発生手段1から出射されたレーザ光は,コリメートレン
ズ2により略平行光に収束され,ビームスプリッタ3を
通過して対物レンズ5に入射し,当該対物レンズ5によ
り集光されてディスクに照射される。The operation will be described based on the above configuration. The laser light emitted from the laser generating means 1 is converged into substantially parallel light by the collimating lens 2, passes through the beam splitter 3, enters the objective lens 5, is condensed by the objective lens 5, and irradiates the disk. You.
【0051】このようにしてディスクに照射されたレー
ザ光は,記録部材で反射されて対物レンズ5により集光
され,ビームスプリッタ3に入射する。そしてビームス
プリッタ3で検出レンズ10の方向に光路が変えられて
光路分離が行われる。The laser beam irradiated on the disk in this manner is reflected by the recording member, condensed by the objective lens 5, and enters the beam splitter 3. Then, the optical path is changed by the beam splitter 3 in the direction of the detection lens 10, and the optical path is separated.
【0052】その後,反射光は,検出レンズ10で収束
されてホログラム11に入射して回折され,+1次光の
回折光が正次数受光部21で受光され,−1次光の回折
光が負次数受光部22で受光される。Thereafter, the reflected light is converged by the detection lens 10 and is incident on the hologram 11 to be diffracted. The + 1st-order light is received by the positive-order light receiving section 21, and the -1st-order light is received by the negative light. The light is received by the order light receiving unit 22.
【0053】そして,ディスクが標準密度ディスクLD
である場合には,正次数受光部21からの信号に基づき
フォーカス信号Fo,トラッキング信号Tr及び再生信
号Rfを Fo=S21a−k(S21b+S21c+S21d) k:定数 Tr=(S21c−S21d) Rf=(S21b+S21c+S21d) の演算式に従って求める。The disk is a standard density disk LD.
In the case of, the focus signal Fo, the tracking signal Tr, and the reproduction signal Rf are calculated based on the signal from the positive-order light receiving unit 21 as follows: Fo = S21a-k (S21b + S21c + S21d) k: Constant Tr = (S21c-S21d) Rf = (S21b + S21c + S21d) ) Obtained according to the calculation formula.
【0054】一方,ディスクが,高密度ディスクHDで
ある場合には,負次数受光部22からの信号に基づきフ
ォーカス信号Fo,トラッキング信号Tr及び再生信号
Rfを Fo=S22a−k’(S22b+S22c+S22d) k’:定数 Tr=(S22c−S22d) Rf=(S22a+S22b+S22c+S22d) の演算式に従って求める。On the other hand, when the disc is a high-density disc HD, the focus signal Fo, the tracking signal Tr, and the reproduction signal Rf are converted to Fo = S22a−k ′ (S22b + S22c + S22d) k based on the signal from the negative-order light receiving unit 22. ': Constant Tr = (S22c-S22d) Rf = (S22a + S22b + S22c + S22d)
【0055】上式からわかるように,標準密度ディスク
LDと高密度ディスクHDとにおいて,再生信号Rfの
演算方法のみが異なっている。即ち,高密度ディスクH
Dの場合には,再生信号Rfは全ての領域22a〜22
dからの光電変換信号に基づき演算しているが,標準密
度ディスクLDの場合には,領域21b〜21dからな
る中央光受光領域からの光電変換信号に基づき演算され
ている。As can be seen from the above equation, only the method of calculating the reproduction signal Rf differs between the standard density disk LD and the high density disk HD. That is, the high density disk H
In the case of D, the reproduction signal Rf is applied to all the areas 22a to 22a.
Although the calculation is performed based on the photoelectric conversion signal from d, in the case of the standard density disk LD, the calculation is performed based on the photoelectric conversion signal from the central light receiving area including the areas 21b to 21d.
【0056】領域21aで受光される反射光は,球面収
差の影響が大きい周辺部に対応しているため,当該領域
21aの信号を再生信号Rfの検出に用いないことによ
り,球面収差の影響の少ない良質な再生信号Rfを得る
ことが可能になる。従って,対物レンズ5の光学特性が
高密度ディスクHDに対して最適設計されている場合で
あっても,標準密度ディスクLDに対して高品質な再生
信号Rfを得ることが可能になる。Since the reflected light received in the area 21a corresponds to the peripheral portion where the influence of the spherical aberration is large, the signal of the area 21a is not used for the detection of the reproduction signal Rf. It is possible to obtain a small and high quality reproduced signal Rf. Therefore, even when the optical characteristics of the objective lens 5 are optimally designed for the high-density disk HD, a high-quality reproduction signal Rf can be obtained for the standard-density disk LD.
【0057】なお,上述した説明においては,少なくと
も標準密度ディスクLDからの反射光における球面収差
の影響が小さい中央部が円形状であることを前提に,受
光手段の受光中心領域,受光周囲領域及び中央光受光領
域等の形状を例示して説明した。In the above description, it is assumed that at least the central portion of the reflected light from the standard density disk LD, which is less affected by spherical aberration, has a circular shape, and the light receiving center area, the light receiving peripheral area, The shape of the central light receiving area and the like has been described as an example.
【0058】しかし,本発明は,かかる形状に限定され
るものではなく,基本的に当該球面収差の影響が大きい
周辺部と小さい中央部とを分離して受光できればよいの
で,球面収差の影響の小さい中央部が円形状以外の形状
の場合,または円形形状以外の形状に近似できる場合で
あっても適用可能である。However, the present invention is not limited to such a shape. Basically, it is only necessary to separate the peripheral portion where the influence of the spherical aberration is large and the central portion where the influence of the spherical aberration is small. The present invention is applicable even when the small central portion has a shape other than the circular shape, or when the shape can be approximated to a shape other than the circular shape.
【0059】例えば,図3に示すように,球面収差の影
響の小さい中央部が,四角形,多角形,楕円形等の円形
以外の形状,または実用的観点からこれらの形状に近似
できる場合には,当該形状に対応した中央光受光領域等
を持つ受光手段を用いることが可能である。For example, as shown in FIG. 3, when the central part where the influence of the spherical aberration is small is a shape other than a circle such as a quadrangle, a polygon, an ellipse, or can be approximated to these shapes from a practical viewpoint. It is possible to use light receiving means having a central light receiving area or the like corresponding to the shape.
【0060】図3(a)は受光中心領域が四角形の場
合,図3(c)は楕円形の場合,図3(b)は多角形の
場合の受光手段30,33,36をそれぞれ示してい
る。なお,図3(c)において多角形の例として6角形
を示しているが,6角形に限定されないことは言うまで
もない。FIG. 3 (a) shows the light receiving means 30, 33, 36 in the case where the light receiving central area is square, FIG. 3 (c) is in the case of elliptical shape, and FIG. 3 (b) is in the case of polygonal. I have. Although FIG. 3C shows a hexagon as an example of a polygon, it is needless to say that the polygon is not limited to the hexagon.
【0061】そして,各受光部31は領域31a〜31
dに分割され,正次数受光部をなして標準密度ディスク
LDからの反射光の受光に用いられ,受光部32は領域
32a〜22dに分割され,負次数受光部をなして高密
度ディスクHDからの反射光の受光に用いられる。さら
に,領域31b〜31dが中央光受光領域をなしてい
る。Each of the light receiving sections 31 is divided into the areas 31a to 31.
The light receiving portion 32 is divided into regions 32a to 22d and forms a negative order light receiving portion. The light receiving portion 32 is divided into regions 32a to 22d and forms a negative order light receiving portion. Is used for receiving reflected light. Further, the regions 31b to 31d form a central light receiving region.
