JPH10259968A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH10259968A
JPH10259968A JP9064399A JP6439997A JPH10259968A JP H10259968 A JPH10259968 A JP H10259968A JP 9064399 A JP9064399 A JP 9064399A JP 6439997 A JP6439997 A JP 6439997A JP H10259968 A JPH10259968 A JP H10259968A
Authority
JP
Japan
Prior art keywords
rod
valve
guide hole
pressure refrigerant
rod guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9064399A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP9064399A priority Critical patent/JPH10259968A/en
Publication of JPH10259968A publication Critical patent/JPH10259968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of an impact sound due to a strike of a valve plug on a valve seat by specifying a diametral dimension of a rod guide hole through which a rod is inserted, in an expansion valve wherein the valve plug is urged in the direction of valve opening through the intermediary of a rod interposed below a power element which operates on sensing the temperature of a low-pressure refrigerant. SOLUTION: In an expansion valve used for a refrigerating cycle of an automobile, a power element 30 which operates on sensing the temperature of a low-pressure refrigerant is fitted to the outer opening end part of a rod guide hole 14 which is provided in projection on the extension of the axis of an exit-side passage 13b of a high-pressure refrigerant passage 13 for sending a high-temperature high-pressure refrigerant liquid expanded adiabatically into an evaporator. A rod 23 is inserted through the rod guide hole 14 so that it is movable forward and backward in the axial direction, and one end face thereof is brought into contact with the center of the lower side of a diaphragm 32 of the power element 30. In this case, the diametral dimension of the rod guide hole 14 is set in a range not exceeding the dimension obtained by adding 0.02 mm to the diametral dimension of the rod 23 and thereby a play between the rod guide hole 14 and the rod 23 is diminished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクルに
おいて蒸発器に送り込まれる冷媒の流量制御を行いつつ
冷媒を断熱膨張させる膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve for adiabatically expanding a refrigerant while controlling the flow rate of the refrigerant sent to an evaporator in a refrigeration cycle.

【0002】[0002]

【従来の技術】膨張弁には各種のタイプがあるが、蒸発
器に送り込まれる高圧冷媒が通る高圧冷媒流路の途中に
弁座が形成されて、その弁座に対向して弁体が配置さ
れ、その弁体がスプリングによって閉弁方向に付勢され
ると共に、蒸発器から送り出される低圧冷媒の温度を感
知して動作するパワーエレメントとの間に軸線方向に進
退自在に介装されたロッドを介して弁体が開弁方向に付
勢された膨張弁が広く用いられている。
2. Description of the Related Art There are various types of expansion valves. A valve seat is formed in the middle of a high-pressure refrigerant flow path through which a high-pressure refrigerant sent to an evaporator passes, and a valve body is arranged to face the valve seat. The valve body is urged in the valve closing direction by a spring, and a rod interposed between the power element and the power element that operates by sensing the temperature of the low-pressure refrigerant sent from the evaporator. An expansion valve in which a valve element is urged in a valve opening direction via a valve is widely used.

【0003】[0003]

【発明が解決しようとする課題】上述のような膨張弁に
おいては、ロッドが、パワーエレメントと弁体との間に
おいて、本体ブロック等に形成されたロッド案内孔に嵌
挿されて支持されており、そのようなロッド案内孔は、
加工誤差等を考慮して、直径寸法がロッドの直径寸法よ
り0.05mm以上大きく形成されている。
In the above-described expansion valve, a rod is supported by being inserted into a rod guide hole formed in a main body block or the like between a power element and a valve body. , Such a rod guide hole,
In consideration of processing errors and the like, the diameter is formed to be 0.05 mm or more larger than the diameter of the rod.

【0004】しかし、ロッドとロッド案内孔との間にそ
の程度のガタがあると、冷媒の流量が非常に少ない制御
状態で弁体と弁座との間の隙間が狭い状態の時に、ロッ
ドの横振れ等によって弁体が弁座に繰り返しぶつかっ
て、その際に発生する打撃音が騒音になっていた。
[0004] However, if there is such a play between the rod and the rod guide hole, when the clearance between the valve body and the valve seat is narrow in a control state in which the flow rate of the refrigerant is very small, the rod is not moved. The valve body repeatedly hits the valve seat due to lateral swing or the like, and the striking sound generated at that time is noise.

