JPH10260009A - Coordinate measuring device - Google Patents

Coordinate measuring device

Info

Publication number
JPH10260009A
JPH10260009A JP6826997A JP6826997A JPH10260009A JP H10260009 A JPH10260009 A JP H10260009A JP 6826997 A JP6826997 A JP 6826997A JP 6826997 A JP6826997 A JP 6826997A JP H10260009 A JPH10260009 A JP H10260009A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
interferometer
stage
measuring
shape
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6826997A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kato
勝弘 加藤
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coordinate measuring device which can avoid influence from shape of a moving mirror reliably.
SOLUTION: The device is equipped with shape measuring interferometers 13, 14 which detect the relative position between two points by irradiating two points on a moving mirror 2X with laser beam, and rotational angle detecting interferometers 21, 22 which detect the rotational angle of a stage 1 based on the relative position between two points when the laser beam is irradiated to the two points on the stage 1. The shape of the moving mirror 2X is determined by combining plural relative position data which are detected by the shape measuring interferometer 13, 14 when the stage 1 is moved along the moving mirror 2X, and by correcting relative position data based on rotational angle data which are detected by the rotational angle interferometers 21, 22. Coordinates on measuring point are corrected based on the determined shape of the moving mirror 2X.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、被測定物を移動するステージの位置を介して被測定物の測定点の座標を測定する座標測定装置に関する。 The present invention relates to relates to a coordinate measuring device for measuring the coordinates of the measurement points of the object to be measured via the position of the stage for moving the object to be measured.

【0002】 [0002]

【従来の技術】被測定物を載置するステージに平面状の移動鏡を取付けておき、この移動鏡にレーザ光を照射することによりステージの位置を計測する座標測定装置が知られている。 BACKGROUND OF THE INVENTION keep attached the planar moving mirror to the stage for placing the object to be measured, a coordinate measuring device for measuring the position of the stage is known by irradiating a laser beam to the moving mirror. 図10に示すように、2つの移動鏡2X As shown in FIG. 10, two moving mirrors 2X
および移動鏡2Yの鏡面をそれぞれX軸およびY軸に直交して取付けるとともに、移動鏡2Xに干渉計40XからX軸方向のレーザビームを、移動鏡2Yに干渉計40 And the mirror surface of the movable mirror 2Y is attached perpendicular to the X and Y axes, respectively, the laser beam in the X axis direction from the interferometer 40X movable mirror 2X, interferometer movable mirror 2Y 40
YからY軸方向のレーザビームをそれぞれ照射して反射させ、レーザ光の往復光路長を計測することによりステージ101のXY座標が計測できる。 Y is reflected by irradiating each laser beam in the Y-axis direction from, XY coordinates of the stage 101 by measuring the round-trip optical path length of the laser beam can be measured. 被測定物上の測定点が所定の位置に位置決めされるようにステージ101 As measurement points on the object to be measured is positioned at a predetermined position the stage 101
を移動した後に上述のようにステージ101の位置を計測することにより、ステージ101の位置を介して測定点の座標を測定することができる。 By measuring the position of the stage 101 as described above after moving the can measure the coordinates of the measurement point via the position of the stage 101.

【0003】 [0003]

【発明が解決しようとする課題】しかし、座標測定装置のステージ101に取付ける移動鏡2X,2Yの平面度(真直度)精度が悪い場合、レーザ光の照射位置によってレーザ光の光路差にばらつきを生ずるため、座標測定データに誤差が混入する。 [0006] However, the mobile mirror 2X attached to the stage 101 of the coordinate measuring device, flatness of 2Y (straightness) When poor precision, the variation in optical path difference of the laser light by the irradiation position of the laser beam since the resulting error is mixed into the coordinate measurement data. 移動鏡2X,2Yの平面度が悪い場合に、理想格子状のマスクパターン102の形状を測定したとすると、図10に示すように移動鏡2X, When the moving mirror 2X, poor flatness of 2Y, assuming that measures the shape of the ideal lattice-shaped mask pattern 102, the movable mirror 2X, as shown in FIG. 10,
2Yの歪みに対して反転した歪みが測定データに現れる。 Strain was inverted with respect to the distortion of 2Y appears in the measurement data. したがって座標測定装置ではこのような移動鏡2 Accordingly, such mobile mirror coordinate measuring apparatus 2
X,2Yの歪みを補正しなければ真の形状(座標)を求めることができない。 X, can not be obtained unless correct distortion of 2Y true shape (coordinate).

【0004】移動鏡の歪みを補正する方法として、図1 [0004] As a method of correcting the distortion of the moving mirror, and FIG. 1
1に示すように、同一マスクパターン103を0度および180度の回転姿勢で形状測定し、2つの座標測定結果からパターンの曲り成分を取り除く手法が考えられる。 As shown in 1, the same mask pattern 103 and the shape measuring a rotational position of 0 degrees and 180 degrees, the method of removing the bending components of the pattern from the two coordinate measurements can be considered. しかし、この方法では移動鏡2X,2Yの歪みのうち線対称な成分(偶数次成分)しか測定できず(図11 However, moving mirror 2X In this way, of symmetrical components (even-order component) of the distortion of 2Y only be measured (Fig. 11
(a))、点対称な歪み(奇数次成分)については測定できない。 (A)), it can not be measured for point symmetry distortion (odd-order component). 例えば、図11(b)に示すように、点対称形状であるS字形状の歪みを180度回転しても同一形状のS字形状になるため、差分が全く測定できず、移動鏡2X,2Yの歪みの補正を行うことができない。 For example, as shown in FIG. 11 (b), to become a S-shape of the same shape by rotating the distortion of the S-shape that is point-symmetrical shape 180 can not measure the difference at all, the movable mirror 2X, it is not possible to correct the distortion of the 2Y.

【0005】本発明の目的は、移動鏡の形状の影響を確実に排除することができる座標測定装置を提供することにある。 An object of the present invention is to provide a coordinate measuring device which can reliably eliminate the effect of the shape of the moving mirror.