【0062】各領域31a〜31d,32a〜32dか
らは,光電変換信号S31a〜S31d,S32a〜S
32dが出力され,図2に於いて説明した方法によりフ
ォーカス信号Fo,トラッキング信号Tr及び再生信号
Rfが演算される。受光手段33,36についても同様
である。The photoelectric conversion signals S31a to S31d and S32a to S32 are output from the respective areas 31a to 31d and 32a to 32d.
32d is output, and the focus signal Fo, the tracking signal Tr, and the reproduction signal Rf are calculated by the method described with reference to FIG. The same applies to the light receiving means 33 and 36.
【0063】また,図2等においては受光中心領域をT
字状に3分割した場合を示したが,本発明はこのような
分割方法に限定されるものではない。Further, in FIG.
Although the case where the character is divided into three is shown, the present invention is not limited to such a dividing method.
【0064】分割方法は,再生信号やサーボ信号の検出
方法により決るものであり,中央光受光領域が球面収差
が大きい周辺部を受光しないように形成されていれば,
本発明の作用効果を得ることができる。The division method is determined by the method of detecting the reproduction signal and the servo signal. If the central light receiving area is formed so as not to receive the peripheral part where the spherical aberration is large,
The operation and effect of the present invention can be obtained.
【0065】従って,図4に示すように左右に2分割し
たものであっても良い。このような分割法法を用いる
と,トラック信号Trを位相差法で検出でき,かつ,そ
の振幅を大きくすることができる利点がある。Therefore, as shown in FIG. 4, it may be divided into right and left. When such a division method is used, there is an advantage that the track signal Tr can be detected by the phase difference method and its amplitude can be increased.
【0066】また,正及び負次数受光部における受光中
心領域及び受光周囲領域が,同じ大きさ又は同じ形状で
ある必要はなく,例えば,図4(b)に示すように,正
及び負次数受光部における受光中心領域が異なる大きさ
であっても良く,図4(c)に示すように,これらの形
状が異なる場合であっても良い。さらに,図4(d)に
示すように正及び負次数受光部の分割方法が異なる場合
であっても良い。Further, the light receiving center area and the light receiving peripheral area in the positive and negative order light receiving sections need not be the same size or the same shape. For example, as shown in FIG. The light receiving center regions in the portions may have different sizes, and as shown in FIG. 4C, the shapes may be different. Further, as shown in FIG. 4D, the method of dividing the positive and negative order light receiving units may be different.
【0067】図4(a)に示す受光手段40の正及び負
次数受光部41,42は,それぞれ左右に2分割され
て,正次数受光部41は領域41a〜41cに分割され
て,標準密度ディスクLDからの反射光の受光に用いら
れ,負次数受光部41は領域42a〜42cに分割され
て,高密度ディスクHDからの反射光の受光に用いられ
る。各領域41a〜41c,42a〜42cから光電変
換信号S41a〜S41c,S42a〜S42cが出力
される。そして中央光受光領域は,領域41b,41c
により構成される。The positive and negative order light receiving portions 41 and 42 of the light receiving means 40 shown in FIG. 4A are each divided into two parts on the left and right sides. The positive order light receiving portion 41 is divided into regions 41a to 41c and has standard density. The negative-order light receiving section 41 is used to receive reflected light from the high-density disk HD, and is used to receive reflected light from the disk LD. The photoelectric conversion signals S41a to S41c and S42a to S42c are output from the areas 41a to 41c and 42a to 42c. The central light receiving areas are the areas 41b and 41c.
It consists of.
【0068】このような構成の場合に再生信号Rfは, Rf=S41b+S41c (標準密度ディスクの場合) Rf=S42a+S42b+S42c (高密度ディスクの場合) の演算式から求まり,フォーカス信号Foはビームサイ
ズ法を用いて Fo=S41a−k(S41b+S41c) k は整数 (標準密度ディスクの場合) Fo=S42a−k’(S42b+S42c) k’は整数 (高密度ディスクの場合) の演算式から求まる,またトラッキング信号Trは,プ
シュプル法を用いて Tr=S41b−S41c (標準密度ディスクの場合) Tr=S42b−S42c (高密度ディスクの場合) の演算式から求めることができる。図4(b),(c)
についても同様に定義して各信号を検出することができ
る。In the case of such a configuration, the reproduction signal Rf is obtained from an arithmetic expression of Rf = S41b + S41c (for a standard density disc) Rf = S42a + S42b + S42c (for a high density disc), and the focus signal Fo is obtained by using the beam size method. Fo = S41a−k (S41b + S41c) k is an integer (for a standard density disc) Fo = S42a−k ′ (S42b + S42c) k ′ is an integer (for a high density disc), and the tracking signal Tr is , Tr = S41b-S41c (for a standard density disc) and Tr = S42b-S42c (for a high density disc) using the push-pull method. FIG. 4 (b), (c)
Can be similarly defined to detect each signal.
【0069】また図4(d)においては,負次数受光部
51の受光中心領域51b,51cの周囲は領域51a
と領域51dとに分割されている。しかし,受光中心領
域51b,51cの周囲を2分割しなければならない本
質的な理由は無いが,後述するように,高密度ディスク
HDにおけるトラッキング信号Trを領域51aと領域
51dからの信号をも用いて検出することができるの
で,当該トラッキング信号Trの信号振幅を大きくする
ことができる利点がある。In FIG. 4D, the periphery of the light receiving center regions 51b and 51c of the negative order light receiving portion 51 is a region 51a.
And an area 51d. However, there is no essential reason that the periphery of the light receiving center regions 51b and 51c must be divided into two. However, as described later, the tracking signal Tr in the high-density disk HD is also used by using signals from the regions 51a and 51d. Therefore, there is an advantage that the signal amplitude of the tracking signal Tr can be increased.
【0070】このような構成の場合,再生信号Rfは, Rf=S50b+S50c (標準密度ディスクの場合) Rf=S51a+S51b+S51c+S51d 又は Rf=S51a+S51b (高密度ディスクの場合) の演算式から求まり,フォーカス信号Foはビームサイ
ズ法を用いて Fo=S50a−k(S50b+S50c) k は整数 (標準密度ディスクの場合) Fo=(S51a+S51d)−(S51b+S51c) (高密度ディスクの場合) の演算式から求まる,またトラッキング信号Trは,プ
シュプル法を用いて Tr=S50b−S50c (標準密度ディスクの場合) Tr=(S51a+S51b)−(S51c−S51d) (高密度ディスクの場合) の演算式から求めることができる。In the case of such a configuration, the reproduction signal Rf is obtained from the arithmetic expression of Rf = S50b + S50c (for a standard density disc) Rf = S51a + S51b + S51c + S51d or Rf = S51a + S51b (for a high density disc), and the focus signal Fo is a beam. Using the size method, Fo = S50a-k (S50b + S50c) k is an integer (in the case of a standard density disk) Fo = (S51a + S51d)-(S51b + S51c) (in the case of a high-density disk) Tr = S50b-S50c (for a standard density disc) Tr = (S51a + S51b)-(S51c-S51d) (for a high density disc) using the push-pull method.
【0071】また,受光周囲領域の形状は,矩形形状に
限定されるものではない。即ち,受光したい反射光を受
光できる大きさであればよい。但し,後述する図7に示
すように,当該受光周囲領域の外周形状を積極的に利用
する場合は,除外されることは付言するまでもない。Further, the shape of the light receiving surrounding area is not limited to a rectangular shape. That is, any size can be used as long as the reflected light to be received can be received. However, as shown in FIG. 7, which will be described later, it is needless to mention that the case where the outer peripheral shape of the light receiving surrounding area is positively used is excluded.