【0005】そこで本発明は、弁体と弁座との間の隙間
が狭い時でも、弁体が弁座にぶつかる打撃音が発生しな
い膨張弁を提供することを目的とする。
Accordingly, an object of the present invention is to provide an expansion valve which does not generate a striking sound when the valve body hits the valve seat, even when the gap between the valve body and the valve seat is narrow.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の膨張弁は、蒸発器に送り込まれる高圧冷媒
が通る高圧冷媒流路の途中に弁座が形成されて、その弁
座に対向して弁体が配置され、その弁体がスプリングに
よって閉弁方向に付勢されると共に、蒸発器から送り出
される低圧冷媒の温度を感知して動作するパワーエレメ
ントとの間に軸線方向に進退自在に介装されたロッドを
介して上記弁体が開弁方向に付勢された膨張弁におい
て、上記ロッドが挿通されて上記ロッドを軸線方向に進
退自在に案内するロッド案内孔の直径寸法を、上記ロッ
ドの直径寸法に0.02mmを加えた寸法を越えない範
囲に形成したことを特徴とする。
In order to achieve the above object, an expansion valve according to the present invention has a valve seat formed in the middle of a high-pressure refrigerant flow path through which a high-pressure refrigerant fed to an evaporator passes. A valve element is disposed in opposition to the valve element, and the valve element is urged in a valve closing direction by a spring, and is axially interposed between the valve element and a power element that operates by sensing the temperature of the low-pressure refrigerant sent from the evaporator. In an expansion valve in which the valve body is urged in the valve opening direction via a rod interposed in a freely movable manner, a diameter dimension of a rod guide hole through which the rod is inserted to guide the rod so as to be able to advance and retract in the axial direction. Is formed in a range not exceeding a size obtained by adding 0.02 mm to the diameter of the rod.

【0007】[0007]

【発明の実施の形態】図面を参照して本発明の実施の形
態を説明する。図1は本発明の第1の実施の形態の膨張
弁を示している。この膨張弁は、例えば自動車の室内冷
房装置(カーエアコン)の冷凍サイクルに用いられる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an expansion valve according to a first embodiment of the present invention. This expansion valve is used, for example, in a refrigeration cycle of a vehicle indoor cooling device (car air conditioner).

【0008】膨張弁の本体ブロック11には、圧縮機で
圧縮された高温高圧の冷媒液を断熱膨張させて蒸発器に
送り込むための高圧冷媒流路13が、途中でほぼ直角に
曲げて形成されている。
In the main body block 11 of the expansion valve, a high-pressure refrigerant flow path 13 for adiabatically expanding a high-temperature and high-pressure refrigerant liquid compressed by a compressor and sending it to an evaporator is formed by being bent substantially at a right angle on the way. ing.

【0009】高圧冷媒流路13の入口側流路13aは、
図示されていないリキッドタンクに接続され、それに対
してほぼ直角の向きに形成された出口側流路13bは、
図示されていない蒸発器に接続されている。
The inlet side flow path 13a of the high pressure refrigerant flow path 13 is
An outlet-side flow path 13b connected to a liquid tank (not shown) and formed in a direction substantially perpendicular to the liquid tank,
It is connected to an evaporator not shown.

【0010】本体ブロック11には、出口側流路13b
の軸線の延長線上に断面形状が円形のロッド案内孔14
が穿設されており、そのロッド案内孔14の外方開口端
部分には、蒸発器から送り出される低圧冷媒の温度変化
を感知して動作するパワーエレメント30が取り付けら
れている。
The main body block 11 has an outlet side flow path 13b.
Rod guide hole 14 having a circular cross section on the extension of the axis of
A power element 30 that operates by sensing a temperature change of the low-pressure refrigerant sent from the evaporator is attached to an outer open end portion of the rod guide hole 14.

