JPH10260729A - Operation control system for unmanned traveling vehicle - Google Patents
Operation control system for unmanned traveling vehicleInfo
- Publication number
- JPH10260729A JPH10260729A JP9065763A JP6576397A JPH10260729A JP H10260729 A JPH10260729 A JP H10260729A JP 9065763 A JP9065763 A JP 9065763A JP 6576397 A JP6576397 A JP 6576397A JP H10260729 A JPH10260729 A JP H10260729A
- Authority
- JP
- Japan
- Prior art keywords
- traveling
- distance
- unmanned
- traveling vehicle
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 claims abstract description 64
- 238000012937 correction Methods 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000010295 mobile communication Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 39
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000003550 marker Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は無人走行車両の運行
制御システムに関し、特に本システムに適用される走行
距離計算方法を工夫したものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control system for an unmanned vehicle, and more particularly to a method for calculating a traveling distance applied to the system.
【0002】[0002]
【従来の技術】工場等における物流システムとして無人
走行車両の運行システムが汎用されている。この無人走
行車両の運行システムにおいては無人走行車両を無人で
走行させるため、通常、これを運行管理する運行制御シ
ステムが必要になる。この運行制御システムは無線や、
走行ルート上随所に配置した通信用の光通信器等を利用
して走行する無人走行車両に走行・停止の指示を与える
ように構成してある。2. Description of the Related Art An operation system for unmanned traveling vehicles is widely used as a distribution system in factories and the like. In the operation system of the unmanned traveling vehicle, an unmanned traveling vehicle runs unmanned. Therefore, an operation control system for managing the operation of the vehicle is usually required. This operation control system is wireless,
It is configured to give an instruction to run / stop to an unmanned traveling vehicle that travels by using an optical communication device or the like for communication disposed anywhere on the traveling route.
【0003】図3は光通信器を搭載した無人走行車両を
概念的に示す説明図で、(a)は平面的に見た図、
(b)は側面から見た図である。図4は無人走行車両の
制御系を示すブロック線図及び図5はこの無人走行車両
を走行させるシステムの主に走行系を概念的に示す説明
図である。これらの図中において、、1は無人走行車
両、2はタイヤ、3は無人走行車両1に搭載した移動側
通信手段である光通信器、4はモータ、5は制御部、6
は駆動ドライバ、7はロータリエンコーダ、3a,3b
は地上に配設した定地側通信手段である光通信器及び8
は誘導線である。この誘導線8は図では直線のものを示
したが、曲線のものもあり得る。FIG. 3 is an explanatory view conceptually showing an unmanned traveling vehicle equipped with an optical communication device, wherein (a) is a plan view.
(B) is the figure seen from the side. FIG. 4 is a block diagram showing a control system of the unmanned traveling vehicle, and FIG. 5 is an explanatory diagram mainly showing a traveling system of the system for traveling the unmanned traveling vehicle. In these figures, reference numeral 1 denotes an unmanned traveling vehicle, 2 denotes a tire, 3 denotes an optical communication device serving as a moving side communication means mounted on the unmanned traveling vehicle 1, 4 denotes a motor, 5 denotes a control unit, and 6 denotes a control unit.
Is a drive driver, 7 is a rotary encoder, 3a, 3b
Is an optical communication device, which is a fixed-side communication means disposed on the ground;
Is a guide wire. Although the guide line 8 is shown as a straight line in the figure, it may be a curved line.
【0004】かかる無人走行車両1の運行制御システム
において制御部5は、光通信器3と光通信器3a,3b
との間の通信を制御するとともに、駆動ドライバ6を介
してモータ4にモータ回転速度指令を与え、このモータ
回転速度指令に基づきモータ4を回転させる。このとき
のモータ4の回転数はロータリエンコーダ7で計測し、
駆動ドライバ6にフィードバックすることによりモータ
4の速度制御を行う。また、このロータリエンコーダ7
が検出する回転数の情報は制御部5にも信号として入力
され制御部5におけるタイヤ回転数のカウント用に供さ
れる。In the operation control system for the unmanned traveling vehicle 1, the control unit 5 includes an optical communication device 3 and optical communication devices 3a and 3b.