【0072】上記説明においてはレーザ光の光路分離を
ビームスプリッタにより行う場合について説明したが,
本発明はこれに限定するものではなく,図5に示すよう
にホログラムの回折特性を利用して光路分離を行うよう
にしてもよい。In the above description, the case where the optical path of the laser beam is separated by the beam splitter has been described.
The present invention is not limited to this, and the optical path may be separated using the diffraction characteristics of the hologram as shown in FIG.
【0073】図5(a)に示す光ピックアップ装置は,
レーザ光を出射する半導体レーザ素子と入射したレーザ
光を受光する受光手段とを1つの缶に収納したレーザユ
ニット6,レーザ光を収束して略平行光にするコリメー
トレンズ2,高密度ディスクHDに対して光学特性が最
適設計されて,入射したレーザ光を集光する対物レンズ
5,レーザユニット6のレーザ出射窓に配設されて,コ
リメートレンズ2で収束されたディスクからの反射光を
回折するホログラム11等を有している。The optical pickup device shown in FIG.
A laser unit 6 in which a semiconductor laser device for emitting laser light and a light receiving means for receiving incident laser light are housed in one can 6, a collimating lens 2 for converging the laser light into substantially parallel light, and a high-density disk HD. On the other hand, the optical characteristics are optimally designed, and the objective lens 5 for condensing the incident laser light is provided in the laser emission window of the laser unit 6 to diffract the reflected light from the disk converged by the collimating lens 2. It has a hologram 11 and the like.
【0074】レーザユニット6は,図5(b)に示すよ
うに,レーザ光を出射するレーザ素子7,反射光を受光
する受光手段20,これらを収納する缶のレーザ出射窓
に設けられた透明板9等を有している。As shown in FIG. 5 (b), the laser unit 6 includes a laser element 7 for emitting laser light, a light receiving means 20 for receiving reflected light, and a transparent unit provided in a laser emission window of a can housing these. It has a plate 9 and the like.
【0075】なお,透明板9は缶を密閉して,当該缶に
収納されたレーザ素子7や受光手段20を保護するため
に設けている。従って,ホログラム11を缶に密着して
固定するならば,当該透明板9は必ずしも必要でない。
即ち,透明板9をホログラム11により代用することが
可能である。The transparent plate 9 is provided for sealing the can and for protecting the laser element 7 and the light receiving means 20 housed in the can. Therefore, if the hologram 11 is fixed in close contact with the can, the transparent plate 9 is not always necessary.
That is, the transparent plate 9 can be replaced by the hologram 11.
【0076】上記構成のもとで,レーザ素子7から出射
されたレーザ光はホログラム11を通り,コリメートレ
ンズ2により略平行光に収束される。その後,レーザ光
は対物レンズ5で集光されてディスクの記録部材面上に
集光する。Under the above configuration, the laser light emitted from the laser element 7 passes through the hologram 11 and is converged by the collimator lens 2 into substantially parallel light. Thereafter, the laser light is focused by the objective lens 5 and is focused on the recording member surface of the disk.
【0077】また記録部材から反射したレーザ光は,対
物レンズ5により集光され略平行光となってコリメート
レンズ2に入射して収束され,ホログラム11に入射す
る。そして,当該ホログラム11により回折されて光路
分離が行われて受光手段20により受光され,上述した
演算処理により再生信号等が検出される。上記構成にす
ることで,上述した効果に加えピックアップ装置の小型
化が図れるようになる。The laser light reflected from the recording member is condensed by the objective lens 5, becomes substantially parallel light, is incident on the collimator lens 2, is converged, and is incident on the hologram 11. Then, the light is diffracted by the hologram 11 to separate the optical path, is received by the light receiving means 20, and a reproduced signal or the like is detected by the above-described arithmetic processing. With the above configuration, the size of the pickup device can be reduced in addition to the effects described above.
【0078】また上述した構成は,基本的に1つのレー
ザ源により透明基板厚の異なる標準密度ディスクLD及
び高密度ディスクHDに対応しようとするものである
が,図6に示すように2つのレーザ源を用いたレーザ発
生手段によりそれぞれのディスクの基板厚に対応した波
長を持つレーザ光を用いることも可能である。The above-described configuration is basically intended to cope with a standard density disk LD and a high density disk HD having different transparent substrate thicknesses by one laser source. However, as shown in FIG. It is also possible to use laser light having a wavelength corresponding to the substrate thickness of each disk by a laser generating means using a source.
【0079】なお,当該ホログラム11に偏光特性を付
与するならば(即ち,偏光ホログラムとする),レーザ
光の利用効率を向上させることが可能になる。If the hologram 11 is provided with a polarization characteristic (that is, a polarization hologram), the utilization efficiency of the laser beam can be improved.
【0080】図6に示すレーザ発生手段90は,高密度
ディスクHD用のレーザ源として用いるレーザ素子9
1,標準密度ディスクLD専用に用いるレーザ素子9
2,外部から入射したレーザ光を受光する受光部93,
これらを収納する缶94,該缶94のレーザ光出射窓に
設けられた透明板95等を有している。The laser generating means 90 shown in FIG. 6 is a laser element 9 used as a laser source for a high density disc HD.
1, Laser element 9 used exclusively for standard density disk LD
2, a light receiving unit 93 for receiving a laser beam incident from the outside,
It has a can 94 for accommodating them, a transparent plate 95 provided in a laser beam emission window of the can 94, and the like.
【0081】先に,レーザ光はホログラム11により,
±n次光の回折光に回折され,+側の回折光と−側の回
折光とは0次光を中心に逆方向に回折されることを述べ
た。このときの回折角は,レーザ光の波長にも依存して
いる。First, the laser beam is emitted by the hologram 11
It has been described that the diffracted light is diffracted into ± nth-order light, and the + side diffracted light and the − side diffracted light are diffracted in opposite directions around the 0th order light. The diffraction angle at this time also depends on the wavelength of the laser light.
【0082】即ち,同じ+1次光であっても,ホログラ
ム11に形成されているグレーティングの間隔と波長と
の関係から回折角が異なる。標準密度ディスクLD用の
レーザ光の波長は,高密度ディスクHD用のレーザ光の
波長より長いので,標準密度ディスクLD用のレーザ光
の回折角は高密度ディスクHD用のレーザ光の回折角に
比べ小さくなる。そこで,本発明では,グレーティング
は,標準密度ディスクLD用のレーザ光の波長に対応し
て形成する。これにより,正及び負次数受光部の配設間
隔が広くできて受光手段を容易に製作することができる
ようになる。That is, even with the same + 1st order light, the diffraction angle differs due to the relationship between the spacing between the gratings formed on the hologram 11 and the wavelength. Since the wavelength of the laser beam for the standard density disk LD is longer than the wavelength of the laser beam for the high density disk HD, the diffraction angle of the laser beam for the standard density disk LD is equal to the diffraction angle of the laser beam for the high density disk HD. It is smaller than that. Therefore, in the present invention, the grating is formed corresponding to the wavelength of the laser beam for the standard density disk LD. Thus, the intervals between the positive and negative order light receiving sections can be widened, and the light receiving means can be easily manufactured.
【0083】受光手段の構成としては,上述した構成に
限られず図7に示すものであってもよい。同図に示す受
光手段23は2つの受光部24,25とからなり,受光
部24が正次数受光部をなして領域24a〜24fに分
割され,また受光部25が負次数受光部をなして領域2
5a,25bに分割されている。The structure of the light receiving means is not limited to the above-described structure, but may be one shown in FIG. The light receiving means 23 shown in the figure comprises two light receiving portions 24 and 25. The light receiving portion 24 forms a positive order light receiving portion and is divided into regions 24a to 24f, and the light receiving portion 25 forms a negative order light receiving portion. Area 2
5a and 25b.