【0006】 [0006]

【課題を解決するための手段】実施の形態を示す図1〜 Figure 1 showing an embodiment Means for Solving the Problems]
図8に対応づけて説明すると、請求項1に記載の発明は、被測定物5を移動させるステージ1と、ステージ1 To describe in association with FIG. 8, a first aspect of the present invention, a stage 1 for moving the object 5, Stage 1
に取付けられた平面状の移動鏡2Xと、移動鏡2Xに向けてレーザビームを照射することによりステージ1の位置を計測する座標測定用干渉計41Xと、被測定物5上の測定点を検出する検出器3とを備え、検出器3が測定点を検出したときのステージ1の位置を座標測定用干渉計41Xによって計測することにより測定点の座標を測定する座標測定装置に適用される。 Detection and flat mobile mirror 2X attached, the coordinate measuring interferometer 41X to measure the position of the stage 1 by irradiating a laser beam toward the movable mirror 2X, the measuring point on the object to be measured 5 on and a detector 3 for, the detector 3 is applied to a coordinate measuring device for measuring the coordinates of the measurement points by measuring the coordinate measuring interferometer 41X the position of the stage 1 when the detected measurement point. そして、移動鏡2X Then, the mobile mirror 2X
の2点にレーザビームを照射することにより2点間の相対位置関係を検出する形状計測用干渉計13,14と、 The two points and shape measurement interferometer 13 and 14 for detecting the relative positional relationship between two points by irradiating a laser beam,
ステージ1に設けた別の鏡2Yの2点にレーザビームを照射したときの2点間の相対位置関係に基づいてステージ1の回転角を検出する回転角検出用干渉計21,22 Rotation angle detecting interferometer 21 and 22 for detecting the rotation angle of the stage 1 based on the relative positional relationship between the two points when the laser beam on two points of different mirror 2Y provided on the stage 1
とを備え、移動鏡2Xに沿ってステージ1を移動したときに形状計測用干渉計13,14により検出した複数の相対位置関係データを繋ぎ合わせるとともに、回転角検出用干渉計21,22により検出した回転角データに基づいて相対位置関係データを補正することにより移動鏡2Xの形状を計測し、計測された移動鏡2Xの形状に基づいて測定点の座標を補正するものである。 With the door, with stitch a plurality of relative positional relation data detected by the shape measuring interferometer 13 and 14 when moving the stage 1 along a moving mirror 2X, detected by the rotation angle detecting interferometer 21 in which measures the shape of the moving mirror 2X, corrects the coordinates of the measurement points on the basis of the shape of the measured moving mirror 2X by correcting the relative positional relationship data based on the rotation angle data. 請求項2に記載の発明は、請求項1に記載の座標測定装置において、移動鏡2Xと直交して設けられた第2の移動鏡2Y The invention according to claim 2, in the coordinate measuring device according to claim 1, the second movable lens 2Y disposed perpendicular to the moving mirror 2X
と、第2の移動鏡2Yに向けてレーザビームを照射する第2の座標測定用干渉計41Yとをさらに備え、移動鏡2Xの形状計測時にはステージ1を第2の移動鏡2Yの法線方向に移動させるとともに、回転角検出用干渉計2 When the normal direction of the second further a coordinate measuring interferometer 41Y, the stage 1 at the time of shape measurement of the moving mirror 2X second moving mirror 2Y for irradiating a laser beam toward the second movable lens 2Y is moved, the rotation angle detecting interferometer 2
1,22は第2の移動鏡2Yに向けてレーザビームを照射するものである。 1, 22 is for irradiating a laser beam toward the second movable lens 2Y. 請求項3に記載の発明は、請求項1 The invention according to claim 3, claim 1
または2に記載の座標測定装置において、形状計測用干渉計13,14から射出されたレーザビームの光軸に挿入する平行平板30(31)を備え、平行平板30(3 Or in a coordinate measuring apparatus according to 2, the parallel plate 30 to be inserted from the shape measuring interferometer 13 to the optical axis of the emitted laser beam with a (31), a parallel plate 30 (3
1)を光軸に対して傾けることによりレーザビームを横ずらしするものである。 1) it is for shifting the horizontal laser beam by inclining the optical axis. 請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の座標測定装置において、測定点の座標測定時には、形状計測用干渉計13, Invention according to claim 4, in the coordinate measuring device according to any one of claims 1 to 3, the time coordinate measuring a measuring point, shape measurement interferometer 13,
14あるいは回転角検出用干渉計21,22を用いてステージ1の姿勢を計測し、計測されたステージ1の姿勢に基づいて測定点の座標を補正するものである。 14 or measures the attitude of the stage 1 by using the rotation angle detecting interferometer 21, and corrects the coordinates of the measurement points based on the attitude of the measured stage 1.

【0007】なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が実施の形態に限定されるものではない。 [0007] In the section of means for solving the above problems for explaining the structure of the present invention has reference to FIG embodiment of the invention for ease of the present invention, thereby the present invention is carried out It is not limited to the embodiment.

【0008】 [0008]

【発明の実施の形態】以下、図1〜図9を用いて本発明による形状測定装置の一実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the shape measuring apparatus according to the present invention will be described with reference to Figs.

【0009】図1において、1はXY平面内を移動可能に設けられたXYステージ、2Xは鏡面の法線がX軸方向を向くようにXYステージ1に取付けられた移動鏡、 [0009] In FIG. 1, 1 is movable mirror XY stage which is movable in the XY plane, 2X is the mirror surface normals mounted on XY stage 1 so as to face the X-axis direction,
2Yは鏡面の法線がY軸方向を向くようにXYステージ1に取付けられた移動鏡、3はXYステージ1に載置された被測定物5のパターンを検出する対物レンズ、4X 2Y is movable mirror specular normals mounted on XY stage 1 so as to face the Y-axis direction, the objective lens to detect the pattern of the object 5 placed on an XY stage 1 is 3, 4X
はXYステージ1のX座標を計測するための光学系、4 An optical system for measuring the X-coordinate of the XY stage 1, 4
YはXYステージ1のY座標を計測するための光学系である。 Y is an optical system for measuring the Y coordinate of the XY stage 1.