【0011】高圧冷媒流路13の入口側流路13aと出
口側流路13bとの境界部分には、出口側流路13bの
軸線位置に、流路面積を狭く絞った断面形状が円形の弁
座孔15が形成されていて、その弁座孔15に下流側か
ら対向して、弁座孔15の直径より大きな直径の球状の
弁体16が配置されている。
At the boundary between the inlet-side flow path 13a and the outlet-side flow path 13b of the high-pressure refrigerant flow path 13, a valve having a circular cross-sectional shape whose flow path area is narrowed narrowly at the axial position of the outlet-side flow path 13b. A seat hole 15 is formed, and a spherical valve body 16 having a diameter larger than the diameter of the valve seat hole 15 is arranged to face the valve seat hole 15 from the downstream side.

【0012】そして、弁体16と弁座孔15の出口部と
の間の隙間の最も狭い部分が高圧冷媒流路13の絞り部
になり、そこから蒸発器に到る下流側の出口側流路13
b内において、高圧冷媒が断熱膨張する。
The narrowest part of the gap between the valve element 16 and the outlet of the valve seat hole 15 becomes the narrowed portion of the high-pressure refrigerant flow path 13, and the downstream outlet side flow from the outlet to the evaporator. Road 13
Within b, the high-pressure refrigerant adiabatically expands.

【0013】弁体16は、出口側流路13b内に配置さ
れた圧縮コイルスプリング17によって、弁座孔15に
接近する方向(即ち、閉弁方向)に付勢されている。そ
して、裏面側で圧縮コイルスプリング17の一端を受け
ている受け部材20の表面側には、中心部に小さな(弁
体16の直径の半分程度の)孔21が穿設されていて、
そこに弁体16が軽く嵌まった状態になっている。
The valve body 16 is urged in a direction approaching the valve seat hole 15 (ie, a valve closing direction) by a compression coil spring 17 arranged in the outlet side flow path 13b. On the front side of the receiving member 20 receiving one end of the compression coil spring 17 on the back side, a small hole (about half the diameter of the valve body 16) is formed in the center.
The valve element 16 is lightly fitted therein.

【0014】圧縮コイルスプリング17の他端側は、本
体ブロック11に螺合する調整ナット18に受けられて
いて、組み立て時に調整ナット18を回転させて軸線方
向に移動させることにより、圧縮コイルスプリング17
の付勢力を調整することができる。
The other end of the compression coil spring 17 is received by an adjusting nut 18 screwed to the main body block 11. By rotating the adjusting nut 18 in the axial direction during assembly, the compression coil spring 17 is moved.
Can be adjusted.

【0015】本体ブロック11に形成されたロッド案内
孔14内には、断面形状が円形のロッド23が軸線方向
に進退自在に挿通されていて、ロッド23がロッド案内
孔14によって案内、支持されている。24はシール用
のOリングである。
A rod 23 having a circular cross section is inserted in the rod guide hole 14 formed in the main body block 11 so as to be able to advance and retreat in the axial direction. The rod 23 is guided and supported by the rod guide hole 14. I have. 24 is an O-ring for sealing.

【0016】図2に拡大して図示されるように、ロッド
23の一端はパワーエレメント30に達し、中間部分が
ロッド案内孔14内を通って入口側流路13aを横切
り、他端面が弁体16の頭部に当接している。
As shown in an enlarged view in FIG. 2, one end of the rod 23 reaches the power element 30, an intermediate portion passes through the rod guide hole 14 and traverses the inlet side flow path 13a, and the other end face has a valve body. It is in contact with 16 heads.

【0017】その結果、弁体16が、パワーエレメント
30によってロッド23を介して開弁方向に付勢されて
いる。なおロッド23は、弁座孔15の壁面との間を冷
媒が通過できるよう、弁座孔15に比べて細く形成され
ている。
As a result, the valve element 16 is urged by the power element 30 via the rod 23 in the valve opening direction. Note that the rod 23 is formed to be thinner than the valve seat hole 15 so that the refrigerant can pass between the wall surface of the valve seat hole 15 and the wall.

【0018】ロッド案内孔14は、直径寸法が、ロッド
23の直径寸法に0.02mmを加えた寸法を越えない
範囲に高精度に形成されている。したがって、ロッド案
内孔14とロッド23との間のガタは非常に小さい。
The rod guide hole 14 is formed with high precision so that the diameter does not exceed a value obtained by adding 0.02 mm to the diameter of the rod 23. Therefore, the play between the rod guide hole 14 and the rod 23 is very small.