【0084】そして,領域24a,24c,24d及び
領域25aは受光周囲領域をなし,領域24b,24
e,24f及び領域25bは受光中心領域をなして,領
域24b,24e,24fが中央光受光領域をなしてい
る。The regions 24a, 24c, 24d and the region 25a form a light receiving peripheral region.
e, 24f and the area 25b form a central light receiving area, and the areas 24b, 24e, 24f form a central light receiving area.
【0085】−次数光,0次光,+次数光は1つの平面
上に存在し,かつ,当該平面はホログラム11に形成さ
れたグレーティング方向と直角する方向であり,正次数
受光部24における上下の分割線は,この平面と平行に
なるように設けられている。The minus-order light, the zero-order light, and the plus-order light exist on one plane, and the plane is a direction perpendicular to the grating direction formed on the hologram 11. Are provided so as to be parallel to this plane.
【0086】これにより各領域24a〜24f,25
a,25bから出力される光電変換信号S24a〜S2
4f,S25a,S25bに基づき,再生信号Rfを, Rf=S25b (標準密度ディスクの場合) Rf=S25a+S25b (高密度ディスクの場合) により演算し,トラッキング信号Trをプシュプル法又
は位相差法により, Tr=S24e−S24f 又は, Tr=(S24c+S24e)−(S24d+S24f) (標準密度ディスクの場合) Tr=(S24c+S24e)−(S24d+S24f) (高密度ディスクの場合) により演算し,フォーカス信号Foはダブルビームサイ
ズ法により Fo=(S24a+S24c+S24d+S25b) −(S24b+S24e+S24f+S25a) (標準密度及び高密度ディスクの場合) により求めることができる。Thus, each of the regions 24a to 24f, 25
photoelectric conversion signals S24a to S2 output from a and 25b
4f, S25a, and S25b, the reproduction signal Rf is calculated by the following equation: Rf = S25b (for a standard density disc) Rf = S25a + S25b (for a high density disc), and the tracking signal Tr is calculated by the push-pull method or the phase difference method. = S24e-S24f or Tr = (S24c + S24e)-(S24d + S24f) (for a standard density disc) Tr = (S24c + S24e)-(S24d + S24f) (for a high density disc) The focus signal Fo is a double beam size method. Fo = (S24a + S24c + S24d + S25b) − (S24b + S24e + S24f + S25a) (for standard density and high density discs).
【0087】これにより標準密度ディスクLDに対する
再生信号Rfの演算においては,反射光の周辺部分を用
いないので,球面収差の影響の少ない良質な再生信号を
得ることが可能になる。なお,高密度ディスクHDに対
しては,対物レンズ5が当該高密度ディスクHDに対し
て最適設計されているので,反射光の周辺部を除去する
必要がない。As a result, since the peripheral portion of the reflected light is not used in the calculation of the reproduction signal Rf for the standard density disk LD, it is possible to obtain a high-quality reproduction signal which is less affected by spherical aberration. In addition, since the objective lens 5 is optimally designed for the high-density disk HD, it is not necessary to remove the peripheral portion of the reflected light.
【0088】ところで,ディスクは高速回転するので,
マークの有無に対応した反射光の光強度変化も高速で変
動する。このため,反射光を受光する受光手段は,周波
数特性の高いものでなければ,当該光強度の変化に追従
して光電変換信号を出力することができない。そこで,
受光手段は一般に,高周波特性を持つ高価な受光素子が
用いられる。しかし,本発明にかかる受光手段では,少
なくとも中央光受光領域が形成される負次数受光部のみ
が高周波特性を備えていればよいので,受光手段を安価
に製造できる利点がある。Since the disk rotates at a high speed,
The light intensity change of the reflected light corresponding to the presence or absence of the mark also changes at a high speed. Therefore, unless the light receiving means for receiving the reflected light has high frequency characteristics, it cannot output the photoelectric conversion signal in accordance with the change in the light intensity. Therefore,
Generally, an expensive light receiving element having high frequency characteristics is used as the light receiving means. However, the light receiving means according to the present invention has an advantage that the light receiving means can be manufactured at a low cost since at least only the negative-order light receiving section in which the central light receiving area is formed has high-frequency characteristics.
【0089】また,回折光を正しく受光できる位置に受
光手段を取付けても,環境の温度変化等によりレーザ素
子の発振特性が変化して,出射されるレーザ光の波長が
変化する場合がある。かかるレーザ光の波長変化が生じ
ると,先に説明したように回折角が変化するので,状況
によっては回折光が受光領域からはずれてしまう場合が
生じる。Further, even if the light receiving means is mounted at a position where it can correctly receive the diffracted light, the oscillation characteristics of the laser element may change due to a change in the temperature of the environment, and the wavelength of the emitted laser light may change. When the wavelength of the laser light changes, the diffraction angle changes as described above, and depending on the situation, the diffracted light may deviate from the light receiving area.
【0090】かかる不都合を防止するためには,受光手
段を図8に示すような構成にすることが望ましい。図8
に示す受光手段26は,正次数受光部である受光部27
と負次数受光部である受光部28を有し,これら正及び
負次数受光部27,28はグレーティング方向に直交す
る方向に分割線が形成されて,領域27a〜27d及び
領域28a〜28dが形成されて,領域27a〜27d
が中央光受光部に対応している。領域27a〜27d,
28a〜28dからは,光電変換信号S27a〜S27
d,S28a〜S28dが出力される。In order to prevent such inconvenience, it is desirable that the light receiving means be configured as shown in FIG. FIG.
The light receiving means 26 shown in FIG.
And positive and negative order light receiving sections 27 and 28, in which a dividing line is formed in a direction orthogonal to the grating direction to form regions 27a to 27d and regions 28a to 28d. And the areas 27a to 27d
Corresponds to the central light receiving section. Areas 27a to 27d,
From 28a to 28d, photoelectric conversion signals S27a to S27
d and S28a to S28d are output.
【0091】なお,正及び負次数受光部27,28は異
なる大きさに形成されているが,これは標準密度ディス
クLDからの反射光に対しては,その球面収差の影響が
大きい周辺部が受光されないようにし,高密度ディスク
HDからの反射光に対しては,その周辺部及び中央部が
共に受光されるようにするためである。The positive and negative order light receiving portions 27 and 28 are formed to have different sizes. However, the light receiving portions 27 and 28 have a large influence on the reflected light from the standard density disk LD due to its spherical aberration. This is to prevent the light from being received, and to receive the reflected light from the high-density disk HD in both the peripheral portion and the central portion.
【0092】このような構成により,各領域から出力さ
れる光電変換信号S27a〜S27f,S28a,S2
8bに基づき,再生信号Rfを, Rf=s27a+S27b+s27c+S27d (標準密度ディスクの場合) Rf=s28a+S28b+s28c+S28d (高密度ディスクの場合) により演算し,トラッキング信号Trを, Tr=(S27a+S27b)−(S27c+S27d) (標準密度ディスクの場合) Tr=(S28a+S28b)−(S28c+S28d) (高密度ディスクの場合) により演算し,さらにフォーカス信号Foを, Fo=(S27a+S27d)−(S27b+S27c) (標準密度ディスクの場合) Fo=(S28a+S28d)−(S28b+S28c) (高密度ディスクの場合) の演算により求めることができる。With such a configuration, the photoelectric conversion signals S27a to S27f, S28a, S2
8b, the reproduction signal Rf is calculated by the following equation: Rf = s27a + S27b + s27c + S27d (for a standard density disc) Rf = s28a + S28b + s28c + S28d (for a high-density disc) Tr = (S28a + S28b)-(S28c + S28d) (in the case of a high-density disc) Further, the focus signal Fo is calculated as Fo = (S27a + S27d)-(S27b + S27c) (in the case of a standard density disc) Fo = (S28a + S28d) )-(S28b + S28c) (in the case of a high-density disc).