And a motor rotation speed command is given to the motor 4 via the drive driver 6, and the motor 4 is rotated based on the motor rotation speed command. The rotation speed of the motor 4 at this time is measured by the rotary encoder 7, and
The speed of the motor 4 is controlled by feeding back to the drive driver 6. Also, this rotary encoder 7
Is also input as a signal to the control unit 5 and is provided to the control unit 5 for counting the number of rotations of the tire.
【0005】図6は無人走行車両1のタイヤ2及びその
近傍部分の構造の一例を示した構造図である。同図に示
すように、駆動用のモータ4はタイヤ2を回転させ、ロ
ータリエンコーダ7はモータ6の軸と連結されている。
タイヤ2の操舵は操舵用のモータ9の回転とギヤ10の
回転により行うように構成してある。FIG. 6 is a structural diagram showing an example of the structure of the tire 2 of the unmanned traveling vehicle 1 and its vicinity. As shown in the drawing, a driving motor 4 rotates the tire 2, and a rotary encoder 7 is connected to a shaft of the motor 6.
The steering of the tire 2 is configured to be performed by rotation of a steering motor 9 and rotation of a gear 10.
【0006】従来、ある地点(出発位置)から目標位置
まで無人走行車両1を無人走行させる場合、図5に示す
ように、目標位置までの全走行距離の走行において、タ
イヤ2の回転数から距離を計算して制御している。この
走行中、光通信器3と光通信器3a,3bとで光通信を
行うことにより走行指示命令を受信しながら無人走行車
両1の走行を続行する。すなわち無人走行車両1は、光
通信器3aを介して出発位置で走行に必要な全データを
受取り、走行の途中では光通信器3bからGO、STO
Pの命令のみを受信して走行を続行する。このように走
行途中で光通信器3bからGO、STOPの命令を送出
するのは、例えば前方に他の無人走行車両1が在り、そ
のまま走行を続ければ衝突するような場合にはSTOP
命令により一旦停止させ、衝突の虞がなくなった場合に
GO命令により発進させるためである。Conventionally, when the unmanned traveling vehicle 1 travels unmannedly from a certain point (departure position) to a target position, as shown in FIG. Is calculated and controlled. During this traveling, the unmanned traveling vehicle 1 continues traveling while receiving the traveling instruction command by performing optical communication between the optical communication device 3 and the optical communication devices 3a and 3b. That is, the unmanned traveling vehicle 1 receives all data necessary for traveling at the departure position via the optical communication device 3a, and receives GO and STO from the optical communication device 3b during traveling.
The traveling is continued by receiving only the command of P. The GO and STOP commands are transmitted from the optical communication device 3b during traveling in this way, for example, when there is another unmanned traveling vehicle 1 in front and the vehicle continues to travel and collides if stopped.
This is for temporarily stopping by a command and starting by a GO command when there is no fear of collision.
【0007】この場合の制御部5の処理手順を示すフロ
ーチャートを図7に示す。同図に示すように、制御部5
は、最初全走行距離を読み込み、走行条件の成立後に駆
動用のモータ4を駆動して走行を開始させ、タイヤ2の
回転数から距離を計算しつつ目標位置を把握する。FIG. 7 is a flowchart showing a processing procedure of the control unit 5 in this case. As shown in FIG.
Reads the total travel distance first, drives the drive motor 4 after the travel conditions are satisfied, starts traveling, and grasps the target position while calculating the distance from the rotation speed of the tire 2.
【0008】[0008]
【発明が解決しようとする課題】上述の如き従来技術で
は、走行距離をタイヤ2の回転数だけで計算しているた
め、タイヤ2の径がタイヤ2の摩耗や、積荷の有無、重
量変化により変わった場合、その径の変化率に比例して
走行距離に誤差が発生する。特に全走行距離が大きくな
ればなるほど誤差が大きくなり、例えば100mでタイ
ヤ2の径に1%の変化が発生しただけでも1mの誤差と
なり、運行管理上大きな問題となる。すなわち目標位置
で停止させる場合に1mも誤差がでるので停止目標を見
失い次の作業への移行に失敗したりする。In the prior art as described above, the traveling distance is calculated only by the number of revolutions of the tire 2, so that the diameter of the tire 2 depends on the wear of the tire 2, the presence or absence of a load, and a change in weight. If it changes, an error occurs in the traveling distance in proportion to the rate of change of the diameter. In particular, as the total traveling distance increases, the error increases. For example, even if a change of 1% in the diameter of the tire 2 occurs at 100 m, the error becomes 1 m, which is a serious problem in operation management. That is, when stopping at the target position, an error of as much as 1 m occurs, so that the stop target is lost and the transition to the next operation fails.