【0010】図1に示すように、不図示の光源から射出されたレーザビーム6は分岐されて光学系4Xおよび光学系4Yに導かれる。 [0010] As shown in FIG. 1, a laser beam 6 emitted from a light source (not shown) is guided is branched into the optical system 4X and optics 4Y. 光学系4Xから射出された2対のレーザビームのうち、一方のレーザビーム対は移動鏡2 Of the laser beam of the two pairs emitted from the optical system 4X, one laser beam pair is movable mirror 2
Xに、他方のレーザビーム対は鏡面の法線がX軸方向に向くように対物レンズに取付けられた固定鏡7Xに、それぞれ照射され、各レーザビーム対は移動鏡2Xおよび固定鏡7Xにおいて反射される。 To X, the other laser beam pair is fixed mirror 7X specular normals attached to the objective lens to face the X-axis direction, are respectively irradiated, the laser beam pair is reflected on the moving mirror 2X and fixed mirror 7X It is. 光学系4Xは干渉計4 Optical system 4X the interferometer 4
1X(図3)に接続されており、ステージ1のX座標が移動鏡2Xまでの光路と固定鏡7Xまでの光路との光路長差に基づいて計測される。 1X is connected to (Figure 3), X-coordinate of the stage 1 is measured on the basis of the optical path length difference between the optical path to the fixed mirror 7X an optical path to the mobile mirror 2X.

【0011】光学系4Yから射出された2対のレーザビームのうち、一方のレーザビーム対は移動鏡2Yに、他方のレーザビーム対は鏡面の法線がY軸方向に向くように対物レンズ3に取付けられた固定鏡7Yに、それぞれ照射され、移動鏡2Yおよび固定鏡7Yにおいて反射される。 [0011] Of the laser beam of the two pairs emitted from the optical system 4Y, the one laser beam pair is moved mirror 2Y, the objective lens 3 as the other laser beam pairs mirror surface normal is oriented in the Y-axis direction a fixed mirror 7Y attached to, are irradiated respectively, are reflected in the moving mirror 2Y and the fixed mirror 7Y. 光学系4Yは干渉計41Y(図3)に接続されており、ステージ1のY座標が移動鏡2Yまでの光路と固定鏡7Yまでの光路との光路長差に基づいて計測される。 Optics 4Y is connected to the interferometer 41Y (FIG. 3), Y coordinates of the stage 1 is measured on the basis of the optical path length difference between the optical path to the fixed mirror 7Y and the optical path to the mobile mirror 2Y.

【0012】XYステージ1に載置された被測定物5を対物レンズ3により捉えて、被測定物5の測定点を所定の位置(例えば対物レンズ3の視野の中央)に設置し、 [0012] The object 5 placed on the XY stage 1 captured by the objective lens 3 was placed in a predetermined position of the measurement point of the object to be measured 5 (for example, a central field of view of the objective lens 3),
このときのXYステージ1の座標を上述の方法で計測することにより測定点のXY座標を求めることができる。 XY coordinates of the measurement points by measuring the coordinates of the XY stage 1 in this case in the manner described above can be obtained.
但し、後述するように、本実施の形態の座標測定装置では移動鏡2Xおよび移動鏡2Yの鏡面形状に基づいて座標の補正を行う。 However, as described later, it corrects the coordinates based on the mirror surface shape of the movable mirror 2X and movable mirror 2Y in coordinate measuring apparatus of this embodiment.

【0013】図2に示すように、本実施の形態の座標測定装置には、光学系4X、干渉計41X、光学系4Yおよび干渉計41Yとは別に、移動鏡2Xまでの距離を計測する干渉計11〜14と、移動鏡2Yまでの距離を計測する干渉計21〜24とがXYステージ1の周辺に設けられている。 [0013] As shown in FIG. 2, the coordinate measuring apparatus of this embodiment includes an optical system 4X, interferometers 41X, separately from the optical system 4Y and interferometers 41Y, interference to measure the distance to a moving mirror 2X a total of 11 to 14, the interferometer 21 to 24 for measuring the distance to a moving mirror 2Y is provided around the XY stage 1. 干渉計11〜14および干渉計21〜2 Interferometer 11 to 14 and the interferometer 21-2
4はいわゆるヘテロダインレーザ干渉計方式により、移動鏡2Xおよび移動鏡2Yまでの距離をそれぞれ4点において計測できるように構成されている。 4 by the so-called heterodyne laser interferometer system is configured as a distance to a moving mirror 2X and movable mirror 2Y can be measured in each point 4.

【0014】干渉計11〜14および干渉計21〜24 [0014] The interferometer 11 to 14 and the interferometer 21 to 24
は移動鏡2Xおよび移動鏡2Yの鏡面形状を計測するためのものであり、本実施の形態の座標測定装置では、計測された移動鏡2Xおよび移動鏡2Yの鏡面形状に基づいて座標測定のデータ補正を行うようにしている。 Is for measuring a mirror surface shape of the movable mirror 2X and moving mirror 2Y, a coordinate measuring device of the present embodiment, the measured data of the coordinate measuring based on the mirror shape of the moving mirror 2X and moving mirror 2Y was and to perform the correction.

【0015】図3において、1XはXYステージ1をX [0015] In FIG. 3, 1X is the XY stage 1 X
軸方向に移動する駆動装置、1YはXYステージ1をY Drive device for moving in the axial direction, 1Y are the XY stage 1 Y
軸方向に移動する駆動装置、Cは制御装置、8は記憶装置である。 Drive device for moving in the axial direction, C is the control unit, 8 is a storage device. 干渉計41Xおよび干渉計41Yにより得られたXYステージ1の座標値および干渉計11〜14, Interferometer 41X and the interferometer coordinate values ​​and the interferometer 11 to 14 of the XY stage 1 obtained by 41Y,
21〜24の計測データが制御装置Cに入力され、駆動装置1Xおよび駆動装置1Yが制御装置Cにより制御される。 21-24 of the measurement data is input to the control unit C, driving apparatus 1X and drive 1Y is controlled by the control device C. 制御装置Cは移動鏡2Xおよび移動鏡2Yの鏡面形状を算出し、その形状を記憶装置8に記憶するとともに、記憶装置8に記憶された形状データに基づきXYステージ1の座標を補正する演算を行う。 The controller C calculates a mirror shape of the moving mirror 2X and moving mirror 2Y, stores its shape memory device 8, the operation for correcting the coordinate XY stage 1 based on the stored shape data in the storage device 8 do.

【0016】次に、移動鏡2Xおよび移動鏡2Yの鏡面形状を計測する場合の動作について説明する。 [0016] Next, the operation of the case of measuring the specular shape of the moving mirror 2X and movable mirror 2Y.