【0093】従って,レーザ光の波長が変動して回折角
が変化しても,回折光は分割線に平行に移動するので,
当該移動量が少なくとも領域27a,27d,28a,
28dの距離の範囲内であれば回折光は受光領域から外
れてしまうことがなくなり,信頼性が向上する。また,
標準密度ディスクLDの場合に,再生信号Rf,トラッ
キング信号Tr及びフォーカス信号Foには,反射光に
おける周辺部が用いられないので,球面収差の影響が少
ない品質の高い信号を得ることが可能になる。Accordingly, even if the wavelength of the laser beam fluctuates and the diffraction angle changes, the diffracted light moves parallel to the dividing line.
If the movement amount is at least the area 27a, 27d, 28a,
If the distance is within the range of 28d, the diffracted light will not deviate from the light receiving area, and the reliability will be improved. Also,
In the case of the standard density disc LD, since the peripheral portion of the reflected light is not used for the reproduction signal Rf, the tracking signal Tr, and the focus signal Fo, it is possible to obtain a high-quality signal with little influence of spherical aberration. .
【0094】これまで説明した受光手段は,ホログラム
による回折作用を利用したものであった。しかし本発明
はこれらに限定されるものではない。The light receiving means described so far utilizes the diffraction effect of the hologram. However, the present invention is not limited to these.
【0095】即ち,図9に示すように受光手段29を,
略同心円状に複数に分割し,さらにこれらを上下に2分
割して領域29a〜29fとする構成にして,ホログラ
ムを用いない構成であってもよい。この場合,領域29
c及び領域29dで構成される領域が,中央光受光領域
を形成している。That is, as shown in FIG.
A configuration in which a hologram is not used may be formed by dividing into a plurality of substantially concentric circles and further dividing the upper and lower portions into two to form regions 29a to 29f. In this case, the area 29
The area constituted by c and the area 29d forms the central light receiving area.
【0096】そして領域29a〜29fからの光電変換
信号S29a〜S29bに基づき,再生信号Rfを, Rf=S29c+S29d (標準密度ディスクの場合) Rf=S29a+S29b+S29c+S29d+S29e+S29f (高密度ディスクの場合) により演算し,トラッキング信号Trをプシュプル法又
は位相差法により, Tr=S29c−S29d (標準密度ディスクの場合) Tr=(S29b+S29c)−(S29d+S29e) (高密度ディスクの場合) により演算し,ビームサイズ法に従いフォーカス信号F
oを, Fo=S29b−S29c (標準密度ディスクの場合) Fo=S29a−(S29b+S29c) (高密度ディスクの場合) の演算により求めることができる。Then, based on the photoelectrically converted signals S29a to S29b from the areas 29a to 29f, the reproduced signal Rf is calculated by the following equation: Rf = S29c + S29d (for a standard density disc) Rf = S29a + S29b + S29c + S29d + S29e + S29f (for a high density disc) Tr is calculated by the push-pull method or the phase difference method, Tr = S29c-S29d (for a standard density disc) Tr = (S29b + S29c)-(S29d + S29e) (for a high density disc), and the focus signal F is calculated according to the beam size method.
o can be obtained by the calculation of Fo = S29b-S29c (for a standard density disc) and Fo = S29a- (S29b + S29c) (for a high density disc).
【0097】従って,再生信号Rfの演算においても反
射光の周辺部分が用いられないので,球面収差による影
響の少ない良質な再生信号を得ることが可能になる。な
お,高密度ディスクHDに対しては,対物レンズが当該
高密度ディスクHDに対して最適設計されているので,
反射光の周辺部を除去する必要がない。Therefore, the peripheral portion of the reflected light is not used in the calculation of the reproduction signal Rf, so that a high-quality reproduction signal less affected by spherical aberration can be obtained. Since the objective lens is optimally designed for the high-density disk HD,
There is no need to remove the periphery of the reflected light.
【0098】上記説明では,球面収差が大きい反射光の
周辺部の影響を小さくするために中央光受光領域を有す
る受光手段20等を用いた。このとき,トラッキングに
より対物レンズ5の光軸と当該対物レンズ5に入射する
レーザ光の光軸とがずれると,反射光における球面収差
が大きい周辺部の一部が中央光受光領域に受光される場
合が生じる。In the above description, the light receiving means 20 having a central light receiving area and the like are used to reduce the influence of the peripheral part of the reflected light having a large spherical aberration. At this time, if the optical axis of the objective lens 5 and the optical axis of the laser beam incident on the objective lens 5 are displaced by tracking, a part of the peripheral portion having large spherical aberration in the reflected light is received by the central light receiving region. Cases arise.
【0099】そこで図10に示すような構成により当該
光軸ずれを防止して,球面収差が大きい反射光の周辺部
が中央光受光領域に受光されないようにすることが可能
である。Therefore, the optical axis shift can be prevented by the configuration shown in FIG. 10 so that the peripheral portion of the reflected light having large spherical aberration is not received by the central light receiving area.
【0100】図10に示す光ピックアップ装置は,半導
体レーザや受光手段等からなる固定光学系101,当該
固定光学系と同様にその位置が不動に設けられた固定偏
向ミラー102,レーザ光を固定偏向ミラー102の方
向に偏向させる可動偏向ミラー103,レーザ光を集光
する対物レンズ5,可動偏向ミラー103及び対物レン
ズ5が固着されたレンズホルダ105,該レンズホルダ
105を支持するレンズ支持部106等を有している。The optical pickup device shown in FIG. 10 comprises a fixed optical system 101 composed of a semiconductor laser and light receiving means, a fixed deflection mirror 102 whose position is immovable similarly to the fixed optical system, and a fixed deflection of laser light. A movable deflecting mirror 103 for deflecting in the direction of the mirror 102, an objective lens 5 for condensing laser light, a lens holder 105 to which the movable deflecting mirror 103 and the objective lens 5 are fixed, a lens support 106 for supporting the lens holder 105, and the like. have.
【0101】なお,図10においてフォーカス方向をF
od,トラッキング方向をTrdで示し,対物レンズ5
のトラッキングは,レンズホルダー105を移動させる
ことにより行われる。In FIG. 10, the focus direction is F
and the tracking direction is indicated by Trd.
Is performed by moving the lens holder 105.
【0102】レンズホルダー105には,可動偏向ミラ
ー103が固着されているので,トラッキングにより可
動偏向ミラー103が移動すると,当該可動偏向ミラー
103により偏向されて固定偏向ミラー102に入射す
るレーザ光の入射点がレンズホルダ105の移動量と同
じだけ移動するようになる。Since the movable deflecting mirror 103 is fixed to the lens holder 105, when the movable deflecting mirror 103 moves by tracking, the laser beam is deflected by the movable deflecting mirror 103 and enters the fixed deflecting mirror 102. The point moves by the same amount as the movement amount of the lens holder 105.
【0103】対物レンズ5は,レンズホルダー105に
固着されているので,結局当該対物レンズ105に入射
するレーザ光の光軸は対物レンズ5の光軸とずれないよ
うになる。Since the objective lens 5 is fixed to the lens holder 105, the optical axis of the laser beam incident on the objective lens 105 does not shift from the optical axis of the objective lens 5 after all.
【0104】なお,上記説明では固定偏向ミラー102
はレンズホルダー105に固着されていない場合につい
て説明したが,本発明はこれに限定されるものではなく
固着されていてもよい。In the above description, the fixed deflection mirror 102
Although the case where is not fixed to the lens holder 105 has been described, the present invention is not limited to this, and may be fixed.