【0009】一方、他の従来技術として、図8に示すよ
うに、走行距離aだけ走行した所にマーカ11を設けて
おき、このマーカ11を無人走行車両1に設けたセンサ
12で検出し、マーカ11の場所以降の走行距離bの部
分をタイヤ2の回転数に基づく距離の検出で走行する方
式も提案されている。On the other hand, as another prior art, as shown in FIG. 8, a marker 11 is provided at a place where the vehicle has traveled a distance a, and the marker 11 is detected by a sensor 12 provided on the unmanned vehicle 1. A method has been proposed in which the vehicle travels over a portion of the travel distance b after the location of the marker 11 by detecting a distance based on the rotation speed of the tire 2.
【0010】ところが誘導線8及びマーカ11は、通
常、磁石を利用するため、分枝誘導線8aがマーカ11
の近くに配設してあるとセンサ12は分枝誘導線8aを
マーカ11と誤認知してしまうという問題がある。However, since the guide wire 8 and the marker 11 usually use magnets, the branch guide wire 8a is
In this case, the sensor 12 may erroneously recognize the branch guide line 8a as the marker 11.
【0011】本発明は、上記従来技術に鑑み、タイヤ径
が変化してもその運行管理への影響を可及的に小さくす
ることができる無人走行車両の運行制御システムを提供
することを目的とする。SUMMARY OF THE INVENTION In view of the above prior art, an object of the present invention is to provide an operation control system for an unmanned traveling vehicle which can minimize the influence on operation management even if the tire diameter changes. I do.
【0012】[0012]
【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。The structure of the present invention that achieves the above object has the following features.
【0013】1) 無人走行車両と、この無人走行車両
の走行距離を検出するように無人走行車両に設置された
走行距離検出手段と、無人走行車両に設置された移動側
通信手段と、走行開始位置と目標位置との間に設置され
移動側通信手段と通信を行う定地側通信手段とを有する
無人走行車両の運行制御システムにおいて、定地側通信
手段を限定された範囲にのみ通信可能な通信手段とし、
定地側通信手段からの通信を受けた位置から、走行距離
検出手段により検出した走行距離を補正するように構成
したこと。1) Unmanned traveling vehicle, traveling distance detecting means installed on the unmanned traveling vehicle to detect the traveling distance of the unmanned traveling vehicle, moving-side communication means installed on the unmanned traveling vehicle, traveling start In an operation control system of an unmanned traveling vehicle having a stationary communication means installed between the position and the target position and communicating with the mobile communication means, the stationary communication means can communicate only in a limited range. Communication means,
The system is configured to correct the traveling distance detected by the traveling distance detecting means from the position where the communication is received from the stationary side communication means.
【0014】2) 1)において、走行開始時までに、
全走行距離を、各定地側通信手段までの距離に分割して
無人走行車両内に設定すること。2) In 1), by the start of traveling,
Divide the total mileage into the distance to each fixed-side communication means and set it in the unmanned vehicle.
【0015】3) 1)において、前記走行距離を補正
する補正値が、一定の値以上であった場合に、異常状態
であると判定すること。3) In 1), when the correction value for correcting the traveling distance is equal to or more than a predetermined value, it is determined that the vehicle is in an abnormal state.
【0016】[0016]
【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。本形態は、目標位置の一つ手前
の定地側の光通信器まではこの光通信器を利用して走行
距離の管理を行い、タイヤ回転による走行距離計算を行
う距離を最短にしてタイヤ径変化による距離計算誤差を
最小にしたものである。適用する無人走行車両自体及び
その制御系のハードウエア自体は図3及び図4に示すも
のと何ら異なるところはない。主に制御部5のソフトウ
エアが異なる。Embodiments of the present invention will be described below in detail with reference to the drawings. This embodiment uses this optical communication device to manage the mileage up to the optical communication device on the fixed side just before the target position, and minimizes the distance for calculating the mileage by rotating the tire to reduce the tire diameter. The distance calculation error due to the change is minimized. The unmanned traveling vehicle itself and the hardware of the control system to be applied are not different from those shown in FIGS. 3 and 4. Mainly, the software of the control unit 5 is different.