【0017】図4は、移動鏡2Xの鏡面形状を計測するための4軸干渉計配置を示している。 [0017] FIG. 4 shows a 4-axis interferometer arrangement for measuring the specular shape of the moving mirror 2X. 移動鏡2Xの鏡面形状を計測する場合には、XYステージ1を一定のピッチでY方向に移動させ、各々の停止位置で干渉計13および干渉計14により計測される座標値を取込んでいく。 When measuring a mirror surface shape of the moving mirror 2X is the XY stage 1 is moved in the Y direction at a constant pitch, go captures and coordinate value measured by the interferometer 13 and the interferometer 14 at each stop position .

【0018】この座標値を積分することにより移動鏡2 The movable mirror 2 by integrating the coordinate values
Xの鏡面形状f(y)を求めることができるが、XYステージ1のY方向への移動にともないXYステージ1の回転誤差成分e P (y)と並進誤差e X (y)が必ず発生する。 Although it is possible to obtain the X mirror surface shape f (y), rotation error components of the XY stage 1 with the movement in the Y direction of the XY stage 1 e P (y) and the translation error e X (y) is always generated . これらの誤差を排除しない限り正確に鏡面形状を計測することはできないが、本実施の形態の装置では干渉計21および干渉計22を用いることにより、誤差を排除している。 Can not be measured specular shape accurately unless eliminate these errors, the apparatus of the present embodiment by using the interferometer 21 and the interferometer 22, which eliminates the error. なお、厳密にはZ方向の並進誤差もあるが、移動鏡2Xの鏡面形状を計測する場合には影響が少ないため、ここでは無視して説明する。 Strictly speaking there is also the translation errors of the Z-direction, since there is little influence when measuring a mirror shape of the moving mirror 2X, explained ignored here.

【0019】干渉計13、干渉計14、干渉計21および干渉計22による計測値をそれぞれ、m x1 (y)、 The interferometer 13, interferometer 14, the measurement value measured by the interferometer 21 and the interferometer 22, respectively, m x1 (y),
x2 (y)、m y1 (y)およびm y2 (y)とする。 m x2 (y), and m y1 (y) and m y2 (y).
図5に示すように、各停止位置における計測位置のY座標をy、yから干渉計13の光軸までの距離をd A 、y As shown in FIG. 5, the distance d A of the Y coordinate of the measurement position in each stop position y, to the optical axis of the interferometer 13 from the y, y
から干渉計14の光軸までの距離をd Bとすると、干渉計13の計測値m x1 (y)および干渉計14の計測値m x2 (y)は次のようになる。 The distance to the optical axis of the interferometer 14 When d B from the measured value m x2 of the interferometer 13 the measurement value m x1 (y) and the interferometer 14 (y) are as follows.

【数1】 m x1 (y)=f(y−d A )+e X (y)−d A・e P (y) ・・・式(1) [Number 1] m x1 (y) = f ( y-d A) + e X (y) -d A · e P (y) ··· formula (1)

【数2】 m x2 (y)=f(y+d B )+e X (y)+d B・e P (y) ・・・式(2) [Number 2] m x2 (y) = f ( y + d B) + e X (y) + d B · e P (y) ··· (2)

【0020】式(2)から式(1)を減算すると、並進誤差e X (y)がとれて、次式のようになる。 [0020] From equation (2) Subtracting equation (1), 0.00 translation errors e X (y), expressed as follows.

【数3】 m x2 (y)−m x1 (y)=f(y+d B )−f(y−d A ) +(d A +d B )・e P (y) ・・・式(3) [Number 3] m x2 (y) -m x1 ( y) = f (y + d B) -f (y-d A) + (d A + d B) · e P (y) ··· (3)

【0021】干渉計13の光軸と干渉計14の光軸との間隔をL(=d A +d B )、干渉計21の光軸と干渉計22の光軸との間隔をDとすると、回転誤差成分e P [0021] The distance between the interferometer 13 of the optical axis and the interferometer 14 of the optical axis L (= d A + d B ), the distance between the optical axis of the interferometer 21 in the optical axis interferometer 22 If is D, rotation error component e P
(y)は干渉計21の計測値m y1 (y)および干渉計22の計測値m y2 (y)の差から求められ、次式のようになる。 (Y) is determined from the difference between the measured value m y1 of the interferometer 21 measurements m y2 of (y) and interferometer 22 (y), expressed as follows.

【数4】 e P (y)=−arctan {(m y1 (y)−m y2 (y))/D} ・・・式(4) Equation 4] e P (y) = - arctan {(m y1 (y) -m y2 (y)) / D} ··· Equation (4)

【0022】したがって、Dが大きければ大きいほど確度良く回転誤差成分e P (y)が求まることになる。 [0022] Therefore, the D is larger if large enough accuracy better rotational error component e P (y) is obtained. 式(4)を式(3)に代入すれば、 Substituting equation (4) into equation (3),

【数5】 m x2 (y)−m x1 (y) =f(y+d B )−f(y−d A ) −L・arctan{(m y1 (y)−m y2 (y))/D} ・・・式(5) となる。 Equation 5] m x2 (y) -m x1 ( y) = f (y + d B) -f (y-d A) -L · arctan {(m y1 (y) -m y2 (y)) / D} expression becomes (5). 求められた式(5)は干渉計13および干渉計14による2つの計測点を結ぶ直線の傾きであるので、 Since the obtained equation (5) is the slope of the straight line connecting the two measurement points by the interferometer 13 and the interferometer 14,
これを積分すれば傾き係数が掛かったf(y)に比例した値が求まり、さらにこの値に傾き係数を掛けてオフセットを取り除けば移動鏡2Xの鏡面形状が求まる。 By integrating it Motomari value proportional to the slope factor is applied f (y), further mirror the shape of the moving mirror 2X If rid is obtained offset by multiplying the slope coefficient to this value.

【0023】XYステージ1が500mm角の場合、干渉計13および干渉計14の光軸間隔Lは、例えば3m [0023] When the XY stage 1 is 500mm square, the optical axis spacing L of the interferometer 13 and the interferometer 14, for example 3m
m〜15mm程度に設定される。 It is set to about m~15mm. また、干渉計21および干渉計22の光軸間隔Dは移動鏡2Yの両端部に光軸が位置するように定めれば計測精度の点で有利である。 Further, the optical axis spacing D of the interferometer 21 and the interferometer 22 is advantageous in terms of measurement accuracy be determined so that the optical axis is positioned at both ends of the moving mirror 2Y.