【0105】[0105]
【発明の効果】請求項1にかかる発明によれば,受光手
段に対物レンズの光学特性を最適設計していない情報記
録媒体からの反射光における球面収差の影響が小さい中
央部分のみを受光する中央光受光領域を設けたので,対
物レンズの光学特性が一方の情報記録媒体に対して最適
設計された場合であっても,他方の情報記録媒体からの
反射光を受光する際には,球面収差の影響が大きい周辺
部以外の反射光のみを中央光受光領域で受光することが
でき,基板厚の異なる情報記録媒体に対しても互換性が
保てると共に,再生信号等の品質が向上するようにな
る。According to the first aspect of the present invention, the center for receiving only the central portion where the influence of the spherical aberration on the reflected light from the information recording medium for which the optical characteristics of the objective lens is not optimally designed for the light receiving means is small is small. Since the light receiving area is provided, even when the optical characteristics of the objective lens are optimally designed for one information recording medium, spherical aberration occurs when light reflected from the other information recording medium is received. The central light receiving area can receive only the reflected light other than the peripheral part, which is greatly affected by the influence of light, so that compatibility with information recording media with different substrate thicknesses can be maintained and the quality of reproduced signals etc. can be improved. Become.
【0106】請求項2にかかる発明によれば,回折手段
により反射光を±n次(n=0,1,…)の回折光とし
て回折し,かつ,+次数の回折光と−次数の回折光と
は,0次光を中心に反対方向に回折されるので,+次数
の回折光を受光する正次数受光部と−次数の回折光を受
光する負次数受光部とにより受光手段を構成し,そして
例えば,薄い基板厚の情報記録媒体からの反射光におけ
る回折光を正次数受光部で受光し,厚い基板厚の情報記
録媒体からの反射光における回折光を負次数受光部で受
光するようにして,負次数受光部に中央光受光領域を形
成したので,対物レンズを基板厚の異なる情報記録媒体
の一方に対して光学特性を最適設計したために,他方の
情報記録媒体からの反射光の周辺部に球面収差の影響が
含まれる場合であっても,当該球面収差の影響が少ない
反射光のみを受光することが可能になって,再生信号等
の品質が向上するようになる。According to the second aspect of the invention, the reflected light is diffracted by the diffracting means as ± n-order (n = 0, 1,...) Diffracted light, and the + order diffracted light and the − order diffracted light are diffracted. Since the light is diffracted in the opposite direction with respect to the 0th order light, a light receiving means is constituted by a positive order light receiving section for receiving the + order diffracted light and a negative order light receiving section for receiving the − order diffracted light. For example, the positive order light receiving portion receives the diffracted light in the reflected light from the information recording medium having a small substrate thickness, and receives the diffracted light in the negative order light receiving portion from the information recording medium having a thick substrate thickness. Then, the central light receiving area is formed in the negative order light receiving section, so that the objective lens is optimally designed for one of the information recording media having different substrate thicknesses, so that the reflected light from the other information recording medium is The case where the influence of spherical aberration is included in the periphery Also, it becomes possible to receive only little influence reflected light from the spherical aberration, so to improve quality such as reproduction signals.
【0107】特に,一様方向のグレーティングを形成し
て回折手段を構成するようにしたので,当該回折手段が
容易に,かつ,安価に製造できてコストダウンが可能に
なる。In particular, since the diffraction means is formed by forming a grating in a uniform direction, the diffraction means can be easily and inexpensively manufactured, and the cost can be reduced.
【0108】請求項3にかかる発明によれば,正及び負
次数受光部のそれぞの中心部分に受光中心領域を形成
し,その内の1つが中央光受光領域をなし,かつ,2つ
の受光中心領域の少なくとも1つを2分割したので,対
物レンズの光学特性を基板厚の異なる情報記録媒体の一
方に対して最適設計したために,他方の情報記録媒体か
らの反射光の周辺部に球面収差の影響が含まれる場合で
あっても,当該球面収差の影響が少ない反射光のみを受
光することが可能になって,高品質の再生信号等を得る
ことができると共に,当該分割された受光中心領域から
の光電変換信号の差分に基づきトラッキング信号を検出
することが可能になる。According to the third aspect of the present invention, the light receiving central regions are formed at the center portions of the positive and negative order light receiving portions, one of which forms a central light receiving region and two light receiving regions. Since at least one of the central regions is divided into two, the optical characteristics of the objective lens are optimally designed for one of the information recording media having different substrate thicknesses. Even when the influence of the light is included, it is possible to receive only the reflected light having a small influence of the spherical aberration, to obtain a high-quality reproduction signal and the like, and to obtain the divided light receiving center. The tracking signal can be detected based on the difference of the photoelectric conversion signal from the area.
【0109】請求項4にかかる発明によれば,正及び負
次数受光部のそれぞの中心部分に受光中心領域を形成
し,その内の1つが中央光受光領域をなし,かつ,2つ
の受光中心領域がの少なくとも1つが2分割され,その
内の1つが当該2分割した方向と直角方向に更に2分割
したので,対物レンズを基板厚の異なる情報記録媒体の
一方に対して光学特性を最適設計したために,他方の情
報記録媒体からの反射光の周辺部に球面収差の影響が含
まれる場合であっても,当該球面収差の影響が少ない反
射光のみを受光することが可能になって,高品質の受光
信号等を得ることができると共に,当該更に分割した領
域からの光電変換信号の差分に基づきトラッキング信号
を検出することが可能になる。According to the fourth aspect of the present invention, the light receiving central regions are formed at the center portions of the positive and negative order light receiving portions, one of which forms a central light receiving region and two light receiving regions. At least one of the central regions is divided into two, and one of them is further divided into two in the direction perpendicular to the direction of the division, so that the objective lens can optimize the optical characteristics for one of the information recording media having different substrate thicknesses. Due to the design, even when the peripheral portion of the reflected light from the other information recording medium includes the influence of spherical aberration, it is possible to receive only the reflected light that is less affected by the spherical aberration. A high-quality light receiving signal and the like can be obtained, and a tracking signal can be detected based on a difference between photoelectric conversion signals from the further divided area.
【0110】請求項5にかかる発明によれば,対物レン
ズの光学特性を最適設計した情報記録媒体からの反射光
における回折光から再生信号を検出するときは,中央光
受光領域と当該中央光受光領域の周囲に形成された受光
周囲領域とからの光電変換信号により検出し,また対物
レンズの光学特性を最適設計していない情報記録媒体か
らの反射光における回折光から再生信号を検出するとき
は,中央光受光領域からの光電変換信号により検出し
て,再生信号を中央光受光領域が形成された正又は負次
数受光部のみから検出するようにしたので,対物レンズ
の光学特性が一方の情報記録媒体に対して最適設計され
た場合であっても,他方の情報記録媒体からの反射光を
受光する際には,球面収差の影響が大きい周辺部以外の
反射光のみを中央光受光領域で受光することができ,基
板厚の異なる情報記録媒体に対しても互換性が保てると
共に再生信号等の品質が向上するようになる。According to the fifth aspect of the present invention, when a reproduced signal is detected from a diffracted light in a reflected light from an information recording medium in which an optical characteristic of an objective lens is optimally designed, a central light receiving area and the central light receiving area are detected. When detecting with the photoelectric conversion signal from the light receiving surrounding area formed around the area and detecting the reproduction signal from the diffracted light in the reflected light from the information recording medium for which the optical characteristics of the objective lens are not optimally designed , The reproduced signal is detected only from the positive or negative order light receiving portion in which the central light receiving area is formed, by detecting the photoelectric conversion signal from the central light receiving area. Even when optimally designed for the recording medium, when the reflected light from the other information recording medium is received, only the reflected light except for the peripheral part where the influence of spherical aberration is large is Can be received by the optical area, also comes to improving the quality of the reproduced signal or the like with maintained compatibility for different information recording medium of the substrate thickness.