【0019】ロッド案内孔14の直径寸法の下限は、ロ
ッド23の直径寸法より大きければどの程度でも差し支
えないが、加工上、ロッド23の直径寸法に0.003
mmを加えた程度の寸法を下限とする。
The lower limit of the diameter of the rod guide hole 14 may be any value as long as it is larger than the diameter of the rod 23.
The lower limit is a dimension to which mm is added.

【0020】図1に戻って、パワーエレメント30は、
厚い金属板製のハウジング31と可撓性のある金属製薄
板(例えば厚さ0.1mmのステンレス鋼板)からなる
ダイアフラム32によって気密に囲まれている。
Returning to FIG. 1, the power element 30
A housing 31 made of a thick metal plate and a diaphragm 32 made of a flexible thin metal plate (for example, a stainless steel plate having a thickness of 0.1 mm) are hermetically enclosed.

【0021】そしてパワーエレメント30内は、蒸発器
から出てくる低圧冷媒の温度変化を感知する感温筒(図
示せず)と、キャピラリチューブ34を介して連通して
おり、それらの内部には、冷媒流路13内に流されてい
る冷媒と同じか又は性質の似ている飽和蒸気状態のガス
が封入されている。
The inside of the power element 30 communicates with a temperature-sensitive cylinder (not shown) for sensing a change in the temperature of the low-pressure refrigerant coming out of the evaporator via a capillary tube 34. A gas in a saturated vapor state having the same or similar properties to the refrigerant flowing in the refrigerant flow path 13 is sealed.

【0022】図2に拡大図示されるように、ダイアフラ
ム32の下面中央部に面して、皿状に形成されたダイア
フラム受け盤33が配置されていて、その下面中央部に
ロッド23の一方の端面が当接している。
As shown in an enlarged view in FIG. 2, a dish-shaped diaphragm receiving plate 33 is disposed facing the center of the lower surface of the diaphragm 32, and one of the rods 23 is located at the center of the lower surface. The end faces are in contact.

【0023】36は、ロッド23の端部を軸線方向に移
動自在に受けると共に、Oリング24の移動を規制する
ように配置されたブシュであり、ロッド23が、外端部
近傍においてガタのないようにブシュ36によって支持
されている。
Reference numeral 36 denotes a bush arranged so as to receive the end of the rod 23 movably in the axial direction and to restrict the movement of the O-ring 24. The rod 23 has no play near the outer end. Supported by the bushing 36.

【0024】37は、弁座15より下流の出口側流路1
3b内とダイアフラム32の裏面側とを連通させる連通
孔であり、ダイアフラム32の裏面側の部分が出口側流
路13bと等圧になるようになっている。
Reference numeral 37 denotes an outlet side flow path 1 downstream of the valve seat 15.
This is a communication hole for communicating the inside of 3b and the back side of the diaphragm 32, and the portion on the back side of the diaphragm 32 has the same pressure as the outlet side flow path 13b.

【0025】このように構成された膨張弁においては、
蒸発器から出てくる低圧冷媒の温度が下がると、感温筒
の温度が下がって、パワーエレメント30内の飽和蒸気
ガスがダイアフラム32の内表面で凝結する。
In the expansion valve configured as described above,
When the temperature of the low-pressure refrigerant coming out of the evaporator decreases, the temperature of the thermosensitive cylinder decreases, and the saturated vapor gas in the power element 30 condenses on the inner surface of the diaphragm 32.

【0026】すると、パワーエレメント30内の圧力が
下がってダイアフラム32が変位するので、ロッド23
が圧縮コイルスプリング17に押されて移動し、その結
果、弁体16が弁座孔15側に移動して高圧冷媒の流路
面積が狭くなるので、蒸発器に送り込まれる冷媒の流量
が減る。
Then, the pressure in the power element 30 is reduced and the diaphragm 32 is displaced.
Is moved by being pressed by the compression coil spring 17, and as a result, the valve element 16 moves to the valve seat hole 15 side, and the flow passage area of the high-pressure refrigerant is reduced, so that the flow rate of the refrigerant sent to the evaporator is reduced.