【0024】一般に電気処理におけるサンプリング定理に従えば、干渉計13および干渉計14の光軸間隔がL [0024] According to the sampling theorem in the general electrical processing, the optical axis spacing of the interferometer 13 and the interferometer 14 is L
の場合、L/2周期以上の形状の周期うねりは計測できないという欠点がある。 For the period waviness of L / 2 cycle or more shape has the drawback of not be measured. 光軸間隔Lが有限な値である限り、このような計測不可能な周期うねりの領域が存在する。 Unless the optical axis distance L is finite value, there is an area of ​​such measurement impossible period waviness. 例えば、図6に示すように光軸間隔Lと同一周期の周期うねりがあった場合にはXYステージ1が移動しても干渉計13および干渉計14の光軸長が同一のタイミングで変化するので、周期うねりが計測できないことが明らかである。 For example, the optical axis length of the interferometer 13 and the interferometer 14 even if the XY stage 1 is moved to change at the same timing when a periodic undulation of the same period as the optical axis distance L as shown in FIG. 6 so it is clear that the period waviness can not be measured.

【0025】このような欠点に対処するため、本実施の形態では、図7に示すような平行平板30を干渉計13 [0025] To cope with this disadvantage, in the present embodiment, the interference parallel plate 30 as shown in FIG. 7 meter 13
の光軸に挿入し、平行平板30の回転角を変化させることによって干渉計30の光軸をY軸方向に任意の距離Δ Of inserting the optical axis, arbitrary distance the optical axis of the interferometer 30 in the Y-axis direction by changing the rotation angle of the parallel plate 30 delta
dだけ移動可能としている。 d is the only possible movement. これにより、光軸間隔Lを狭める方向に変化させたときの変化の前後の計測値を取込むとともに、その計測値を積分することにより短周期のうねりの計測をすることができる。 Thus, the capture before and after the measurement value of the change in the case of changing the direction of narrowing the optical axis interval L, it is possible to the measurement of the short period waviness by integrating the measured value. ただし、平行平板30はその屈折率が均質・等方的である他、厚さむらがないか、あるいは厚さむらが既知のものを用いる必要がある。 However, the parallel plate 30 other refractive index is homogeneous, isotropic, if there is thickness unevenness or thickness irregularity is necessary to use those known.

【0026】図9に示すように、平行平板30の厚さをdとし、光軸に対して平行平板30を角度i 1だけ傾けたとき、光軸のずれ幅Δdは、 As shown in FIG. 9, the thickness of the parallel flat plate 30 is d, when tilted parallel plate 30 by an angle i 1 with respect to the optical axis, the shift width Δd of the optical axis,

【数6】 Δd={d・sin(i 1 −i 2 )}/cosi 2・・・式(6) となるので、平行平板30の回転角に基づいてΔdを算出することができる。 [6] Δd = {d · sin (i 1 -i 2)} / cosi 2 ··· equation since (6), it is possible to calculate the [Delta] d on the basis of the rotation angle of the parallel plate 30.

【0027】移動鏡2Xの鏡面形状を計測するに際し、 [0027] Upon measuring the mirror surface shape of the moving mirror 2X,
XYステージ1の移動ピッチの粗さを補うために、図8 To compensate for the roughness of the movement pitch of the XY stage 1, Fig. 8
に示すように干渉計13の光軸および干渉計14の光軸の両者に掛かるように平行平板31を挿入してもよい。 It may be inserted parallel plate 31 as applied to the interferometer 13 both optical axis and the interferometer 14 of the optical axis of, as shown in.
この場合、平行平板31の回転角を変化させることにより光軸間隔を不変のまま2つの光軸をY軸方向に任意の距離Δdだけ移動させることができるので、XYステージ1の移動ピッチが粗く、微小量の移動が不可能な場合でも、計測位置yを細かく(連続的に)ずらすことができる。 In this case, can be moved by any distance Δd the optical axis interval of two optical axes remain unchanged in the Y-axis direction by changing the rotation angle of the parallel plate 31, the movement pitch of the XY stage 1 is rough even if the movement of minute amount is not possible, it can be shifted precisely measured position y (continuously).

【0028】以上、移動鏡2Xの鏡面形状を計測する場合について説明したが、移動鏡2Yの鏡面形状を計測する場合には、XYステージをX軸方向に移動させながら干渉計23および干渉計24により計測される光路長差を積分すればよい。 The above has described the case of measuring the specular shape of the moving mirror 2X, when measuring a mirror shape of the moving mirror 2Y is the interferometer 23 and the interferometer while moving the XY stage in the X-axis direction 24 it may be integrated optical path length difference to be measured by. この場合、干渉計11および干渉計12により回転誤差成分を検出することができる。 In this case, it is possible to detect the rotation error components by the interferometer 11 and the interferometer 12.

【0029】以上の手法によって計測された移動鏡2X [0029] The movable mirror 2X, which is measured by the above method
および移動鏡2Yの鏡面形状は、記憶装置8に記憶され、被測定物5の座標測定に際して記憶された計測値に基づいて座標値の補正を行う。 And specular shape of the moving mirror 2Y is stored in the storage unit 8 corrects the coordinate value based on the stored measured values ​​during coordinate measurement of the object to be measured 5. これにより、移動鏡2X As a result, the movable mirror 2X
および移動鏡2Yの鏡面形状の影響を排除することができるので、正確な座標測定が可能となる。 And since the effect of the mirror surface shape of the moving mirror 2Y it can be eliminated, thereby enabling accurate coordinate measurements.

【0030】座標測定を行う際に、例えば干渉計11〜 [0030] When performing coordinate measurement, for example, the interferometer 11
14、干渉計21〜24のうちのいずれか2つ以上の干渉計を用いて、XY平面内での回転角等、XYステージ1の姿勢を計測するようにしてもよい。 14, with any two or more interferometers of interferometer 21 to 24, rotation angle, etc. in the XY plane, may be measured the orientation of the XY stage 1. 計測されたXY Measured XY
ステージ1の姿勢のデータを用いて座標測定の測定値を補正することにより、さらに座標測定の精度を向上させることができる。 By correcting the measured value of the coordinate measuring using the data of the posture of the stage 1, it is possible to further improve the accuracy of the coordinate measuring. 例えば、座標測定のためXYステージ1を駆動する間、干渉計11および干渉計14の光路長差を検出することにより、XYステージ1のXY平面内の回転角が求まるので、これにより座標測定値を補正することができる。 For example, while driving the XY stage 1 for a coordinate measuring, by detecting the optical path length difference of the interferometer 11 and the interferometer 14, the rotation angle of the XY plane of the XY stage 1 is obtained, thereby the coordinate measurement it can be corrected.