【0111】また,中央光受光領域が形成されている正
又は負次数受光部からの光電変換信号のみにより,再生
信号を得るようにしたので,正又は負次数受光部のいず
れか一方が高周波特性を備えれば良くなり,コスト削減
が可能になる。Further, since the reproduction signal is obtained only by the photoelectric conversion signal from the positive or negative order light receiving portion in which the central light receiving region is formed, one of the positive and negative order light receiving portions has a high frequency characteristic. And cost reduction is possible.
【0112】請求項6にかかる発明によれば,正及び負
次数受光部のそれぞれの中心部分に受光中心領域が形成
され,その内の1つが中央光受光領域をなして,これら
2つの受光中心領域をグレーティング方向に分割して,
中央光受光領域をなす受光中心領域は,対物レンズの光
学特性を最適設計していない情報記録媒体からの反射光
における球面収差の影響が小さい中央部分のみを受光
し,他方の受光中心領域は対物レンズの光学特性を最適
設計した情報記録媒体からの反射光を全て受光するよう
にしたので,対物レンズの光学特性が一方の情報記録媒
体に対して最適設計された場合であっても,他方の情報
記録媒体からの反射光を受光する際には,球面収差の影
響が大きい周辺部以外の反射光のみを中央光受光領域で
受光することができ,基板厚の異なる情報記録媒体に対
しても互換性が保てると共に再生信号等の品質が向上す
るようになる。According to the sixth aspect of the present invention, the light receiving center regions are formed at the center portions of the positive and negative order light receiving portions, respectively, one of which forms a central light receiving region, and these two light receiving centers are formed. By dividing the area in the grating direction,
The central light receiving area, which forms the central light receiving area, receives only the central portion where the influence of spherical aberration on the reflected light from the information recording medium for which the optical characteristics of the objective lens is not optimally designed is small, and the other light receiving central area is the objective light receiving area. Since all the reflected light from the information recording medium with the optimally designed optical characteristics of the lens is received, even if the optical characteristic of the objective lens is optimally designed for one information recording medium, When receiving the reflected light from the information recording medium, the central light receiving area can receive only the reflected light except for the peripheral part where the influence of the spherical aberration is large. Compatibility can be maintained, and the quality of a reproduced signal and the like can be improved.
【0113】また,受光中心領域をグレーティング方向
に分割したことにより,例えば温度変化によりレーザ発
生手段から出射されるレーザー光の波長が変動して回折
角が変化しても,受光領域から外れないようにでき,信
頼性が向上する。Further, since the light receiving center region is divided in the grating direction, even if the diffraction angle changes due to a change in the wavelength of the laser light emitted from the laser generating means due to a temperature change, the light receiving region does not deviate from the light receiving region. And reliability is improved.
【0114】請求項7にかかる発明によれば,中央光受
光領域の周囲に,受光周囲領域を2重に形成し,かつ,
中央光受光領域及び2つの周囲光受光領域を2分割し
て,対物レンズの光学特性が最適設計された情報記録媒
体からの反射光における回折光から再生信号を検出する
ときは,2つの周囲光受光領域と中央光受光領域とから
の光電変換信号から検出し,また対物レンズの光学特性
が最適設計されていない情報記録媒体からの反射光にお
ける回折光から再生信号を検出するときは,中央光受光
領域からの光電変換信号により検出するようにしたの
で,対物レンズの光学特性が一方の情報記録媒体に対し
て最適設計された場合であっても,他方の情報記録媒体
からの反射光を受光する際には,球面収差の影響が大き
い周囲部以外の反射光のみを中央光受光領域で受光する
ことができ,基板厚の異なる情報記録媒体に対しても互
換性が保てると共に再生信号等の品質が向上するように
なる。According to the invention according to claim 7, the light receiving peripheral area is formed double around the central light receiving area, and
When the reproduction signal is detected from the diffracted light in the reflected light from the information recording medium in which the optical characteristics of the objective lens are optimally divided by dividing the central light receiving area and the two surrounding light receiving areas into two, the two surrounding lights are used. When detecting the reproduction signal from the photoelectric conversion signal from the light receiving area and the central light receiving area, and detecting the reproduction signal from the diffracted light in the reflected light from the information recording medium for which the optical characteristics of the objective lens are not optimally designed, the central light Since the detection is performed based on the photoelectric conversion signal from the light receiving area, even if the optical characteristics of the objective lens are optimally designed for one information recording medium, reflected light from the other information recording medium is received. In this case, only the reflected light other than the peripheral part, which is greatly affected by spherical aberration, can be received by the central light receiving area, so that compatibility can be maintained with information recording media having different substrate thicknesses and the compatibility can be maintained. The quality of the signal or the like is improved.
【0115】請求項8にかかる発明によれば,レーザ発
生手段と受光手段とを1つの缶に収納したので,装置の
コンパクト化が図れる。According to the eighth aspect of the present invention, since the laser generating means and the light receiving means are housed in one can, the apparatus can be made compact.
【図1】本発明の実施の形態の説明に適用される光ピッ
クアップ装置における光学系の概略構成図である。FIG. 1 is a schematic configuration diagram of an optical system in an optical pickup device applied to the description of an embodiment of the present invention.
【図2】回折手段及び受光手段の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a diffraction unit and a light receiving unit.
【図3】受光手段の他の構成を示す図である。FIG. 3 is a diagram showing another configuration of the light receiving unit.
【図4】受光手段の他の構成を示す図である。FIG. 4 is a diagram showing another configuration of the light receiving means.
【図5】本発明の実施の形態の説明に適用される光ピッ
クアップ装置における光学系の他の例の概略構成図であ
る。FIG. 5 is a schematic configuration diagram of another example of the optical system in the optical pickup device applied to the description of the embodiment of the invention.
【図6】2つの半導体レーザ素子が収納されたレーザ発
生手段の構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a laser generating unit in which two semiconductor laser elements are housed.
【図7】受光手段の他の構成を示す図である。FIG. 7 is a diagram showing another configuration of the light receiving unit.
【図8】受光手段の他の構成を示す図である。FIG. 8 is a diagram showing another configuration of the light receiving unit.
【図9】受光手段の他の構成を示す図である。FIG. 9 is a diagram showing another configuration of the light receiving unit.
【図10】対物レンズの光軸ずれを防止する構成を示す
図である。FIG. 10 is a diagram showing a configuration for preventing an optical axis shift of an objective lens.
【図11】透明基板厚の相違による集光特性を説明する
図である。FIG. 11 is a diagram illustrating light-collecting characteristics depending on the difference in the thickness of a transparent substrate.
【図12】反射光の周辺部を遮光することによる効果を
説明するための図である。FIG. 12 is a diagram for explaining an effect obtained by shielding a peripheral portion of reflected light.