【0017】図1は、従来技術を示す図5に対応する本
形態における無人走行車両を走行させるシステムの主に
走行系を概念的に示す説明図である。。同図に示すよう
に、無人走行車両11は誘導線18に沿って出発点から
目標位置までを走行する。光通信器13aは定地側通信
手段であり出発点に配設してある。光通信器13bも定
地側通信手段であり、誘導線18の近傍位置に配設して
ある。本形態では走行距離a及び走行距離bで全走行距
離を分割してある。したがって光通信器13bが目標位
置の一つ手前の光通信器13bである。ここで定地側通
信手段である光通信器13a、13bは限定された小さ
な範囲における通信を可能とするものであれば良い。こ
のため定地側と無人走行車両11との間の通信はマイク
ロ波通信方式でも実現し得る。FIG. 1 is an explanatory diagram conceptually showing a traveling system of a system for driving an unmanned traveling vehicle in this embodiment corresponding to FIG. 5 showing the prior art. . As shown in the figure, the unmanned traveling vehicle 11 travels along a guide line 18 from a starting point to a target position. The optical communication device 13a is a fixed-side communication means and is provided at a starting point. The optical communication device 13b is also a fixed communication device, and is disposed at a position near the guide line 18. In this embodiment, the total traveling distance is divided by the traveling distance a and the traveling distance b. Therefore, the optical communication device 13b is the optical communication device 13b immediately before the target position. Here, the optical communication devices 13a and 13b, which are the fixed-side communication means, may be any as long as they enable communication in a limited small range. For this reason, the communication between the stationary side and the unmanned traveling vehicle 11 can be realized by the microwave communication system.
【0018】上述の如く本形態は全走行距離を2分割し
たものであるが、一般的には光通信器13の数に対応さ
せて分割する。すなわち光通信器13bは通常誘導線1
8に沿って複数個配設されるが、この場合にはその数に
合わせて光通信器13bを配設する。As described above, in the present embodiment, the total traveling distance is divided into two, but in general, it is divided according to the number of optical communication devices 13. That is, the optical communication device 13b is normally connected to the guiding line 1.
In this case, a plurality of optical communication devices 13b are provided according to the number.
【0019】図2は本形態における制御部15の処理手
順を示すフローチャートである。同図に示すように、本
形態において無人走行車両11に搭載している制御部1
5(ハード的には図4の制御部5と同様の構成である)
は、先ず光通信器13a及び光通信器13を介して走行
距離a、bを読み込む(ステップS1 参照)。その後無
人走行車両11を誘導線18に沿って走行させる。走行
中、適宜光通信器13bの信号をチェックする(ステッ
プS2 参照)。この結果「信号無し」が検知された場合
には、そのまま駆動用のモータ4の駆動を継続させる
(ステップS3 参照)。「信号有り(光通信器13bの
近傍の所定エリアを無人走行車両11が走行している場
合に検出される)」の場合にはこの信号が走行命令(G
O命令)である場合にステップS3 の処理に進む(ステ
ップS4 参照)。ここまではタイヤ2の回転数に頼らず
走行させる。すなわち走行距離aの区間ではタイヤ回転
数に基づく走行距離は検出はしているが、このようにし
て検出する距離はタイヤ2の径により変化するので、光
通信器13bの信号を受信したことをトリガーとし、こ
の時点で走行距離aを走行したものと見做して距離のカ
ウンタを一旦クリアする。FIG. 2 is a flowchart showing a processing procedure of the control unit 15 in this embodiment. As shown in the figure, the control unit 1 mounted on the unmanned traveling vehicle 11 in the present embodiment
5 (in terms of hardware, the configuration is the same as that of the control unit 5 in FIG. 4)
The travel distance a through first optical communication device 13a and the optical communication unit 13 reads the b (see step S 1). After that, the unmanned traveling vehicle 11 is caused to travel along the guide line 18. Running, to check for a signal appropriate optical communication device 13b (see step S 2). As a result when the "no signal" has been detected, to then continue with the driving of the motor 4 for driving (see step S 3). In the case of "signal present (detected when unmanned traveling vehicle 11 is traveling in a predetermined area near optical communication device 13b)", this signal indicates traveling command (G
If it is O command) the process proceeds to step S 3 (see step S 4). Up to this point, the vehicle is driven without depending on the rotation speed of the tire 2. That is, in the section of the traveling distance a, the traveling distance based on the tire rotation speed is detected, but the distance detected in this manner changes depending on the diameter of the tire 2, so that the signal of the optical communication device 13b is received. As a trigger, it is considered that the vehicle has traveled the traveling distance a at this time, and the distance counter is cleared once.