【0031】 [0031]

【発明の効果】請求項1に記載の発明によれば、移動鏡に沿ってステージを移動したときに形状計測用干渉計により検出した複数の相対位置関係データを繋ぎ合わせるとともに、回転角検出用干渉計により検出した回転角データに基づいて相対位置関係データを補正することにより移動鏡の形状を計測し、計測された移動鏡の形状に基づいて測定点の座標を補正するので、移動鏡の形状の影響を受けることなく高精度に座標測定を行うことができる。 Effects of the Invention According to the invention described in claim 1, together with the stitch multiple relative positional relation data detected by the shape measuring interferometer when moving the stage along the moving mirror, a rotation angle detection based on the rotation angle data detected by the interferometer to measure the shape of the moving mirror by correcting the relative positional relationship data, because to correct the coordinates of the measurement points on the basis of the shape of the measured moving mirror, the movable mirror can perform coordinate measured with high accuracy without being affected by the shape. 請求項3に記載の発明によれば、形状計測用干渉計から射出されたレーザビームの光軸に挿入する平行平板を備え、平行平板を光軸に対して傾けることによりレーザビームを横ずらしするので、レーザビームの照射位置を制御できる。 According to the invention described in claim 3, comprising a parallel plate to be inserted from the shape measuring interferometer to the optical axis of the emitted laser beam, to shift the horizontal laser beam by tilting a parallel plate with respect to the optical axis since, it is possible to control the irradiation position of the laser beam. 請求項4に記載の発明によれば、測定点の座標測定時には、形状計測用干渉計あるいは回転角検出用干渉計を用いてステージの姿勢を計測し、計測されたステージの姿勢に基づいて測定点の座標を補正するので、ステージの姿勢の影響を排除して高精度に座標測定を行うことができる。 According to the invention described in claim 4, at the time coordinate measuring a measuring point, the posture of the stage is measured using the shape measuring interferometer or rotation angle detecting interferometer, the measurement based on the attitude of the measured stage is corrected coordinates of the points, it is possible to perform coordinate measurement by eliminating the influence of the posture of the stage with high precision.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による座標測定装置の一実施の形態を示す斜視図。 Perspective view showing an embodiment of a coordinate measuring device according to the invention; FIG.

【図2】実施の形態の座標測定装置を示す上面図。 Figure 2 is a top view showing a coordinate measuring apparatus of the embodiment.

【図3】実施の形態の座標測定装置を示すブロック図。 3 is a block diagram showing a coordinate measuring apparatus of the embodiment.

【図4】移動鏡の鏡面形状を計測する場合の干渉計配置を示す図。 It shows an interferometer arrangement in the case of measuring the specular shape of Figure 4 moving mirror.

【図5】干渉計の光軸間隔を示す図。 5 is a diagram showing the optical axis interval of the interferometer.

【図6】移動鏡の鏡面に周期的なうねりがある場合を示す図。 6 shows a case where there is a periodic undulation in the mirror surface of the movable mirror.

【図7】平行平板によりレーザビームの光軸間隔を狭める場合を示す図。 It shows a case of narrowing the optical axis interval of the laser beam by [7] parallel plate.

【図8】平行平板によりレーザビームの2箇所の照射位置をシフトする場合を示す図。 8 shows a case of shifting the irradiation position of the two positions of the laser beam by a parallel plate.

【図9】平行平板による光軸のシフト量を説明する図。 9 illustrates the shift amount of the optical axis due to the parallel plate.

【図10】従来の座標測定装置を示す図。 10 is a view showing a conventional coordinate measuring device.

【図11】マスクパターンを反転して形状計測することにより、移動鏡の歪みを検出する手法を示す図であり、 [11] By inverting the mask pattern shape measurement is a diagram showing a technique for detecting the distortion of the moving mirror,
(a)は歪みが線対称成分からなる場合を示す図、 (A) is a diagram showing a case where distortion is a line symmetry component,
(b)は歪みが点対称成分からなる場合を示す図。 (B) is a diagram showing a case where distortion is a point-symmetrical component.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 XYステージ 2X 移動鏡 2Y 移動鏡 3 検出器 5 被測定物 13 干渉計 14 干渉計 21 干渉計 22 干渉計 30 平行平板 31 平行平板 41X 干渉計 1 XY stage 2X moving mirror 2Y moving mirror 3 detector 5 DUT 13 interferometer 14 interferometer 21 interferometer 22 interferometer 30 parallel plate 31 a parallel plate 41X interferometer