【0027】蒸発器から出てくる低圧冷媒の温度が上が
ると、上記と逆の動作によって弁体16がロッド23に
押されて弁座孔15から離れ、高圧冷媒の流路面積が広
がるので、蒸発器に送り込まれる高圧冷媒の流量が増え
る。
When the temperature of the low-pressure refrigerant coming out of the evaporator rises, the valve body 16 is pushed by the rod 23 and separates from the valve seat hole 15 by the operation reverse to the above, and the flow path area of the high-pressure refrigerant increases. The flow rate of the high-pressure refrigerant sent to the evaporator increases.

【0028】このような動作において、上述のように、
ロッド案内孔14の直径寸法がロッド23の直径寸法に
0.02mmを加えた寸法を越えない範囲に形成されて
いて、ロッド案内孔14とロッド23との間には僅かな
ガタしか存在しない。
In such an operation, as described above,
The diameter of the rod guide hole 14 is formed so as not to exceed a value obtained by adding 0.02 mm to the diameter of the rod 23, and there is only a slight play between the rod guide hole 14 and the rod 23.

【0029】したがって、冷媒流量が極めて少ない制御
状態、即ち弁体16と弁座15との間の隙間が非常に狭
い状態であっても、弁体16の横振れ等によって弁体1
6が弁座15にぶつかる現象が発生せず、打撃音が発生
しない。
Therefore, even in a control state where the flow rate of the refrigerant is extremely small, that is, in a state where the gap between the valve body 16 and the valve seat 15 is very narrow, the valve body 1 is caused by the lateral vibration of the valve body 16 or the like.
6 does not hit the valve seat 15, and no hitting sound is generated.

【0030】図3は、本発明の第2の実施の形態の膨張
弁を示しており、図4に部分的に拡大図示されるよう
に、ブシュ36を軸線方向に長く形成して、そのブシュ
36に、ロッド23がガタつかない直径寸法のロッド案
内孔14を形成したものである。
FIG. 3 shows an expansion valve according to a second embodiment of the present invention. As shown in a partially enlarged view in FIG. 4, a bush 36 is formed to be long in the axial direction, and the bush 36 is formed. 36, a rod guide hole 14 having a diameter dimension so that the rod 23 does not rattle is formed.

【0031】ロッド23の直径寸法に対するロッド案内
孔14の寸法関係は第1の実施の形態と同じであり、ロ
ッド23を通すために本体ブロック11に穿設された挿
通孔114の直径寸法はある程度ラフなものでよい。
The dimensional relationship of the rod guide hole 14 with respect to the diameter of the rod 23 is the same as that of the first embodiment, and the diameter of the insertion hole 114 formed in the main body block 11 for passing the rod 23 is to some extent. It may be rough.

【0032】[0032]

【発明の効果】本発明によれば、弁体をパワーエレメン
トによって付勢するために両者間に介装されたロッドが
挿通されたロッド案内孔の直径寸法を、ロッドの直径寸
法に0.02mmを加えた寸法を越えない範囲に形成し
たことにより、ロッドがロッド案内孔内でほとんどガタ
つかないので、弁体と弁座との間の隙間が狭い制御状態
の時でも、ロッドの横振れ等によって弁体が弁座にぶつ
からず、打撃音が発生しない。
According to the present invention, the diameter of the rod guide hole into which the rod interposed between the two for urging the valve element with the power element is set to 0.02 mm. Since the rod does not rattle in the rod guide hole because it is formed in a range that does not exceed the size with the addition of, the rod sways, etc. even when the gap between the valve body and the valve seat is in a controlled state. As a result, the valve body does not hit the valve seat, and no hitting sound is generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の膨張弁の縦断面図
である。
FIG. 1 is a longitudinal sectional view of an expansion valve according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の膨張弁の部分拡大
断面図である。
FIG. 2 is a partially enlarged cross-sectional view of the expansion valve according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態の膨張弁の縦断面図
である。
FIG. 3 is a longitudinal sectional view of an expansion valve according to a second embodiment of the present invention.