【0020】ここで、光通信器13bの信号を受信した
時点におけるカウンタで検出した距離と走行距離aとを
比較し、両者の差が所定値を越えていることが検出され
た場合には異常であると判断するように構成しても良
い。Here, the distance detected by the counter at the time when the signal from the optical communication device 13b is received is compared with the traveling distance a. If it is detected that the difference between the two exceeds a predetermined value, an abnormality is detected. May be determined.
【0021】その後、走行距離bの区間は従来と同様に
タイヤ回転に基づく距離計算及びこの距離の目標走行距
離bとの比較を行いつつこの比較の結果が目標距離と一
致した時点で減速・停止させる(ステップS5 、ステッ
プS6 及びステップS7 参照)。すなわち目標位置に至
る最後の区間である走行距離bのみをタイヤ回転に基づ
く距離計算により走行させる。Thereafter, in the section of the traveling distance b, the distance calculation based on the tire rotation and comparison of the distance with the target traveling distance b are performed in the same manner as in the prior art. let (step S 5, see step S 6 and step S 7). That is, only the travel distance b, which is the last section to the target position, is traveled by the distance calculation based on the tire rotation.
【0022】上述の如く本形態では、出発位置から目標
位置までの間に光通信器13bを配設し、光通信器13
aから光通信器13bの位置まではタイヤ回転数を頼ら
ずに走行し、光通信器13bで通信開始した瞬間より、
タイヤ回転数を用いた距離計算による走行に移り、目標
走行距離bに相当するタイヤ回転数分だけ走行したら目
標位置と判断している。したがって、走行距離aの分は
タイヤ回転数を全く使わず、走行距離bの分だけがタイ
ヤ回転数により走行する。As described above, in this embodiment, the optical communication device 13b is provided between the departure position and the target position,
From a to the position of the optical communication device 13b, the vehicle travels without relying on the tire rotation speed, and from the moment when communication is started by the optical communication device 13b,
The process proceeds to travel by distance calculation using the tire rotation speed, and if the vehicle travels for the tire rotation speed corresponding to the target travel distance b, it is determined to be the target position. Therefore, the running distance a does not use the tire rotation speed at all, and only the running distance b runs according to the tire rotation speed.
【0023】[0023]
【発明の効果】以上実施の形態とともに詳細に説明した
ように、本発明によれば目標位置の直近の区間を除く区
間ではタイヤの径が変化した場合でも全く誤差が生じな
い。目標位置の直近の光通信器から目標位置までの走行
は、この区間の走行距離に相当するタイヤ回転数を計算
して行われるので、タイヤ径の変化により誤差が発生す
る可能性はある。しかしこのタイヤ回転数に基づく走行
距離は全走行距離に対して小さいので、誤差は小さくな
る。目標位置の直近の光通信器の位置が目標位置に近け
れば近いだけその誤差は小さくなる。As described in detail with the above embodiments, according to the present invention, no error occurs even in a case where the tire diameter changes in a section other than a section nearest to the target position. Since the travel from the optical communication device nearest to the target position to the target position is performed by calculating the tire rotation speed corresponding to the travel distance in this section, an error may occur due to a change in the tire diameter. However, since the running distance based on the tire rotation speed is smaller than the total running distance, the error becomes smaller. The closer the optical communication device is to the target position, the smaller the error is.