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 被測定物を移動させるステージと、前記ステージに取付けられた平面状の移動鏡と、前記移動鏡に向けてレーザビームを照射することにより前記ステージの位置を計測する座標測定用干渉計と、前記被測定物上の測定点を検出する検出器とを備え、前記検出器が前記測定点を検出したときの前記ステージの位置を前記座標測定用干渉計によって計測することにより前記測定点の座標を測定する座標測定装置において、 前記移動鏡の2点にレーザビームを照射することにより2点間の相対位置関係を検出する形状計測用干渉計と、 前記ステージに設けた別の鏡の2点にレーザビームを照射したときの2点間の相対位置関係に基づいて前記ステージの回転角を検出する回転角検出用干渉計とを備え、 前記移動鏡に沿って前記ステー 1. A a stage for moving the object to be measured, a planar movable mirror attached to the stage, coordinate measurement to measure the position of the stage by irradiating a laser beam toward the movable mirror an interferometer, said by measuring by the detector and a, the coordinate measuring interferometer position of the stage when the detector detects the measurement point for detecting the measurement point on the object to be measured in the coordinate measuring device for measuring the coordinates of the measuring points, the shape measuring interferometer for detecting a relative positional relationship between two points by irradiating a laser beam on two points of the moving mirror, another provided on said stage and a rotation angle detecting interferometer for detecting the rotation angle of the stage based on the relative positional relationship between the two points when the laser beam on two points of the mirror, the along the moving mirror stay ジを移動したときに前記形状計測用干渉計により検出した複数の相対位置関係データを繋ぎ合わせるとともに、前記回転角検出用干渉計により検出した回転角データに基づいて前記相対位置関係データを補正することにより前記移動鏡の形状を計測し、 計測された前記移動鏡の形状に基づいて前記測定点の座標を補正することを特徴とする座標測定装置。 With joining a plurality of relative positional relation data detected by the shape measuring interferometer when moving a di, corrects the relative positional relationship data based on the rotation angle data detected by the rotation angle detecting interferometer wherein the shape of the moving mirror and the measurement, coordinate measuring apparatus characterized by correcting the coordinates of the measuring point based on the shape of the measured said moving mirror by.
  2. 【請求項2】 前記移動鏡と直交して設けられた第2の移動鏡と、前記第2の移動鏡に向けてレーザビームを照射する第2の座標測定用干渉計とをさらに備え、前記移動鏡の形状計測時には前記ステージを前記第2の移動鏡の法線方向に移動させるとともに、前記回転角検出用干渉計は前記第2の移動鏡に向けてレーザビームを照射するものであることを特徴とする請求項1に記載の座標測定装置。 Wherein further comprising a said second movable lens provided in perpendicular to the moving mirror, a second coordinate measuring interferometer for irradiating a laser beam toward the second movable lens, the it during shape measurement of the moving mirror, together with moving the stage in the normal direction of the second movable lens, the rotation angle detecting interferometer is to irradiate the laser beam toward the second movable lens coordinate measuring apparatus of claim 1, wherein the.
  3. 【請求項3】 前記形状計測用干渉計から射出されたレーザビームの光軸に挿入する平行平板を備え、前記平行平板を前記光軸に対して傾けることにより前記レーザビームを横ずらしすることを特徴とする請求項1または2 3. A comprising a parallel plate to be inserted into the optical axis of the laser beam emitted from the shape measuring interferometer, to shift laterally the laser beam by tilting the parallel flat plate with respect to the optical axis claim wherein 1 or 2
    に記載の座標測定装置。 Coordinate measuring device according to.
  4. 【請求項4】 前記測定点の座標測定時には、前記形状計測用干渉計あるいは前記回転角検出用干渉計を用いて前記ステージの姿勢を計測し、計測された前記ステージの姿勢に基づいて前記測定点の座標を補正することを特徴とする請求項1〜3のいずれか1項に記載の座標測定装置。 The method according to claim 4 During coordinate measuring of the measuring points, the shape measuring interferometer or using the rotation angle detecting interferometer measures the attitude of the stage, the measurement based on the attitude of the measured said stage coordinate measuring device according to any one of claims 1 to 3, characterized in that to correct the coordinates of the point.
JP6826997A 1997-03-21 1997-03-21 Coordinate measuring device Pending JPH10260009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6826997A JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6826997A JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Publications (1)

Publication Number Publication Date
JPH10260009A true true JPH10260009A (en) 1998-09-29

Family

ID=13368876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6826997A Pending JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Country Status (1)

Country Link
JP (1) JPH10260009A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700665B2 (en) * 2001-08-20 2004-03-02 Zygo Corporation Interferometric apparatus for measuring the topography of mirrors in situ and providing error correction signals therefor
US6847452B2 (en) 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
US6867867B2 (en) 2000-05-19 2005-03-15 Zygo Corporation Interferometric stage metrology system
US6882430B2 (en) 2002-03-04 2005-04-19 Zygo Corporation Spatial filtering in interferometry
US6888638B1 (en) 1999-05-05 2005-05-03 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US6891624B2 (en) 2001-03-13 2005-05-10 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US6912054B2 (en) 2001-08-28 2005-06-28 Zygo Corporation Interferometric stage system
US6950192B2 (en) 2002-07-08 2005-09-27 Zygo Corporation Cyclic error compensation in interferometry systems
US6956655B2 (en) 2002-02-12 2005-10-18 Zygo Corporation Characterization and compensation of non-cyclic errors in interferometry systems
US6987569B2 (en) 2001-08-23 2006-01-17 Zygo Corporation Dynamic interferometer controlling direction of input beam
US7019843B2 (en) 2001-05-10 2006-03-28 Zygo Corporation Method and apparatus for stage mirror mapping
US7075619B2 (en) 2002-12-12 2006-07-11 Zygo Corporation In-process correction of stage mirror deformations during a photolithography exposure cycle
US7180603B2 (en) 2003-06-26 2007-02-20 Zygo Corporation Reduction of thermal non-cyclic error effects in interferometers
JP2007521462A (en) * 2003-07-29 2007-08-02 ザイゴ コーポレーションZygo Corporation Compensation for errors in the off-axis interferometric
US7262860B2 (en) 2002-07-29 2007-08-28 Zygo Corporation Compensation for errors in off-axis interferometric measurements
US7274462B2 (en) 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
US7280223B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7283248B2 (en) 2004-01-06 2007-10-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7286240B2 (en) 2003-06-19 2007-10-23 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems
US7289226B2 (en) 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
EP1804122A3 (en) * 2005-12-30 2007-11-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
US7321432B2 (en) 2002-09-09 2008-01-22 Zygo Corporation Measurement and compensation of errors in interferometers
JP2008020290A (en) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd Beam diameter measuring device and focal point adjusting device
US7327465B2 (en) 2003-06-19 2008-02-05 Zygo Corporation Compensation for effects of beam misalignments in interferometer metrology systems
US7330274B2 (en) 2002-05-13 2008-02-12 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometers
US7375823B2 (en) 2004-04-22 2008-05-20 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7379190B2 (en) 2004-01-05 2008-05-27 Zygo Corporation Stage alignment in lithography tools
US7428685B2 (en) 2002-07-08 2008-09-23 Zygo Corporation Cyclic error compensation in interferometry systems
US7576868B2 (en) 2007-06-08 2009-08-18 Zygo Corporation Cyclic error compensation in interferometry systems
US7616322B2 (en) 2002-07-08 2009-11-10 Zygo Corporation Cyclic error compensation in interferometry systems
JP2012127842A (en) * 2010-12-16 2012-07-05 Mitsubishi Motors Corp Displacement measurement device for internal combustion engine
JP5040657B2 (en) * 2005-10-24 2012-10-03 株式会社ニコン Exposure apparatus, exposure method, a method of manufacturing a device, the device assembling method
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device
US9632429B2 (en) 2012-08-29 2017-04-25 Asml Holding N.V. Real-time reticle curvature sensing