1 レーザ発生手段 2 コリメートレンズ 3 ビームスプリッタ 5 対物レンズ 6 レーザユニット 11 ホログラム 20,23,26,29,30,33,36,40,4
3,46,49 受光手段DESCRIPTION OF SYMBOLS 1 Laser generation means 2 Collimating lens 3 Beam splitter 5 Objective lens 6 Laser unit 11 Hologram 20,23,26,29,30,33,36,40,4
3,46,49 Light receiving means
Claims (8)
にレーザ光を射出するレーザ発生手段と,少なくとも一
方の前記情報記録媒体に対して光学特性が最適設計され
て,入射したレーザ光を集光する対物レンズと,前記情
報記録媒体からの反射光を受光して再生信号及びサーボ
信号を出力する受光手段とを有する光ピックアップ装置
において,前記受光手段が,前記対物レンズの光学特性
を最適設計していない前記情報記録媒体からの反射光に
おける球面収差の影響が小さい中央部分を受光する中央
光受光領域を有することを特徴とする光ピックアップ装
置。1. A laser generating means for emitting a laser beam to an information recording medium having a transparent substrate with a different substrate thickness, and an optical characteristic which is optimally designed for at least one of the information recording media to collect an incident laser beam. In an optical pickup device having an objective lens that emits light and light receiving means that receives reflected light from the information recording medium and outputs a reproduction signal and a servo signal, the light receiving means optimizes the optical characteristics of the objective lens. An optical pickup device having a central light receiving area for receiving a central portion where the influence of spherical aberration on reflected light from the information recording medium that is not reflected is small.
射した反射光を±n次(n=0,1,…)の回折光とし
てそれぞれ異なる角度で回折する回折手段を有し,前記
受光手段が,前記回折手段による+次数の回折光を受光
する正次数受光部と,−次数の回折光を受光する負次数
受光部とを有すると共に,前記回折手段に形成されたグ
レーティング方向と直交する方向に配設され,かつ,前
記正又は負次数受光部の一方に前記中央光受光領域が形
成されてなることを特徴とする請求項1記載の光ピック
アップ装置。2. A light receiving means, wherein a grating is formed uniformly, and diffracting means for diffracting incident reflected light as ± n-order (n = 0, 1,...) Diffracted lights at different angles. Has a positive-order light-receiving portion for receiving the + -order diffracted light by the diffractive means, and a negative-order light-receiving portion for receiving the negative-order diffracted light, and a direction orthogonal to a grating direction formed on the diffractive means. 2. The optical pickup device according to claim 1, wherein the central light receiving region is formed in one of the positive and negative order light receiving portions.
心部に受光中心領域が形成され,その内の1つが前記中
央光受光領域をなし,かつ,前記2つの受光中心領域の
少なくとも1つが2分割されてなることを特徴とする請
求項2記載の光ピックアップ装置。3. A light receiving center region is formed at a substantially central portion of each of the positive and negative order light receiving portions, one of which forms the central light receiving region and at least one of the two light receiving central regions. 3. The optical pickup device according to claim 2, wherein one is divided into two.
心部に受光中心領域が形成され,その内の1つが前記中
央光受光領域をなし,かつ,前記2つの受光中心領域が
の少なくとも1つが2分割され,その内の1つが当該2
分割した方向と直角方向に更に2分割されてなることを
特徴とする請求項2記載の光ピックアップ装置。4. A light receiving center region is formed at a substantially central portion of each of the positive and negative order light receiving portions, one of which forms the central light receiving region and the two light receiving central regions form a central light receiving region. At least one is divided into two, and one of the two is
3. The optical pickup device according to claim 2, wherein the optical pickup device is further divided into two in a direction perpendicular to the divided direction.
域が形成されて,前記対物レンズの光学特性を最適設計
した前記情報記録媒体からの反射光における回折光から
再生信号を検出するときは,前記中央光受光領域と前記
受光周囲領域とからの光電変換信号により検出し,また
前記対物レンズの光学特性を最適設計していない前記情
報記録媒体からの反射光における回折光から再生信号を
検出するときは,前記中央光受光領域からの光電変換信
号のみにより検出することを特徴とする請求項2乃至4
いずれか1項記載の光ピックアップ装置。5. A light receiving peripheral area is formed around the central light receiving area, and when a reproduction signal is detected from diffracted light in reflected light from the information recording medium, the optical characteristics of the objective lens being optimally designed. , Detection by a photoelectric conversion signal from the central light receiving area and the light receiving surrounding area, and detection of a reproduction signal from diffracted light in reflected light from the information recording medium for which the optical characteristics of the objective lens are not optimally designed. 5. The method according to claim 2, wherein the detecting is performed only by a photoelectric conversion signal from the central light receiving area.
The optical pickup device according to claim 1.
中心部に受光中心領域が形成され,その内の1つが前記
中央光受光領域をなして,これら2つの受光中心領域が
グレーティング方向に分割されてなることを特徴とする
請求項2記載の光ピックアップ装置。6. A light receiving center region is formed at a substantially central portion of each of the positive and negative order light receiving portions, one of which forms the central light receiving region, and these two light receiving central regions are arranged in the grating direction. 3. The optical pickup device according to claim 2, wherein the optical pickup device is divided.
光周囲領域が形成され,かつ,前記中央光受光領域及び
2つの前記周囲光受光領域が2分割されてなることを特
徴とする請求項1記載の光ピックアップ装置。7. A double light receiving peripheral area is formed around the central light receiving area, and the central light receiving area and the two peripheral light receiving areas are divided into two. The optical pickup device according to claim 1.
が,ユニット化されてなることを特徴とする請求項1乃
至7いずれか1項記載の光ピックアップ装置。8. The optical pickup device according to claim 1, wherein said laser generating means and said light receiving means are unitized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9211247A JPH10261238A (en) | 1997-01-20 | 1997-07-23 | Optical pickup device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-19613 | 1997-01-20 | ||
JP1961397 | 1997-01-20 | ||
JP9211247A JPH10261238A (en) | 1997-01-20 | 1997-07-23 | Optical pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10261238A true JPH10261238A (en) | 1998-09-29 |
Family
ID=26356459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9211247A Pending JPH10261238A (en) | 1997-01-20 | 1997-07-23 | Optical pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10261238A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7447139B2 (en) | 2004-04-15 | 2008-11-04 | Tdk Corporation | Light-receiving element, optical head, optical recording/reproducing apparatus, and method of optical recording and reproduction |
-
1997
- 1997-07-23 JP JP9211247A patent/JPH10261238A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7447139B2 (en) | 2004-04-15 | 2008-11-04 | Tdk Corporation | Light-receiving element, optical head, optical recording/reproducing apparatus, and method of optical recording and reproduction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6567355B2 (en) | Optical detector, optical pickup and optical information reproducing apparatus using optical pickup | |
US4771411A (en) | Device for scanning a radiation-reflecting information surface with optical radiation | |
US5436876A (en) | Optical head and optical memory device | |
US6339570B1 (en) | Optical pickup system | |
US20070041287A1 (en) | Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer | |
JP3662382B2 (en) | Optical pickup device | |
US6400666B1 (en) | Optical pickup device | |
US7298676B2 (en) | Optical pickup apparatus having optical detection area for compensating for tracking error offset | |
KR20070044037A (en) | Diffractive part | |
US20070082562A1 (en) | Multi-beam optical scanning device | |
JP3549260B2 (en) | Information recording / reproducing device | |
JP2003162831A (en) | Optical pickup | |
GB2313229A (en) | Optical pickup capable of compatibly adopting disks of different thickness | |
JPH10261238A (en) | Optical pickup device | |
JP2007280467A (en) | Objective lens holding device and optical pickup device | |
JP3017418B2 (en) | Optical pickup device | |
US6781104B1 (en) | Device for scanning an optical record carrier | |
KR100645621B1 (en) | Optical pickup having single optical detection for dual wavelength | |
JP4153195B2 (en) | Land / groove discrimination method and optical recording / reproducing apparatus | |
US20070247984A1 (en) | Optical Record Carrier and Optical Scanning Device | |
KR100339345B1 (en) | Optical pickup device | |
KR19990041069A (en) | Optical pickup device | |
JP2000076690A (en) | Optical head device | |
JPH10214435A (en) | Optical pickup device | |
JP2005310298A (en) | Optical pickup and optical information processor |