【図4】本発明の第2の実施の形態の膨張弁の部分拡大
断面図である。
FIG. 4 is a partially enlarged cross-sectional view of an expansion valve according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 本体ブロック 13 冷媒流路 14 ロッド案内孔 15 弁座孔 16 弁体 17 圧縮コイルスプリング 23 ロッド 30 パワーエレメント DESCRIPTION OF SYMBOLS 11 Main body block 13 Refrigerant flow path 14 Rod guide hole 15 Valve seat 16 Valve body 17 Compression coil spring 23 Rod 30 Power element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蒸発器に送り込まれる高圧冷媒が通る高圧
冷媒流路の途中に弁座が形成されて、その弁座に対向し
て弁体が配置され、その弁体がスプリングによって閉弁
方向に付勢されると共に、蒸発器から送り出される低圧
冷媒の温度を感知して動作するパワーエレメントとの間
に軸線方向に進退自在に介装されたロッドを介して上記
弁体が開弁方向に付勢された膨張弁において、 上記ロッドが挿通されて上記ロッドを軸線方向に進退自
在に案内するロッド案内孔の直径寸法を、上記ロッドの
直径寸法に0.02mmを加えた寸法を越えない範囲に
形成したことを特徴とする膨張弁。
1. A valve seat is formed in the middle of a high-pressure refrigerant flow path through which a high-pressure refrigerant sent to an evaporator passes, and a valve body is disposed opposite to the valve seat, and the valve body is closed by a spring in a valve closing direction. The valve element is moved in the valve opening direction through a rod that is interposed between the power element and the power element that operates by sensing the temperature of the low-pressure refrigerant sent from the evaporator. In the biased expansion valve, the diameter of the rod guide hole through which the rod is inserted to guide the rod so as to be able to advance and retreat in the axial direction does not exceed a value obtained by adding 0.02 mm to the diameter of the rod. An expansion valve, wherein the expansion valve is formed.
JP9064399A 1997-03-18 1997-03-18 Expansion valve Pending JPH10259968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9064399A JPH10259968A (en) 1997-03-18 1997-03-18 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064399A JPH10259968A (en) 1997-03-18 1997-03-18 Expansion valve

Publications (1)

Publication Number Publication Date
JPH10259968A true JPH10259968A (en) 1998-09-29

Family

ID=13257212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064399A Pending JPH10259968A (en) 1997-03-18 1997-03-18 Expansion valve

Country Status (1)

Country Link
JP (1) JPH10259968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292185A (en) * 2005-04-06 2006-10-26 Tgk Co Ltd Expansion device and refrigerating cycle
JP2007178013A (en) * 2005-12-27 2007-07-12 Fuji Koki Corp Expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292185A (en) * 2005-04-06 2006-10-26 Tgk Co Ltd Expansion device and refrigerating cycle
JP2007178013A (en) * 2005-12-27 2007-07-12 Fuji Koki Corp Expansion valve

Similar Documents

Publication Publication Date Title
JP3576886B2 (en) Expansion valve
JP3428926B2 (en) Pilot operated flow control valve
JP3452719B2 (en) Expansion valve
JPH10259968A (en) Expansion valve
JP3481036B2 (en) Expansion valve
JP3507616B2 (en) Expansion valve
JP3362990B2 (en) Expansion valve with solenoid valve
JP6639980B2 (en) Expansion valve
JPH11173705A (en) Expansion valve with bypass pipeline for refrigeration cycle
JP2001153495A (en) Electrically controlled expansion valve
JP3507615B2 (en) Expansion valve
JP2000055512A (en) Controlled degree of supercooling expansion valve
JP3780127B2 (en) Expansion valve
JP3827898B2 (en) Expansion valve
JPH10238903A (en) Expansion valve
JP2002098444A (en) Expansion valve for use in refrigeration cycle
JP2001091106A (en) Expansion valve
JP3897974B2 (en) Expansion valve
JP2001091108A (en) Expansion valve
JP3154578B2 (en) Expansion valve
JP3859913B2 (en) Expansion valve
JP3507612B2 (en) Expansion valve
JP3569598B2 (en) Expansion valve for air conditioner
JP2001091109A (en) Expansion valve
JP3485748B2 (en) Expansion valve

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302