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888638B1 (en) 1999-05-05 2005-05-03 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US6867867B2 (en) 2000-05-19 2005-03-15 Zygo Corporation Interferometric stage metrology system
US7057736B2 (en) 2001-03-13 2006-06-06 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US6891624B2 (en) 2001-03-13 2005-05-10 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US7019843B2 (en) 2001-05-10 2006-03-28 Zygo Corporation Method and apparatus for stage mirror mapping
US6847452B2 (en) 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
US6700665B2 (en) * 2001-08-20 2004-03-02 Zygo Corporation Interferometric apparatus for measuring the topography of mirrors in situ and providing error correction signals therefor
US6987569B2 (en) 2001-08-23 2006-01-17 Zygo Corporation Dynamic interferometer controlling direction of input beam
US6912054B2 (en) 2001-08-28 2005-06-28 Zygo Corporation Interferometric stage system
US7030994B2 (en) 2002-02-12 2006-04-18 Zygo Corporation Method and apparatus to measure fiber optic pickup errors in interferometry systems
US6956655B2 (en) 2002-02-12 2005-10-18 Zygo Corporation Characterization and compensation of non-cyclic errors in interferometry systems
US6882430B2 (en) 2002-03-04 2005-04-19 Zygo Corporation Spatial filtering in interferometry
US6906784B2 (en) 2002-03-04 2005-06-14 Zygo Corporation Spatial filtering in interferometry
US7251041B2 (en) 2002-03-04 2007-07-31 Zygo Corporation Spatial filtering in interferometry
US7330274B2 (en) 2002-05-13 2008-02-12 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometers
US7428685B2 (en) 2002-07-08 2008-09-23 Zygo Corporation Cyclic error compensation in interferometry systems
US6950192B2 (en) 2002-07-08 2005-09-27 Zygo Corporation Cyclic error compensation in interferometry systems
US7616322B2 (en) 2002-07-08 2009-11-10 Zygo Corporation Cyclic error compensation in interferometry systems
US7262860B2 (en) 2002-07-29 2007-08-28 Zygo Corporation Compensation for errors in off-axis interferometric measurements
US7274462B2 (en) 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
US7321432B2 (en) 2002-09-09 2008-01-22 Zygo Corporation Measurement and compensation of errors in interferometers
US7075619B2 (en) 2002-12-12 2006-07-11 Zygo Corporation In-process correction of stage mirror deformations during a photolithography exposure cycle
US7327465B2 (en) 2003-06-19 2008-02-05 Zygo Corporation Compensation for effects of beam misalignments in interferometer metrology systems
US7286240B2 (en) 2003-06-19 2007-10-23 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems
US7180603B2 (en) 2003-06-26 2007-02-20 Zygo Corporation Reduction of thermal non-cyclic error effects in interferometers
JP2007521462A (en) * 2003-07-29 2007-08-02 ザイゴ コーポレーションZygo Corporation Compensation for errors in the off-axis interferometric
US7289226B2 (en) 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
US7379190B2 (en) 2004-01-05 2008-05-27 Zygo Corporation Stage alignment in lithography tools
US7548322B2 (en) 2004-01-06 2009-06-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7283248B2 (en) 2004-01-06 2007-10-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7280224B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7280223B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7375823B2 (en) 2004-04-22 2008-05-20 Zygo Corporation Interferometry systems and methods of using interferometry systems
JP5040657B2 (en) * 2005-10-24 2012-10-03 株式会社ニコン Exposure apparatus, exposure method, a method of manufacturing a device, the device assembling method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1804122A3 (en) * 2005-12-30 2007-11-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8743339B2 (en) 2005-12-30 2014-06-03 Asml Netherlands Lithographic apparatus and device manufacturing method
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
JP2008020290A (en) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd Beam diameter measuring device and focal point adjusting device
US7576868B2 (en) 2007-06-08 2009-08-18 Zygo Corporation Cyclic error compensation in interferometry systems
JP2012127842A (en) * 2010-12-16 2012-07-05 Mitsubishi Motors Corp Displacement measurement device for internal combustion engine
US9632429B2 (en) 2012-08-29 2017-04-25 Asml Holding N.V. Real-time reticle curvature sensing
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device

Similar Documents

Publication Publication Date Title
US5469259A (en) Inspection interferometer with scanning autofocus, and phase angle control features
Qian et al. The penta‐prism LTP: A long‐trace‐profiler with stationary optical head and moving penta prisma
US20020113973A1 (en) Method of detecting posture of object and apparatus using the same
US4875177A (en) Datuming of analogue measurement probes
US6067165A (en) Position calibrating method for optical measuring apparatus
US20040184038A1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
Fan et al. A 6-degree-of-freedom measurement system for the accuracy of XY stages
US4775236A (en) Laser based roundness and diameter gaging system and method of using same
US6674512B2 (en) Interferometer system for a semiconductor exposure system
US7131207B2 (en) Workpiece inspection method
US6854193B2 (en) Rotating swivel unit for sensors of a coordinate measuring apparatus and method for determining corrective parameters of the rotating swivel unit
US5379105A (en) Roof surface measuring apparatus
JPH11257930A (en) Three-dimensional shape measuring apparatus
JP2000121323A (en) Inspection method for surface height and inspection device therefor, and color filter substrate and inspection method therefor and manufacturing thereof
CN101339012A (en) Rolling angle measurement method and device based on grating
US4836678A (en) Double-path interferometer
JP2000304529A (en) Probe device and shape measuring device
JP2008180708A (en) Shape measurement device
US4950079A (en) Combined scale and interferometer
JP2000266524A (en) Machine and method for measuring three-dimensional shape
EP0150945A2 (en) Method and apparatus for measuring properties of thin materials
US20020167675A1 (en) Interferometer system
JP2008051602A (en) Measuring device
JP2008076221A (en) Fine shape measuring instrument
JPH10260009A (en) Coordinate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411