【0024】また、運行管理にもともと必要な光通信器
を利用するため、マーカ等の設置が不要となる。したが
って、図8に示すように、分枝誘導線8aが配設してあ
る場合でも誤認知することがない。Further, since an optical communication device which is originally required for operation management is used, it is not necessary to install a marker or the like. Therefore, as shown in FIG. 8, even when the branch guide wire 8a is provided, there is no erroneous recognition.
【図1】本発明の実施の形態に係る無人走行車両を走行
させるシステムの主に走行系を概念的に示す説明図。FIG. 1 is an explanatory diagram conceptually showing a traveling system mainly of a system for traveling an unmanned traveling vehicle according to an embodiment of the present invention.
【図2】図1に示す形態における制御部の処理手順を示
すフローチャート。FIG. 2 is a flowchart showing a processing procedure of a control unit in the embodiment shown in FIG.
【図3】光通信器を搭載した無人走行車両を概念的に示
す説明図で、(a)は平面的に見た図、(b)は側面か
ら見た図。3A and 3B are explanatory views conceptually showing an unmanned traveling vehicle equipped with an optical communication device, wherein FIG. 3A is a plan view and FIG. 3B is a side view.
【図4】図3に示す無人走行車両の制御系を示すブロッ
ク線図。FIG. 4 is a block diagram showing a control system of the unmanned traveling vehicle shown in FIG.
【図5】従来技術に係る無人走行車両を走行させるシス
テムの主に走行系を概念的に示す説明図。FIG. 5 is an explanatory diagram conceptually showing a traveling system of a system for traveling an unmanned traveling vehicle according to a conventional technique.
【図6】図3に示す無人走行車両のタイヤ及びその近傍
部分の構造の一例を示す構造図。FIG. 6 is a structural diagram showing an example of a structure of a tire of the unmanned traveling vehicle shown in FIG. 3 and its vicinity.
【図7】従来技術に係る無人走行車両の制御部の処理手
順を示すフローチャート。FIG. 7 is a flowchart showing a processing procedure of a control unit of an unmanned traveling vehicle according to the related art.
【図8】従来のマーカによる距離補正方法を概念的に示
す説明図。FIG. 8 is an explanatory view conceptually showing a conventional distance correction method using a marker.
11 無人走行車両 13、13a、13b 光通信器 15 制御部 18 誘導線 11 Unmanned traveling vehicle 13, 13a, 13b Optical communication device 15 Control unit 18 Guide wire
フロントページの続き (72)発明者 舘山 重春 千葉県富津市新富20番地の1 新日本製鐵 株式会社技術開発本部内 (72)発明者 木野 信幸 愛知県東海市東海町5丁目3番地 新日本 製鐵株式会社名古屋製鐵所内Continued on the front page (72) Inventor Shigeharu Tateyama 20-1, Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Nobuyuki Kino 5-3-1 Tokaicho, Tokai-shi, Aichi Pref. Inside Nagoya Works of Iron and Steel Corporation
Claims (3)
行距離を検出するように無人走行車両に設置された走行
距離検出手段と、無人走行車両に設置された移動側通信
手段と、走行開始位置と目標位置との間に設置され移動
側通信手段と通信を行う定地側通信手段とを有する無人
走行車両の運行制御システムにおいて、 定地側通信手段を限定された範囲にのみ通信可能な通信
手段とし、定地側通信手段からの通信を受けた位置か
ら、走行距離検出手段により検出した走行距離を補正す
るように構成したことを特徴とする無人走行車両の運行
制御システム。1. An unmanned traveling vehicle, a traveling distance detecting means installed on the unmanned traveling vehicle to detect a traveling distance of the unmanned traveling vehicle, a moving side communication means installed on the unmanned traveling vehicle, and a traveling start. In an operation control system of an unmanned traveling vehicle having a stationary communication device installed between a position and a target position and communicating with a mobile communication device, the stationary communication device can communicate only in a limited range. An operation control system for an unmanned traveling vehicle, wherein the communication means is configured to correct a traveling distance detected by the traveling distance detection means from a position where communication from the fixed-side communication means is received.
地側通信手段までの距離に分割して無人走行車両内に設
定することを特徴とする[請求項1]に記載の無人走行
車両の運行制御システム。2. The unmanned vehicle according to claim 1, wherein the total travel distance is divided into the distance to each of the fixed-side communication means and set in the unmanned traveling vehicle before the start of traveling. Operation control system for traveling vehicles.
の値以上であった場合に、異常状態であると判定するこ
とを特徴とする[請求項1]に記載の無人走行車両の運
行制御システム。3. The operation of an unmanned traveling vehicle according to claim 1, wherein when the correction value for correcting the traveling distance is equal to or more than a predetermined value, it is determined that the vehicle is in an abnormal state. Control system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9065763A JPH10260729A (en) | 1997-03-19 | 1997-03-19 | Operation control system for unmanned traveling vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9065763A JPH10260729A (en) | 1997-03-19 | 1997-03-19 | Operation control system for unmanned traveling vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10260729A true JPH10260729A (en) | 1998-09-29 |
Family
ID=13296397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9065763A Pending JPH10260729A (en) | 1997-03-19 | 1997-03-19 | Operation control system for unmanned traveling vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10260729A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013013276A (en) * | 2011-06-30 | 2013-01-17 | Mitsubishi Electric Corp | Motor controller and electrically-driven supercharging apparatus using the same |
WO2020144845A1 (en) * | 2019-01-11 | 2020-07-16 | 三菱電機株式会社 | Moving body management device and moving body system |
-
1997
- 1997-03-19 JP JP9065763A patent/JPH10260729A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013013276A (en) * | 2011-06-30 | 2013-01-17 | Mitsubishi Electric Corp | Motor controller and electrically-driven supercharging apparatus using the same |
US9212602B2 (en) | 2011-06-30 | 2015-12-15 | Mitsubishi Electric Corporation | Electric motor control apparatus and electric supercharging apparatus using electric motor control apparatus |
WO2020144845A1 (en) * | 2019-01-11 | 2020-07-16 | 三菱電機株式会社 | Moving body management device and moving body system |
CN113260937A (en) * | 2019-01-11 | 2021-08-13 | 三菱电机株式会社 | Mobile body management device and mobile body system |
JPWO2020144845A1 (en) * | 2019-01-11 | 2021-09-27 | 三菱電機株式会社 | Mobile management device and mobile system |
CN113260937B (en) * | 2019-01-11 | 2023-12-05 | 三菱电机株式会社 | Mobile body management device and mobile body system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0482424A1 (en) | Carriage running control system | |
EP1375304A2 (en) | Steering angle neutral position detection error protecting method and detection error protecting apparatus | |
US6340934B1 (en) | Vehicle-relevant onboard ETC-information communication control apparatus | |
CN109153333B (en) | Vehicle-mounted device and train occupation range calculation method | |
JP2000284830A (en) | Unmanned running controller | |
US20210171019A1 (en) | Automated valet parking system | |
JPH1069219A (en) | Automatic traveling road and automatic traveling system | |
JPH10260729A (en) | Operation control system for unmanned traveling vehicle | |
JP2011118585A (en) | Automated guided vehicle | |
CN115214775B (en) | Steering wheel neutral position adjusting method, device, equipment and medium | |
JPH04331615A (en) | Suspension control device | |
KR100759886B1 (en) | A offset correction and trouble detection method of yaw rate sensor | |
JP2849728B2 (en) | Control method for multiple automatic guided vehicles | |
KR100469773B1 (en) | Method and apparatus for correcting a curve radius | |
EP4420959A2 (en) | Control method, control device, control system, and tire testing method | |
KR101315488B1 (en) | Method for controlling the steering for automatic parking | |
JP2000330630A (en) | Unmanned traveling system | |
JP2008024146A (en) | Calculation system of train door opening permission range | |
JP3623568B2 (en) | Position recognition device using GPS receiver | |
JPH07117852B2 (en) | Method for detecting the position of an unmanned vehicle | |
JP4655829B2 (en) | Reel cable disconnection prevention device | |
JPH09230939A (en) | Method and device for controlling travel of unmanned vehicle | |
JP2000010632A (en) | Stopping position deciding device of automated guided vehicle | |
JPH08208179A (en) | Crane traveling controller | |
KR100199988B1 (en) | Steering method and device of agv |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031212 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20031212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070619 |